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Abstract. Using sinusoidal-input describing functions (SIDF’s) is a well-known
approach for studying nonlinear oscillations in systems with one dominant non-
linearity [1,2]. 1In recent years, a number of extensions of the SIDF method have
been developed to permit the analysis of systems containing more than one non-—
linearity. In many cases, the nonlinear system models that can be treated by
such extensions have been quite restrioted (limited to a few nonlinearities, or
to certain specifio configurations: of, [1]), Furthermore, some results involved
only conservative conditions for limit cyocle avoidance, rather than actual limit
cycle conditions., The technique described in this paper removes all constraints:
Systems described by a general state vector differential equation, with any
number of nonlinearities, may be analyzed., In addition, the nonlinearities may
be multi—input, and bias effects can be treated with little added difficulty.

The general SIDF approach was first fully developed and applied in [3],
where a ninth—oxrder highly nonlinear aircraft model was studied. A special case
has also been applied to determine limit oycle conditions for rail vehicles;
references for this work may be found in [4]. Its powser and use are illustrated
here by applying it to high—order scalar differential equations with multiple
nonlinearities.

1, Introduction ~ Outline of the General DF Method

The basic idea of the describing function (DF) approach for studying non-
linear system behavior is to replace each system nonlinearity with linear terms
whose '"gains' are funotion§ of "input amplitudes', where the type of input signal
is assumed in advance; this concept is dealt with very thoroughly in [1,2]. In
this paper, two cases are considered:

Sinusoidal-Input Describing Functions (SIDF's)

f(a sin wt) = n(a) « a sin ot (1)

Dual-Input Describing Functions (DIDF's)

f(b + a sin ot) ® fo(u,b) + n(a,b) + a sin ot (2)

The DF elements n or fo’ n arc mathematically formulated to minimize the approxi—
mation error in (1) and (2). For sinusoidal or daal inputs, this is accomplished
by retaining the first two terms of the Fourier expansion of f(b + a sin wt).

The usefulness of the DF method lies in the subsequent treatment of the resulting
quasi-linear model using linear system analytic techniques, which are well esta-
blished and uwsually very straightforward to apply. The power of the DF methods
is derived from the amplitude—~dependence of the DF elements, which accounts for
one of the basic effects of nonlinearity. Standard linearization (small-signal
oxr Taylor series linearizatiomn) fails to capture this essential property of non-

linear phenomena. A wide variety of SIDF's and DIDF's are catalogued in [1,2],
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80 we will not consider that aspect of DF theory further,
The most gemneral 1imit cycle conditions based on DF theory were formulated
in [3], and illustrated in [4,5,6]. In summary, we afe given

x = f(x,u) (3)

when_f_is an n-dimensional state vector and u is an m-dimensional input vector,
It is desired to determine if (3) may exhibit limit cyocle behavior when u is a

vector of comnstants, denoted'go. If the state variables are nearly sinusoidal,

X ®x + Rela exp (jut)] (4)

where 8 is a complex amplitude vector and_go is the state vector center value
(which is generally not a singularity, or solution t°-£ﬁfoh30) = 0), then we

again neglect higher harmonics, to make the approximation
£(x,n) ® fpp(x 8,8 )) + Re[Fp (x ,a,u ) & exp (jut)] (5)

The real veotor__i;’DF and the matrix FDF are obtained by taking the Fourier expan-

sions of the elements of 3315 + Re a exp (jmt)tgo). as illustrated below. The

assumed limit cycle exists for_3_=_20 if-fo and a can be found so that

(i) iDF(io‘f—»’-P—o) b _g_
(11) [joI - Fyo(x ,a,u )]a =0, a ¢ 0 (6)

(FDF has a pair of pure imaginary eigenvalues, and a is the
corresponding eigenvector,)
These nonlinear algebraic relations (6) are often oalled the conditions of har—
monic balance; they are generally difficult to solve. Simple examples where hand
solution is possible may be found in [4,5], and below, An iterative method,
based on successive approximation, can be used successfully for more complicated
problems such as the highly complex aircraft performance analysis problem (9
state variables) described in [5],
2, General Application to High-Order Scalar Differential Equations

A special case to which the genmeral result of Section 1 can be easily

applied is given by the nth order scalar differential equation
f(x, Dx, sz.--',an.uo) = () (N

where x is8 a scalar varieble, u is a single constant input, and Dk represents
the differential operatlor dk/dt . The nonlinear differential equation is quasi-

linearized to obtain the following harmonic balance conditions:

(i) fo(xc,a,m,uo) = () (8)




(ii) Two roots of the quasi-linear characteristic equation

n s+ «oo +n s+ no = 0, n

1 = n,(x ,8,0,8), 1=0,1,""*,n (9)

i

must be pure imaginary, where f and n, are the DIDF's for £(+). The conditions
(8, 9) are derived from (6) by ohoosing the state veotor x = {x,Dx,**" p” 1 ]T; a

great simplification in (ii) ocours because by inspection
[x,,0,0,++,01%, a = [a,jua,~0%a,++, ()" Fal” (10)
__c"' » » W 8, :j('-\

