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ABSTRACT 

Abnormal event management (AEM) in large manufacturing plants has evolved as a higher and increasingly vital 
function of process control. In this paper, an intelligent information management and control system is 
introduced. The different computational agents (i.e., modules) of the system are embodied in a three-layered 
cognitive hierarchy, which offers intelligent behavior at the system level, as well as at the level of specialized task 
agents. At the lower level, agents generate goal-seeking reactive behavior. Three different fault detection and 
isolation agents (i.e., three complementary techniques) are embedded to generate three different assessments and 
to enhance the fault isolation process. Other utility agents are also incorporated to address topics such as data 
reconciliation, process model identification and optimization.  At the middle layer, agents enable decision 
making, planning, and deliberative behavior. Two case-based reasoning agents are incorporated; the first 
manages the system in normal operation, while the other handles faulty process situations. A meta-management 
agent at the highest level monitors and coordinates other agents so as to make the whole system performance 
more robust and coherent. 

1. INTRODUCTION 

Abnormal event management (AEM) in large process plants has evolved as a higher and increasingly vital 
function of process control. When an abnormal event occurs it may take considerable time to diagnose its causal 
origin, and to take the appropriate actions to bring the process back to a normal, safe operating state or to a safe stop. 
This may have significant economic, safety, and environmental impact.  Unfortunately, AEM is controlled manually 
in many manufacturing plants, which complicates the management and control of such plants.  This can be attributed 
to several factors such as the size and complexity of modern manufacturing plants and increasingly massive 
information overload. The automation of AEM within an information and control infrastructure will reduce 
maintenance expenses, improve utilization and output of manufacturing equipment, enhance safety, and improve 
product quality. An integrated control and AEM system involves several sub-problem areas including data 
reconciliation and fusion, fault detection, isolation, and accommodation (FDIA), process model identification and 
optimization, and supervisory control.  The integration of these complementary features into an intelligent fault-
tolerant control framework will define a new arena for research in this area [6, 16, 23]. 

Many research studies, which proposed different combinations of systems theoretic and artificial intelligence 
techniques to tackle the AEM problem, have delineated a set of required features [23]:  

• integrating different problem solving paradigms, knowledge representation schemes and search 
techniques,  

• maintaining global databases of process data and knowledge,  
• reasoning about process operations without requiring accurate models,  
• coping with data explosion and the need for effective compression and interpretation, and  
• understanding, and hence representing, process behavior at different levels of detail. 
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These requirements are similar to those proposed for intelligent supervisory control systems.  For example, a 
proposed system for producing metal-matrix composite materials incorporated a central database of process data and 
knowledge, process planning via case-based reasoning, on-line learning, automated process optimization and model 
identification, robust control algorithms—all under the direction of an expert system coordinator [21]. This paper 
extends a proposed architecture for the integration of process automation and AEM in large process plants [22] by 
introducing a communication and behavioral framework for building an intelligent information management and 
control system.  The paper is organized as follows: First, we review available conceptual models of complex 
intelligent systems followed by a detailed structural description of the proposed system architecture. Then, we 
discuss the behavioral model of the system. Finally, we conclude with future research and development steps. 

2. CONCEPTUAL MODEL OF THE SYSTEM 

We propose to use a combination of top-down and bottom-up approaches for modeling and developing an 
intelligent control and asset management system (ICAM system).  The top-down approach deals with high level 
abstractions and conceptual tools, which facilitate capturing and modeling the structure and the behavior of the 
system being developed. Bottom-up modeling refers to developing scenarios that show in detail how the intelligent 
system should interact with users and complex external environments. Top-down modeling is the primary focus of 
this paper, so that the system architecture can be well explained and motivated.  

