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A novel technigue for designing robust nonlinear
control algorithms for an electro-mechanical pointing
systern {a surrogate gun-turred testbed called the
ATBIOO) is presented. This system poses a very
challenging control problem, as giming accuracy
must be achieved in on operaiional environment
characterised by high-level disturbances {e.g., gun
recoil) and with severe limitations imposed by the
nonlinear behaviour of the drive train and the
existence of flexible modes in the gun barrel.

The control synthesis approach includes two steps:

® use of a linear control method to design a
dissipative outer-loop conirol law to make the
overall system insensitive to the unmodelled
dynamics and paranteier imprecision associated
with the flexible modes of the wheel-barrel subsys-
tem;

® use of a set of sinusoidal-input describing function
(S1DF) models of the testbed’s drive subsysiem
{which characterises the amplitude-dependent
effects of backlash and nonlinear friction) to
design an inner-loop nonlinear compensaior to
make the controlled drive-sysiem response insensi-
five o input amplitde.

This approach represenis @ major extension of
previous SIDF-based technigues thar make them
applicable to systemts with flexible modes. It achieves
robustaess in two senses: The final system is insensitive
to the pointing command input amplitude and to the
existence of unmodelled dynarmics.
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1. Introduction

This paper describes the design of a robust control
system for an electro-mechanical gun-turret testbed
called the ATB1000, depicted schematically in Fig.
1. This testbed is used to emulate the dynamics of
a gun-firing platform and to test schemes for
controlling and stabilising the gun-firing process in
the presence of uncertainties such as fniction,
backlash, flexible modes, and gun recoil disturb-
HANCES.

Owr control objectives are to obtain good transient
response as the gun is slewed towards a specihed
reference angle and to maintain accurate pointing
during gun firing. To achieve this level of perform-
ance, the controller must overcome the effects
of gun recoil, nonlinear friction, and backlash.
Furthermore, the control system is required to be
robust to modelling uncertainties, such as parameter
imprecision and unmodelled dynamics.

The testbed system can be decomposed into two
subsystems that pose significantly different control
problems, The drive subsystem has limitations due
to Coulomb friction and gear backlash, and the
wheel-barrel subsystem has the *spill-over’ problem
associated with unmodelled high-frequency modes
that arise in characterising the motion of the flexible
gun barrel. The control system described below
incorporates an inner-loop nonlinear control scheme
based on sinusoidal-input describing function (SIDF)
models to reduce the effects of backlash and
nonlinear friction, and an outer-loop dissipative
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Fig. 1. Schematic of the ATBL00D electro-mechanical tesibed.

control scheme to make the control system insensi-
tive to the unmodelled dynamics and parameter
imprecision of the wheel-barrel subsystem.

Both the nonlinear effects and the Aexibility of
the barrel are important factors in limiting the
performance of the overall system. The nonlineari-
ties in the drive subsystem make it difficult to
control small motions of the gun, and the flexible
modes cause large, lightly damped oscillations in
the tip angle that are aggravated by ‘jerky’ motions
due to discontinuities in the drive. To appreciate
the importance of the flexible modes, we observe
that the flexible member on the ATB1000 resembles
a metre-long fishing rod; movies of the actual gun
system show bullets being ‘sprayed” as though by a
high-pressure hose held some distance from the
nozzle.

The nonlingar effects present in this system make
the control objective for transient response difficult
to meet. Robust lingar control schemes [1-3] have
limited utility, because they do not allow for the
accommodation of amplitude dependence. This is
most vividly illustrated in earlicr applications of the
SIDF approach [4,5] where the plant included
saturation effects and stiction — the nepative effects
of saturation could be alleviated by using low-gain
controls, while reducing the effect of stiction calls
for high-gain control; the SIDF controller (which
is inherently nonlincar) can accommodate these
conflicting requirements, while linear control can-
not.