For a limit cycle to be predicted in the system (7), one must be able to find
(xc,a,m) — three real unknown values —— so that (8, 9) holds., The desoribing
functions fo and n, = 0,1,***,n, are often rather readily obtained by assuming
that x is of the form (4), with__:go and a given in (10), and performing a Fourier
series expansion of the scalar nonlinearity f(:). For single—input nonlinear
terms in (7), one can refer direotly to [1,2]; multiple-input nonlinearities,
0.8., xx and x sgn i, are also quite tractible if they are of the power—law type
(xi, xzi, etc,) as shown in the following illustration,

3, Illustration

Given the scalar differential aquution

‘u_‘apéfﬁthzx + 2(1+kx )Dx + 3(1+x )x = “o | V (11)

we quasi—linearize to obtain the harmonic balance relations as follows:

3= (x + e ) + 3(x %ﬂz) + a 0cos ut
~ 2 12
X Dx X0+0 - acosowt+ (x -+ i ) . (—am sin wt)
(which are simply obtained using trigonometric identities) yields
32 '
£, = 3x (l*x + 38 ) u, (12)
3 2 12
s” + 8% + 2[1 + k(x e )1s + 3[1 + S(x + e 4 )] = 0 (13)

which may be denoted succinctly as 33 s + fs + v = 0, Using any method of

linear system analysis, the characteristic equation has imaginary roots if
ABp-y=(2k-9G2+ad) -1=0 (14)

Seeking solutions (xc,a) to (12) and (14) reveals a great deal of information
about limit ocyocle conditioms in (11), First, limit cycles cannot exist if

k { 4.5, because both left-hand-side terms of (14) are then negative and equality
is impossible for any real (xo.a). To continue, choose k = 6 in (11), so that

limit cycles can exist, Then (14) reduces to

3 (x + <a ) = 1 (15)

so, for k = 6, lxolwggnnot exoeeg_J/V@T- otherwise a is not real in (15)., Sub-
stituting from (15) to eliminate a from (12) yields




’

2
3x (3 - 5x.) = u (16)

Thus, mo limit cyoles exist for lu | > 6/v5 = 2.68, one limit oyele exists for
luol < 4/3 = 2.31, and two limit oycles exist for 2.31 < lu | < 2.68 — the rea-
sons for this statement are depicted graphically in Fig. 1, * For u, = 2.4, two

limit cycles exists solving (15), (16) leads to the solutions summarized in Table1l.
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Fig. 1 Solving for Limit Cycle Conditions

It is readily shown that LC1 is stable, 1C2 is inside LC1 and is unstable, and &

stable equilibrium at X, = 0.592 is inside 1C2, These conditions may be proven

using conventional linearization methods near X and the following proposed limit
cycle stability/instability criterion:
Proposition: A limit oycle with parameters (a, x ) is stable [unstable] if
for oscillation amplitude (a + 5a) the quagi- linear characteristic equation
has all roots in the left—half plane (LHP) for &a > 0 [8a ¢ 0], and two com—
plex conjugate roots in the right half plane (RHP) for 8& < 0 [8a > 0) (all

other roots being in the LHP)

To apply this criterion, we must first solve (12) to obtain 61 in terms of

6a: for constant L

auo 6u0 Baxc
-5—}[-—-5){0 + -'5-;-'-5& w ) - &xc 2o ) 373 Sa (17)
[ 1 + 3x + g

2

* It is important to note that the bifurcation from one to two limit oyoles

occurs for those values of u (+2 31) for which conventional linsarization
indicates that the equilibrium ‘changes from unstable to stable.




Then, returning to (13) and (14), one can apply any linear system stability
method (e.g., Routh—Hurwitz) to show that 8A > 0 for all poles in the LHP, and
8A < 0 for two RHP complex conjugate roots. Inspect 8A: from (14) and (17),

3a(2+3a2~1815)

8A =-§¥&-6xc + %%-Sa = ) 3 8a
c 2(2+3a +6x°)

For LC1 substitution from Table 1 reveals that sign (8A) = sign(&a), so
6a > 0 => 8A > 0 =) all poles in the LHP =) LCl1 is stable, whereas for LC2 the
opposite result ensues, 7 ;

The author has not proven the proposed coriterion, but he has never found it
to fail. It can be justified heuristically by arguing that solutions near a
stable limit oycle must be similar to (x° + ch) + (a + ba) e_at cos wt, where
sign(a) = sign (6a), and conversely for unstable limit oycles, It is clear that
failing to consider the perturbatiom in X Sxo, can lead to false stability
assessments;: in this illustration, for example, if x, is not perturbed, one

obtains 8A =-%-a§a which incorrectly implies that both LC1 and LC2 are stable.

4, Summary and Conclusions
A well-established method now exists for studying limit cycle behavior in

ocomplicated nonlinear systems, For higher~oxder systems (n)2) it is oftem neces-

sary to perform extensive computer caloulations: however, for scalar systems some .

noteworthy simplifications ocour which allow quite difficult-seeming problems to
be treated rather easily, as the illustration above shows. The study of a system
with two nonlinearities, onme of which is two—input, and with oscillations about

unknown center values 1s not possible with earlier DIDF methods [1,2]).
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