Several conceptual frameworks have been suggested for modeling complex intelligent systems in the past two 
decades, such as expert systems, whose implementation results revealed several drawbacks, namely, lack of learning 
mechanisms and weak representation power [12]. Newell et al proposed another promising framework that is 
cognitive architectures, which model human cognition and problem solving behavior [14, 17]. Multi-agent systems 
(MAS), which can be considered as an instantiation of distributed artificial intelligence, are another conceptual 
framework for modeling complex systems. A MAS is defined as a loosely coupled network of problem solvers that 
work together to solve problems, that are beyond their individual capabilities [4, 25]. The MAS platform emphasizes 
distribution, autonomy, interaction (i.e., communication), coordination, and organization of individual agents. 

Sloman [18, 19] introduced H-Cogaff, a human-like information processing architecture, which contains many 
components performing different functions all of which operate concurrently and asynchronously. The H-Cogaff 
architecture seems to represent a combination of the cognitive architecture and the MAS conceptual frameworks. It 
is worth mentioning that several projects are currently being developed to automate AEM using these conceptual 
frameworks, namely MAGIC which is developed by a joint venture of several European universities and companies 
[10], and AEGIS, which is developed by the Honeywell led Abnormal Situation Management (ASM) Consortium in 
the United States [1].  Having reviewed the different conceptual modeling frameworks, it is our opinion that 
Sloman’s H-Cogaff scheme is the best candidate, which would meet most of the requirements of an ICAM system 
for complex process plants. The architecture of the system and its functional modules will be discussed in 
subsequent sections. 

3. SYSTEM FUNCTIONAL DESCRIPTION AND ARCHITECTURE 

Figure 1 illustrates the proposed architecture of the system, which consists of four information processing layers 
and three vertical subsystems, namely, perception, central processing, and action. The horizontal layers above the 
distributed control system (DCS) contain semi-autonomous agents that represent different levels of data abstraction 
and information processing mechanisms of the system. The middle two layers (i.e., the reactive and deliberative 
layers) interact with the external environment via the DCS and thus the industrial process by acquiring perceptual 
inputs and generating actions.  The perceptual and action subsystems are divided into several layers of abstraction to 
function effectively.  This can be achieved, for example, by categorizing observed events at several levels of 
abstraction, and allowing planning agents to generate behavior (actions) in a hierarchically organized manner. 

The system layers interact with each other by means of bottom-up activation and top-down execution. Bottom-up 
activation occurs when a lower layer passes control to a higher layer because it is not competent to deal with the 
current situation. Top-down execution occurs when a higher-level agent makes use of the functionalities provided in 
a lower layer to achieve one of its goals. The basic flow of control in the system begins when perceptual input 
arrives at the lowest level in the architecture. If the reactive layer can deal with this input then it will do so, 
otherwise, bottom-up activation will occur and control will be passed to the deliberative layer. If the deliberative 
layer can handle the situation then it will do so, typically by making use of top-down execution.  Otherwise, it will 



pass control to the meta-management layer to resolve any internal conflicts in the architecture or notify the operator 
for further intervention. In the remainder of this section, the functionalities of the agents in each layer will be 
discussed. 

      

 

   

 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. ICAM system architecture 

3.1. THE PERCEPTION SUBSYSTEM 

In order to tackle the problem of data explosion in modern complex process plants, the perceptual subsystem will 
process data in a hierarchical manner, and categorize it into different levels of abstraction. The data stream is 
processed serially by different agents, where the first agent function is data acquisition and pre-processing. Gross 
discrepancies such as outliers and missing data are detected and removed by this agent. The data stream is then 
exposed to further statistical processing to estimate variances and detect changes in steady state. Such statistical 
information is communicated to the central processing subsystem to permit it to adapt to new situations. The next 
agent then reconciles process data in accordance with steady state conservation laws (e.g., material balance). The 
data is then archived in a database by the database management system. The last agent in the perceptual subsystem, 
the data fusion agent, aggregates the data to optimally determine operation critical variables. This will help the 
planning layer assess the situation of the external environment and to make appropriate decisions. 