The issue of robustly controlling semi-rigid/flexible
structures has been studied intensively in recent
years, For example, collocated controllers, being
energy dissipative, guarantee the stability of semi-
rigid/flexible structures with unmodelled modes and
parametric uncertainty [6]. Being merely stabilising
controllers, however, they may not simultancously
achieve desired dynamic performance [7]. As a
result, non-collocated robust controllers have been
used to control semi-rigidflexible structures [8,9].
Unlike collocated controllers, many non-collocated
controllers do not take into account the special
structure of the controlled system which may
otherwise allow better results [8]. In contrast, the
outer-loop dissipative control scheme used to control
the flexible wheel-barrel subsystem of the ATBE 10
is a non-collocated control scheme that takes into
account its special structure,

The remainder of this paper is organised as
follows. In Section 2 we describe the testbed model
and highlight some of the features of the system
that make its control difficult; in Section 3 we
formulate the control problem; in Sections 4 and 5
we detail the design of a robust control system for
the testhed; finally, in Section 6, we verify the
control system’s performance by simulating it n
conjunction with the testbed model.
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2. Model Description

The ATBELI0OD testbed, shown in Fig, 1, consists of
two subsvstems;

® o drive subsystem, including a DC motor (with
Coulomb friction), a gear train (with backlash),
and an elastic shaft;

® g wheel-barrel subsystem, including an inertial
wheel {also with nonlinear friction) and a flexible
gun barrel.

Models for these subsystems are overviewed in the
following subsections. MNote that we have neglected
the effect of platform motion on the testbed in the
work outlined below,

2.1. The Drive Subsystem

The drive subsystem dynamics are governed by two
sets of differential equations, depending on whether
the gears are engaged or not. When the two pears
are not engaged, there is no interaction between
the DC motor and the elastic shaft, and thus the
drive subsystem s composed of two decoupled
second-order differential equations:

II'.I ﬁf.l = _T'r {,1}

where @, and #, are the angles of the driving gear
and driven gear, respectively (see Fig. 1). J,, and
Ji are the inertia constants of the motor and elastic
shaft assemblies, T, is the mechanical torgue
produced by the motor, T,,¢is the Coulomb friction
torque on the motor

T = B sg0i(,)

where b, is the magnitude of the friction torgue,
and T, is the reactive torque of the elastic shalt,

T, = k(8 = 6) + b(8, — 8) (3)

where &, and b, are spring and viscous friction
constants respectively, and & is the inertial wheel
yaw angle.

When the two gears are engaged, the subsystem
can be treated as if there were no gears. In this case,
f = 8 and 8, = &, + A (positive engagement) or
By = B (negative engagement), where A& is the
backlash gap, Under these circumstances, the differ-
ential equation governing the dynamics of 8, is

{Jm +J }Hh T Thll g I.f o T:Ih'_l' {4}

We note that there is a ‘jump’ in the states é,,, and
fi, at the moment the two gears become engaged.

I M. Taylor and 1. Lu

Let the moment of contact be 1., let fiml[.r;j and _fi',.,
{77} be the gear speeds before contact, and let @,
{t:) and 8:(r) ) be the pear speeds after engagement.
If we neglect the elasticity of the gear material,
then by conservation of momentum we have

. : _J'
e} = B0 ) = 520 5 B (1) (5)
gy
+ — T+ Jh Eil,,{z

The conditions for the gears 1o become engaped
are:

® positive engagement,

f, — 0, =Aand 8, — &, >0 (6)
ar

#,— B.=Aand d, — &, =0 {7
® negative engagement,

g, — B,=0andd, — 8 <0 (8)
ar

B, — B =0and &, — 8, <0 (9)

We note that in the above conditions, the dynamics
of &, and 6, are governed by differential equations
(1) and (2).

The conditions under which the gears become
disengaged are more complicated to state in terms
of simple tests on angles or angle rates. The most
straightforward technique, used here, is to continue
to evaluate 8, and 8, according to Egs (1),
{2) with current values of #, = #, + A (positive
engagement) or #, = 8, (negative engagement);
again, we have two cases:

® positive engagement — the gears will disengage
when Egs (1), (2) predict that &, = a.:

® negative engagement — the gears will disengage
when Egs (1), (2) predict that 8, < &,,;

Prior to such an cvent, the dynamics obey the
differential equation (4).

2.2, The Wheel-Barrel Subsystem

The gun barrel 15 a distributed-parameter system
that can be approximated by a lumped-parameter
model obtained using the finite clement method.
After this approximation, the wheel-barrel subsys-
tem is described by a state-space model of the
following form:

P+ Di+ Ke=B(T,—T,+ Ty +Ta) (10)
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y=Ce (11)

where x £ #" is the subsystem state vector (vector
of modal coordinates) and " = [# 8] is the
output vector; & is the inertial-wheel angle and
is the gun-barrel tip-angle; and matrices D, K, C
and B are of appropriate dimensions. The arrays
B and K are disgonal matrices with non-negative
elements. T, is the disturbance torque introduccd
by gun firing (recoil), and Ty, and T are torques
introduced by viscous and Coulomb friction between
the inertial wheel and the supporting platform under
it,

Ty = byl (12)
Ta= by sgn( i) (13)

where f, and &, are the friction coefficients.

The dimension of a flexible-structure model (in
a lumped-parameter approximation) is generally
quite high. From a numerical standpoint, we usually
base the design of a controller for a flexible structure
on a reduced-order model that contains the critical
modes of the structure. In our case, we consider
only four low-frequency modes of the wheel-barrel
structure  (n = dim(x) =4 in Eg. (10)). One
important issue is how to design a control law based
on the reduced-order model that does not destabilise
the unmodelled modes when applied to the actual
system.

3. Control Problem Statement

The abjectives of the control system are (o slew
smoothly and point accurately the gun-barrel tip-
angle &, with respect to a reference angle (pointing
command input) in the presence of gun-firing
disturbances, backlash, nonlinear friction, and
unmodelled dynamics. To be specific, we want to
find a control law T, = T,(f) such that &, will
slew gracefully to 8., within some acceptable toler-
ance and in a reasonable time. To achieve this
control objective, the control system must overcome
the effect of backlash (the DC motor has no
control over the wheel-barrel subsystem during
disengagement) and Coulomb friction (the torques
are discontinuous whenever angular velocity changes
sign, giving rise to jerky motion and ringing). In
addition, the control system is required to be
insensitive to modelling uncertainty, such as unmod-
elled high-frequency modes and system parameter
imprecision of the flexible gun barrel.

Substituting relations (3) and (12) into Eq.
(107, we can write the model of the wheel-barrel
subsystem as
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FH(D+ (b, + b)BC )t + (K + EBC )x (14)
= Hu + Bw

where 8 = Cpe and C) is the first row of Cin Eg.
(11), u = bof, + k8, and w = T, + Tp.

The vanable v = b0, + k&, can be considered
to be the input to the system in Eq. (14) and an
output of the drive subsystem. Our approach to
control design consists of two steps,

1. Find a control law o for the input w to the
systerm in Eq. (14) such that the resulting 8,
has the desired properties outlined above.

2. Find a eonteol law for T, so that & as an outpul
of the drive subsystem tracks the desired control
law w* found in Step 1.

This design approach is illustrated in Fig. 2, where
the linear controller Cy(s) is designed in Step 1 and
the nonlinear controller Cyp is designed in Step 2.
In Step 1, we will use a robust linear control scheme
that does not destabilise unmodelled high-frequency
modes and is insensitive to parameter uncertainty,
In Step 2, we will use a nonlinear control synthesis
approach based on SIDF models of the testbed's
drive subsystem to deal with backlash and nonlinear
friction. SIDF models are used because they provide
a meaningful characterisation of the major nonlinear
effect of the drive subsystem with which we are
concerned: the sensitivity of the drive subsystem’s
input-output (10} behaviour to the amplitude of
the input signal due to the amplitude-dependent
behaviour of gear backlash and Coulomb friction.