3.2. THE REACTIVE LAYER 

Agents in this layer provide a direct response to events that occur in the environment. When an abnormal event 
occurs, several fault detection and isolation (FDI) agents work concurrently and complimentarily to generate 
different assessments. The integration of several FDI agents in the system will result in a better performance, as 
suggested by many FDI survey papers [23, 8, 7]. FDI basically consists of two tasks, namely fault detection, which 
indicates that something is going wrong in the plant. The determination of the exact location of the failure is the 



fault isolation task. Three different FDI techniques are being evaluated, namely, a directional parity vector model-
based FDI technique, a fuzzy signed directed graph (SDG) model-based FDI technique, and a neuro-fuzzy data 
history-based FDI technique. These approaches are complementary in that they are based on entirely different world 
views, namely an analytic model, a cause/effect net and heuristic reasoning. 

The first FDI approach exploits the concept of generalized parity space (GPS) to generate a set of directional 
residuals, from which process faults can be determined. When a fault occurs, it will result in an activity of the parity 
vector along certain directions or in certain subspaces. Therefore the fault isolation task involves determining which 
predefined direction the parity vector is most nearly aligned with [24]. A systematic approach to extend and to 
enhance the FDI properties of this technique in terms of the number of isolated faults, has been effectively 
developed [15]. A new fuzzy signed digraph (SDG) model-based FDI technique is another approach being 
evaluated. Signed digraphs, which have been widely used to model the cause/effect behavior of process plants, 
consist of nodes representing the process variables (and parameters) and signed directed arcs representing the 
cause/effect relationship between these variables. If a fault happens, process variables deviate resulting in a set of 
symptoms, which constitutes the pattern of this fault. The pattern is compared with a set of predefined fault patterns 
to isolate the fault [20]. The third FDI technique involves extending the adaptive neuro-fuzzy inference system 
(ANFIS) methodology.  ANFIS is a data driven modeling approach that combines the reasoning capability of fuzzy 
logic and the learning capability of neural networks. The strength of this approach lies in its ability to use prior 
knowledge, and to update membership functions that provide a better model for the desired output. This makes the 
approach suitable for dealing with nonlinear processes [9]. 

A model identification agent is incorporated in the reactive layer, in order to improve the knowledge available to 
the FDI agents about the external environment (i.e., the plant), This agent will exploit an off-the-shelf model 
identification package to produce a multi-variable model, which will predict changes in process variables to estimate 
new process parameters (learning task), enhance the fault isolation task, and compensate for faulty sensor signals 
(estimation task). An optimization agent will be embedded in the reactive layer to make the best use of available 
equipment and raw materials. The agent will receive product quality plans and process operation constraints from 
the deliberative layer, and then the agent will formulate a new optimization problem to solve and generate the 
optimal raw material recipe to meet the new product quality. The optimizer may play the same role for faulty 
process situations, whenever possible. 

3.3. THE DELIBERATIVE LAYER 

Proactive behavior is achieved in the system in its deliberative layer, which is responsible for governing the 
system’s actions in normal and faulty circumstances. Planning in this layer will not attempt to work in a vacuum. 
Rather, it will employ a library of pre-specified plans and a problem solving mechanism. There are several problem 
solving and inference paradigms that may be embedded in this layer of the architecture, such as rule-based 
reasoning, model-based reasoning, and case-based reasoning (CBR). Case-based reasoning provides a wide range of 
advantages over other paradigms.  For instance, CBR can quickly propose solutions to problems that are not well 
defined, avoiding the time necessary to derive those answers from scratch, thus more easily meeting real-time 
requirements. CBR suggests a model of reasoning that incorporates problem solving, understanding, and learning, 
and integrates it all with episodic memory processes. It actually solves new problems by adapting previously 
successful solutions to similar problems [11]. 

The deliberative layer supervises the system through two CBR agents.  The first agent is the main supervisor, 
which manages the system during normal operation circumstances. The agent’s case library contains product quality 
profiles, their pre-specified raw material processing recipes, as well as the associated operation procedures. When a 
certain product specification is required, the main supervisory agent retrieves a set of cases that best match the 
required attributes and quality specifications. If the matching process is successful, the plan is sent to the action 
subsystem for execution.  If not, the closest matching case is chosen and adapted by using model-based 
optimization, in which the main supervisory agent collaborates with modeling, simulation and optimization agents to 
generate the optimal recipe and operating conditions (e.g., pressure and temperature). The plan is sent to the user 
interface layer for further modifications by process operators if needed. Once the plan has been approved then it is 
sent to the action subsystem for execution. The actual quality specifications are monitored by the main supervisory 
agent, which will add the plan to its “good” case library should the actual and desired specifications match, or to the 
“bad” repository if they do not. This behavioral paradigm was central to the intelligent processing architecture 
proposed in [21]. 

The other CBR agent acts as a backup supervisory agent to manage the system in case of faulty situations. Pre-
computed fault accommodation plans are stored in this agent’s case library. These plans consist of schemes for 



sensor/actuator reconfiguration and controller tuning/restructuring, as well as fault propagation scenarios and 
recommended predictive maintenance procedures. When a process fault happens, the backup agent receives fault 
assessments for the different FDI agents in the reactive layer. Based on such assessments, the agent retrieves the 
most closely matching case from its library. Consequently, it alarms the user interface agent about the fault, its 
possible causes, and recommended mitigating actions for operator feedback and approval. The backup supervisory 
agent may interfere directly in critical situations to prevent the system performance from deteriorating excessively 
and to keep it in an acceptable state. Collaboration with the main supervisor may also occur to preserve the product 
quality at an acceptable level, if possible. 

3.4. THE SELF REFLECTIVE LAYER 

The self reflective layer provides the ability to monitor, evaluate, and control other agents in the architecture. For 
example, the deliberative layer is partly driven by decisions made by the reactive layer and perception subsystem, so 
it may unexpectedly acquire inconsistent information or goals. The same situation may occur in the action 
subsystem, which may not be able to meet the plan time frames sent by the deliberative layer. The meta-
management agent can notice and categorize such situations, and perhaps through deliberation or observation over 
an extended time period develop a strategy to deal with these situations. Furthermore, the meta-management agent 
coordinates other agents so as to make the whole system performance more robust and coherent. It determines when 
other agents have completed their work, what agent to invoke next, and assesses credibility of each agent’s behavior 
by monitoring their internal states. To be more specific and concrete, we refer to the system behavioral model in 
section 4. 

The meta-management agent is basically a rule based expert system, which codifies all possible system 
behaviors and agent interactions as a behavior hierarchy is its rule base. an agent behavior is represented in the 
behavior hierarchy by a single structure, which has different dimensions for what is being achieved (i.e., goals), for 
how the results are being achieved (i.e., plans), for when and where activities are taking place, for who is involved in 
the activities, and for why the behavior has been adopted (meta-reasoning). Thus moving vertically through the 
behavior hierarchy leads to a more or less abstract representation of the agents’ activities; emphasizing different 
aspects of their behaviors depending on the behavioral dimension traversed. Moving horizontally provides different 
views of behaviors at roughly equivalent levels of details, but emphasizing different behavioral dimension. An 
inference mechanism will help the meta-management agent resolve conflicts between the system agents by 
searching the behavior hierarchy and generating alternative behaviors so as to maximize (or at least improve) 
coordination. The agent may learn and generate new types of behaviors after a certain period of time. 

3.5. THE USER INTERFACE LAYER 

Process operators monitor and control the system through its user interface layer, which works concurrently at 
the top of the architecture. The user interface layer receives different types of information from the different layers 
and subsystems, namely: 

• faulty components and their possible causes based on the different FDI agents’ assessments, 
• fault propagation scenarios based on the reasoning of the SDG based FDI agent, 
• system recommendations in faulty situations such as instructions for control loop restructuring/tuning, 

predictive maintenance plans, and other reactive or proactive mitigating measures, 
• product quality specifications and associated optimal raw material recipes, and 
• internal system diagnostics and other data trend utility tasks. 