4. Robust Control of the Wheel-Barrel
Subsystem

Consider a constant linear feedback control law for
the system in Eq. {14}

u=—Fi— Fax (15)

where F, and F, are two feedback gain matrices of
suitable dimension.
Substituting Eq. (15) into Eq. (14) vields

F+ (D + (b + b )BC, + BF,)i (16)
+ (K + & BC, + BF;)x = Bw

We note that C, = [c); ... 6, (& = Cx) and
B=[h...5b]"in the model in Eq. (16) has the
relation ¢y, b; = 0,i = 1, . . ., n. In fact, the viscous
bearing torque Ty = b, = b Cpi. If we assume
that the wheel-barrel subsystem is subject only to
the viscous bearing torque and has natural damping
D = 0, then we have from Eq. (10),
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Fig. 2. Block diagram [or the nonlinesr control system.

i+ Kx=—BT, = —BCi (17)

We know that a system with only viscous bearing
lorque is always cnergy dissipative. For the system
in Eq. (17), this is true if and only if ¢ b, = 0,
i=1,.. ., A,

The following results give sufficient conditions
for the system in Eq. (16) to be stable; refer to
[10] for proofs.

Proposition 1. Assume the diagonal matrices 7 and
K satisfy rank(D) = n — 1 and rank({K) = (n — 1).
Then the sysiem in Eq. {14) with the control law
in Eq. (15) is asymptotically stable if F, = f,C, and
Fy = f,C; with scalars f; =0 and f; = 0 (in other
words, u = i, + 2l

We note that there is a theorem similar to the
result of Proposition 1 for a simpler controller under
the assumption of zero natural damping [11].

In the following result, we neglect the damping
in the system in Eq. {14), since a control law that
stabilises this system with zero natural damping will
stabilise it with positive natural damping.

Proposition 2. Let the damping matrix 2 in the
system in Eq. {14) be zere and the diagonal matrix
K satisfy rankiX) = (n — 1). The system in Eg.
(14) with the control law in Eq. (15) is asympiotically
stable if F, = f,C, + fi[1 0 ... 0] and F: = foC,
with scalars fy =0, =0 and fy =0 (in other
waords, o= fify + HF, + H8)

Propositions 1 and 2 define control schemes that
are robust with respect to system modelling errors
and structural perturbations, because their stability
depends on system parameter signs, not values.

In the sequel, we will consider only the control
scheme

u=fif; + f2fl; + foi, (18)

where f, = 0,¢ = 1, 2, 3. The freedom in choosing
fi's in the control scheme allows us to achieve other
performance requirements such as desirable pole
assignment while ensuring the stability of the system.

5. SIDF Control Synthesis for the Drive
Subsystem

Assume that we have found, for the wheel-barrel
subsystem in Eq. (14]). the control law for u = b0,
+ k% which guarantees the required behaviour of
thin. MNow, we will design a nonlinear control
algorithm based on SIDF models of the drive
subsystem such that & = b8, + k.8, as an output of
the drive subsystem matches this desired behaviour.

5.1. SIDF Maodelling of the Drive Subsystem

There are two approaches to generating SIDF
madels for the drive subsystem from input T, to
desired output u = b8, + ko, [12].

l. Develop a state-space model of the subsysiem
in which every nonlinear element is replaced
analytically by the corresponding scalar SIDF,
formulate the equations of harmonic balance,
sclect an input amplitude a (T.(1) = a sin{ed)),
solve for the unknown samplitudes of the state
variables and scalar SIDF values, and compute
the 10 model as

Gljw.a) = Cla)ljel — A(a)]™! Bla) + D(a)

where we stress that all arrays in the quasilinear
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madel may depend on the input amplitude a.
We did not use this approach for this effort, so
we merely refer to [13] for further details.

. Apply a sinusoidal signal T,,, = a sin{wf) to the
drive subsystem model, perform direct Fourier
integration of the drive subsystem output
= b8, + k& in parallel with simulating the
model’s response to the sinusoidal input, and
simulate until steady-state is achieved to obtain
Gija,a) [14].