Its most important obligations are to present process-critical information in a timely manner, and prevent data- 
and work-overload for the operator. 

3.6. THE ACTION SUBSYSTEM 

Plans which are sent by the deliberative layer are executed by the action subsystem. The action subsystem 
consists of hierarchically organized scheduling and execution agents. The main scheduling agent decomposes main 
plans into sub-plans that have shorter time frames.  This results in better execution performance by alleviating the 
excessive computational burden on the main scheduling agent. The sub-plans are further decomposed by a 
secondary scheduling agent to simpler tasks in accord with the sub-processes in the plant. Finally, the subtasks are 
performed by their corresponding agents and the task outcomes are communicated to the DCS for final execution. 



4. SYSTEM BEHAVIORAL FORMALISM 

Rigorous coordination of the behavior of the ICAM system layers and agents is crucial to success.  A sound 
coordination scheme will allow us to assess its performance, and to evaluate how the internal agents of the system 
interact when a certain internal/external event occurs. Furthermore, it permits system behavior modeling to simulate 
the most critical design characteristics such as concurrency, autonomy, task distribution and parallelism, in order to 
guarantee robust and coherent performance. Due the complexity of modern manufacturing plants, intelligent systems 
(e.g., ICAM) have to be distributed, which makes the coordination of such systems very difficult and challenging. 
Durfee et al [5] proposed an informal theory that integrates organizational behavior, long term plans, and short term 
schedules into one coordination framework, and treats coordination as a distributed search process through the 
hierarchical space of the possible interacting behaviors of the individual agents to find a collection that satisfactorily 
achieves the agents’ goals. The theory emphasizes several topics such as: 

• hierarchical behavior representation to express different dimensions of behavior at different levels of 
detail,   

• metrics for measuring the quality of coordination between agents, 
• distributed search protocol for guiding the exchange of information between agents during the 

distributed search,   
• local search algorithm for generating alternative behaviors at arbitrary levels of abstractions, and  
• control knowledge and heuristics for guiding the overall search process to improve coordination. 

Durfee also suggested that introducing a meta-level organization in the intelligent system to manage coordination 
between agents, and separating knowledge representation into domain-level and meta-level types would enhance 
coordination and make it more robust. Agents use domain-level knowledge to influence what goals they pursue, and 
use meta-level knowledge to decide how, when, and where to form and exchange behavioral models [3]. Durfee’s 
informal theory and suggestions give the big picture of how agents should coordinate their activities within an 
intelligent system or even a society of intelligent agents. So far we have addressed the knowledge and organization 
separation issues by adopting the H-CogAff architecture proposed by Sloman. ICAM interacts with the external 
world through its reactive and deliberative agents, whereas the meta-level layer dictates the internal behavior of the 
system. Furthermore, domain-level knowledge is encoded in the deliberative agents and the meta-level knowledge is 
encoded in the self reflective layer. 

When it comes to the internal behavioral model of the ICAM system, three approaches can be considered. One 
approach of coordination would be a direct interaction between the system agents according to their data flow 
requirements in a serial fashion. However, this approach is inflexible because it does not address the dynamic 
scalability of the system in terms of adding new agents or changing the internal architecture of any of the system 
agents. Another approach is to use an indirect and anonymous communication among agents via an intermediary 
such as a blackboard repository [2]. The blackboard technique consists of a global data repository and a control 
mechanism, which makes runtime decisions about posting, accessing, and removing the data in the repository and 
notifies other agents if useful information is available or not. However, this approach has its own problems such as 
communication bottlenecks, which occur when many agents try to gain access simultaneously. This would degrade 
the performance of the system and impose a sort of serial collaboration among agents instead of a concurrent one. A 
final approach would be to stipulate a direct and dedicated communication protocol between agents without 
resorting to a blackboard-like architecture. This approach permits a more distributed and parallel processing 
capabilities. Yet it adds more computational burden on individual agents to handle coordination, when they are 
supposed to direct most of their computations for problem solving. This would in turn affect the real-time design 
requirement of the ICAM system. It is our opinion that a balanced combination of the last two approaches would 
effectively address the trade off between computation and communication. Thus we will have multiple blackboard 
agents in the system to alleviate the communication bottleneck and a well established communication protocol to 
minimize the computational burden on agents. Two blackboard agents (moderators) in the reactive and deliberative 
layers will manage the systems interaction with the external world. Another blackboard agent in the self reflective 
layer will manage the internal interactions between agents. 