To elaborate on the second method and illustrate
its use on the ATB10DD, we specified a range of
input amplitudes [a,,,.2u.] t0 cover the expected
operating range of the servo motor and frequencics
| @mins@max] 10 span the frequency range requircd
for control system design. Then specific sets of
values {a;} € [FminsTmax] a0d  {o} € [@mins wmas]
were selected for generating G(juy,a;). The ATB1000
simulation model was augmented by adding new
“state variables' corresponding to the Fourier inte-
grals

Bt

Re(G xljenar)) = = r” S sty de

m.
LT

(18)

Im(G @) = - J " 0 cos(wn di

Ty frpt e
(20)

where Re(-) and Im(-) are real and imaginary parts
of the SIDF G{jw.a,), T= 2wlw, and y(7) is the
output of the nonlincar drive subsystem. Achieving
steady state for a given a4, and o was guaranteed
by setting certain tolerances and convergence criteria
on Re(Gy) and Im{G,) where 'K corresponds o
the number of eveles simulated; the integration is
interrupted at the end of each cycle and the
convergence criteria checked to see if the results
were within tolerance so that the simulation could
be stopped and Gijoy.a;) reported. For further
detail, refer to [14.15].

For linear systems, such a model is independent
of input amplitudes; in fact, it is the usual transfer
function (F{jw). For nonlinear systems, however,
SIDF models generally depend on the amplitude of
the system input, This is demonstrated in Fig. 3,
which portrays the amplitude-dependent frequency
response for the drive subsystem. Observe that for
the smallest amplitude the result |Gjay.a;)| is erratic
for a; beyond 1 rad s77; this 15 due to the fact that
for small input amplitudes the gear backlash is
barely transmitting torque to the wheel. As the
amplitude increases the frequency response is clearly

1%7

converging; this is because backlash and Coulomb
friction have decreasing impact as the range of
motion increases, and in fact G(jow,a;) approaches
the linear approximation obtained by neglecting
these effects altogether as a; increases.

5.2. SIDF Control Algorithm Synthesis

The goal of the SIDF synthesis procedure is to
generate a nonlinear control law in the following
‘nonlinear proportional-integral-derivative  (PID)
form:

T = fele} + J:_]",{E} dr 4 ::;fu{ej {21)

where T, (the motor input) is the output of the
controller, e = #,,; — 1 with #_; an external input
{see Fig. 2), and fo(-), fi(-) and fn(-) are nonlinear
functions to be obtained by an amplitude-desensitis-
ation process involving SIDF inversion. There are
several variants of the SIDF synthesis approach:
we summarise below the specific approach applied
to the ATB1000 [4]. For a detailed description of
other S1DF-based control design methods, see also
[5.16].

The procedure applied to the ATBIN involves
SEVEN SLEps.

1. Select a set of plant operating regimes defined
by sets of input amplitudes {a,) and frequencies
{e} ws outlined above and generate the corre-
sponding SIDF models G, ; = Gljoya).

2. Select one plant operating amplitude from this
set, denoted by a* € [@uin-flmas] and character-
ised by G*(jo,a*).

. Design a linear PID controller denoted C*(fuw)
based on G%(jw; &™) using some classical fre-
quency-domain method (e.g.. design to achicve
pood bandwidth and gain-margin).

4. Use C%jw) and G (jw: a*) to define an achievable

open-loop objective function denoted C G*(jw).

5. Take the SIDF model data points &, ; and error-
signal amplitude set e, & =1, 2, ... and for
cach &k delermine the linear compensator static
gains Kp,, K;o. Kpg required to force the
frequency response of the PID followed by
G (s ag) where a, = (Kps + Kppljoy +
JunK o) €y to fit the open-loop objective function
£ G¥{jw) with minimum mean-square error.

6. Pass the three pain sets Kpgeleg), Kpeled.
Kpele,) to an SIDF inversion routine [14] for
controller nonlinearity synthesis.

7. Validate the nonlinear controller design by evalu-

L]
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Fig. 3. Fregquency-response plois for the drive subsystem.

ating its open-loop frequency response (SIDF
mondels as above) and by closed-loop transient-
response simulation.