In order to facilitate knowledge sharing, acquisition, and later revision or retraction, a communication language 
has to be developed to enable effective interaction between the different agents. This language uses ontologies to 
specify the major conceptual classes of the system such as plans, goals, and actions. Ontology identifies basic terms, 
relations among terms, and rules to combine them. The ICAM system will have two types of ontologies which 
match the knowledge representations in the system. The first type is domain-level ontology, which defines concepts 
for describing the external environment such as process instrumentations, variables, faults, and others. The second 



type is the task ontology (i.e., meta-level ontology) which provides vocabulary for describing terms involved in 
problem solving tasks such as goal, schedule, assign, and classify. Message between agents has a unified format, 
which is compatible with behavior representation structure of the system. This will result in a simple structure of the 
blackboard agents, where agents can post their conclusions and requests for information very effectively. 

Petri nets constitute a graphical and mathematical modeling tool for describing and studying systems with 
critical characteristics such as those of the ICAM system. A Petri net is a particular kind of directed graph, together 
with an initial state called the initial marking. The underlying graph of a Petri net is a directed, weighted, bipartite 
graph consisting of two kinds of nodes, called places and transitions, where arcs are either from a place to a 
transition or from a transition to a place. A major strength of Petri nets is their support for analysis of critical 
behavioral properties and problems associated with concurrent systems [13]. Since we are designing a real-time 
dynamic system, the concept of time becomes crucial for performance evaluation and scheduling when modeling 
such systems. The timed Petri net introduces time delays associated with transitions and/or places in their net models 
to address real-time performance. The timed Petri net concept will be used to model the behavior of the architecture 
of the ICAM system. 

5. PROJECT STATUS AND FUTURE WORK 

A joint venture between several Atlantic Canadian universities, the National Research Council of Canada, and 
local and national companies was established in order to advance wireless sensor technology in the oil and gas 
industries and to assess the feasibility of an intelligent control and asset management system built on a wireless 
sensor network.  As part of this joint venture, and as the leader in developing the ICAM system, we have formed a 
task force of five graduate students at the University of New Brunswick to address the integration of control and 
asset management for a large process industry application. Three team members were assigned the task of 
developing, testing and evaluating the different proposed FDI techniques. The FDI agents development task has 
successfully met several major goals, such as quick detection and isolation, isolability, robustness and disturbance 
decoupling.  The task of evaluating the different data processing techniques which will be incorporated in the 
perception subsystem is assigned to another of the team members, who is presently focusing on data preconditioning 
and reconciliation. A rigorous review of the available system architectures and their characteristics has been done so 
as to match them with proposed system requirements. Starting in January 2004, the project has progressed well. 
Further steps are planned to implement a successful ICAM system prototype, namely: 

• refinement of the FDI agents to address topics such as adaptability, explanation and reasoning 
capability, and to meet real-time requirements, 

• development of appropriate data pre-processing, reconciliation, and aggregation techniques associated 
with the perception subsystem, 

• consultation with industrial and automation partner companies to produce final specifications and 
documentation for the architectural level and execution platform in order to meet industry standards, 

• design and modeling of the internal system coordinator using the Petri net approach, 
• designing the two CBR agents and the pre-computed fault accommodation plans, and 
• modeling the pilot plant which will be used to validate the system performance. 

We believe that the successful design and development of the proposed system will lay a corner stone in the area 
of complex intelligent system development, and will open the doors for other applications such as distributed power 
plant management. 
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