Steps 2-4 result in an ‘achievable open-loop abjec-
tive function® in the sense that C G* is based on
an actual plant characterisation and PID controller.
The plant characterisation could as well be a
linearised plant transfer function instead of an
SIDF model for a particular amplitude, although
neglecting nonlinear effects altogether might be
unwise in some circumstances. Also, there are many
warys in which C G* may be determined, including
picking an open-loop transfer function simplistically
based on classical linear control ideas (e.g., select
it based on a second-order approximation with
desired natural frequency and damping ratio).
Unless the designer has a good idea of what is
achievable, the latter approach might prove to be
inadvisable.

The SIDF inversion approach vsed in Step 6 is
rather different from the classical problem and its
(limited) solution (see Section 3.7 of [17]). In the
general analytical case, a single-valued nonlinearity
may be expressed as the solution o a Volierra
integral equation of the first kind. However, in
most cases this cannot be solved, and where it
can, different SIDFs may give rise to the same
nonlinearity. In the special case of polynomial
nonlinearities, the cocfficients of the nonlinearity
can be obtained directly from those of the SIDF -
however, in this application we have a small
number of gain—amplitude values that are obtained

empirically  (not  in  relation to  any actual
nonlinearity), so this would very likely be a danger-
ous procedure, There are several pitfalls: first, the
pain-amplitude duta would have to be fitted with a
polvnomial, and in many cases the fit will not
be pood; sccondly, implementing a higher-order
polynomial in the controller may be ill-advised,
since the behaviour of the nonlinearity outside the
fitting ramge may be extremely adverse (e.g.,
destabilising).

In conirast to these approaches, we select a class
of piece-wise lincar functions (which are easily
implemented and parsimoniously parameterised),
and simply obtain the best fit to the gain—amplitude
values obtained in Step 3 by adjusting the nonlin-
earity parameters 0 minimise mean-sgquare €rror,
and thus achieve the desired reduction in amplitude
sensitivity of the open-loop frequency response.
Synthesis of the drive-system controller was done
using the nonlinearity class depicted in Fig. 4 it is
described by four parameters, can fit a wide variety
of pain—amplitude relationships {e.g., monotone
increasing, monotone decreasing, concave up, con-
cave down), and is lincar for large values of
amplitude. This method appears to be very robust.

This approach results in designing a nonlinear
control system whose open-loop frequency response
has as little amplitude sensitivity as possible given
the "degrees of freedom” inherent in the P1D control
algorithm. The power of this approach can he
appreciated by observing that the independent
synthesis of the nonlinearities f(-), fi-) and fn(-) in
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Fig. 4. Nonlinearity class for SIDF inversion.

Eq. (21) allows for desensitisation at low frequencies
{via f;), middle frequencies (via fp) and high
frequencies (via fp). This frequency-domain insensi-
tivity appears, on the basis of a number of appli-
cations, to minimise transient response sensitivity
as well. Note that the fact that the amplitude-
dependent frequency responses are forced to match a
conservative frequency-domain characteristic should
afford a good degree of robusiness with respect to
parameter uncertainly as well; since the drive-train
nonlinearity parameters are rather precisely known
(in comparison with those in the modal model) we
did not test for this aspect.

6. Design and Simulation Study

The parameters of the testbed system are listed in
Table 1. The dynamic response of #;, of the open-

Tahle 1. Parameters of the ATBLO00.

It

loop testbed system in response to a non-zero initial
condition (i, # (), and in the presence of friction,
backlash, and gun-firing disturbance, is shown in
Fig. 5. From Fig. 3, we see that the modes of the
barrel are quite lightly damped. We found that the
damping ratio of the lowest-frequency mode is
about 10%, and the damping ratios of other modes
are less than 10%. Therefore, we use the degrees
of freedom in Eq. (18) to increase the damping of
the two lowest-frequency modes. Using any pole
assignment method (for example, see [18]) we find
that when 4 = —3.5¢, = 104, the damping ratios of
the first- and second-lowest-frequency modes are
40% and 20% respectively. By Proposition 2, the
control scheme puarantees the stability of the
system.

The SIDF-based control nonlinearities obtained
in Step 6 for the drive subsystem control algorithm
in Eq. (21) are shown in Fig. 6. Figure 7 portrays
a set of SIDF models {frequency responses) of the
open-loop nonlinear compensated drive subsystem
— we observe that the variation of magnitude is
greatly reduced compared with the results for the
drive train alone (Fig. 3); the same is trug for
phase.

Figure 8 shows the uniformly fast response of
w = bd, + ki, of the drive subsystem controlled
by the nonlinear algorithm when subjected to step
inputs of various amplitudes. For comparison, Fig.
0 shows the response of w = b,,!‘.",, + k@, of the
drive subsystem controlled by a linear algorithm
(design based on a linearised model of the testbed)
when excited by step inputs with the same set of
amplitudes. Figure 9 also includes the response of
u = b#, + k., of the lincarised model controlled
by the linear control system. As mentioned earlier,

Symbol Drescription Value Linits
A Backlash clearance (005 rad
b, Spring viscosity 0.1 MWm rad~! 5™
k, Spring constant 34,3 Nm rad ™!
B Motor friction magnitode .5 MNm
I Motor and driving gear inertia (L1006 Kg m?
Iy Diriven gear and shaft intertia 0.01 Kg m*
[ Bearing viscosity 0.67 WNm rad™" 57!
by Inertial whee] friction magnitude 0.1 Nm
o Damping matrix diag([( 0891 4,08 11.35]) Nm rad~"' 57!
K Stiffness matrix diag([0 912.5 19124 148.155]) Nm rad !
BT Input gain vector [5.7 27.6 —17.1 —14.9]
c Otput matrix 1.28 0.316 -0.063 -0.013

1.28 ={1. 798 -1.45 1.23
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the dynamic response of the SIDF-based nonlinear
control system is substantially less sensitive to the
amplitude of the input signal.

To summarise, the final composite nonlinear
control law for the motor torgue T, is given by
Eq. (21) where

e=ul—u=—35% — 108, — (b8, + k,8)

and fale), file). fole) are the nonlinear functions
shown in Fig. 6. The dynamic responses of 8,
controlled by the nonlinear control law in Eq. (21)
iz shown in Fig. 10, along with analogous results
for inner-loop linear control, The closed-loop system
15 subject to several slew-angle commands (8.
values), as indicated; the responses are normalised
by dividing by @, so the amplitude sensitivity of
the responses can be compared conveniently, The
same levels of nonlinear friction, backlash, and gun-
firing disturbance are used as in the open-loop case
shown in Fig. 5. The closed-loop behaviour of 6,
has been improved greatly over the open-loop
behaviour, and is substantially superior to the
performance under linear control.

A more detailed view of gun pointing accuracy
is provided in Fig. 11, where the responses with

lingar and nonlinear control are shown for the
smallest command 8., = 0,05 rad: note that the
slowly decaying transients in the linear case com-
pletely dominate the response in comparison with
the nonlinear case, while the effect of pun-firing
disturbance is substantially greater under nonlinear
control. Disturbance rejection was not an explicit
objective in this nonlincar design exercise; the larger
amount of ‘ringing’ due to gun recoil can be
attributed to the much higher effective gain of the
nonlingar controller for small amplitudes {see Fig.
6). Monctheless, the overall pointing accuracy of
the nenlinear control algorithm is significantly better
than that of the linear controller — the amplitude
of the signal in the top trace is about 0.005 rad,
compared with approximately 0.012 rad under linear
control.

To test the robustness of this control scheme, we
randomly changed the values of the components of
vectors D, K, B, and C, in the system in Eq. (14)
without changing their signs. The closed-loop testbed
system with the control scheme in Eq, (21} was
always stable with such parameter changes and in
most cases the dynamic response did not change
noticeably.
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7. Conclusion

We have developed a nonlinear control algorithm
for the ATB1000 testbed model and tested it
by simulation. The control system fulfilled our
performance objectives: it worked well in the
presence of backlash, Coulomb friction, and gun-
firing disturbances, and behaved consistently for a
wide range of input command levels. The control
system is robust with respect to both input amplitude
and modelling uncertainties such as parameter
imprecision and unmodelled dynamics of the flexible
element. This development and application rep-
resent the first extension of the SIDF nonlinear
control synthesis approach to encompass electro-
mechanical systems with flexible modes.
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