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INTRODUCTION

The last decade has seen the development of
several powerful methods and software packages that
are very effective in facilitating the design of controi
systems for multivariable finear plants. Among the
more noteworthy of these, in terms of power and easy
usage, are the Cambridge Linear Analysis and Design
Package (CLADP) (Edmunds, 1979), based on
MacFariane’s multivariable root locus technique
(MacFarlane, Kouvaritakis and Edmunds, 1977); the
University of Manchester multivariable control sys-
tem design suite using the inverse Nyquist technique
of Rosenbrock (1969}; the Massachusetts Institute of
Technology package for linear quadratic regulator and
Kalman-Bucy filter design (Posbergh and Chen,
1980); and the Honeywell HONEY-X system (Stein
and Pratt, 1981).

Compared with the advanced state of the art for
control systems design for linear piants, parallel]
developments for nonlinear plants are still in their in-
fancy. In terms of industrial practice, the basic ap-
proach for nonlinear systems design is often un-
changed from that of a generation ago: linearize the
plant to obtain a small-signal perturbation mode!, use
that model to affect a preliminary design, and iterate
and patch it up until acceptable performance is ob-
tained. This ad hoc procedure is often very wasteful in
engineering effort, and results in a final product that is
very sensitive to assumed operating condition, to non-
linear effects, and to the experience and “*feel’” of the
designer—the very antithesis of a robust design. The
following computer-aided controt system design
(CACSD) environment and quasilinearization ap-
proach are proposed as a way Lo ameliorate these prob-
lems.

In developing CACSD software, it must be recog-
nized that the praclicing engineer rarely encounters
control systems development projects in which the
system model is readily or realisticallyformulated in ei-
ther of the two standard linear forms: an r-variable
state-space model or an n" order transfer function
(scalar or matrix). More typically, the first and best
models available for the system are nonlinear, either

in the form of nonlinear state equations or block di-*

agrams with intermingled linear parts and nonlinear
operators.

In either case, it is often essential that the non-
linear model be investigated and manipulated quite
extensively before the system is understood well
enough for control systems to be designed with any as-
surance of success. In particular, meaningful answers
to the following questions are usually of great interest:

1. Isthe model realistic?

2. How does the system equilibrium (steady-state
values of the system variables) vary as the inputs
take on different constant values?

3. How does the system small-signal linear mode! (es-
pecially its eigenvalues or modes) vary as the
inpuis are varied?

4. What is the system dynamic response to various
input forms (e.g., step inputs, sinusoids) ?

These explorations are performed to achieve the
following objectives:

1. Determining if the system can be made to behave
property without changes in hardware or
configuration,

2. Determining one or more good operating points
(constant values of input and state that result in
well-behaved linearized models), or determining
pathological situations,

3. Understanding which nonlinear effects are impor-
tant, and

4. Determining linearized models {conventional
linear or quasilinear [describing function]; state
space or transfer function) that can serve as the
basis for control systems design.

It is evident from the above outline that there is
often a great deal of analysis and study required before
an engineer is prepared to use the standard linear sys-
tems CACSD packages that are now available. This
heavy prefiminary burden associated with the effective
use of linear CACSD can be a major deterrent to its
utilization. Another important consideration in
CACSD is the iterative nature of the control system
design activity. One often returns to the above pro-
cedures {(modeling, finding equilibria, linearization,
and simulation) many times. One view of the total
design process, including linear CACSD as one very
important element, is provided in Figure 1. This
“closed loop” concept further emphasizes the great
need to minimize the engineering time (and especially



the manual labor) that must be spent in these activi-
ties.

CACSD FUNCTIONS
Initial Model Formats

The usual model formulations that are developed
for systems are of two types: state space and block di-
agram. A state space model is often obtained directly
from the application of basic principles (e.g., classical
mechanics, circuit laws, etc.) to a unitary system (e.g.,
an aircraft). The block diagram model format usually
arises in describing systems that are not unitary, i.e.,
that are made up of components, each of which is
modeled individually and appropriately interconnect-
ed with the other system parts.

The state space model is easy to represent
mathematically as

x=flx,u), y=gxu (1)

where x is the state vector {made up of all variables
needed to describe the system dynamically), uis a vec-
tor of inputs, yis a vector of outputs, and f(-) and
g(+) represent general algebraic relationships among
the variables. This model format is the easiest to ma-
nipulate and study, so we will consider it to be pri-
mary.

The block diagram model can dealt with readily by
using a preprocessor to create the corresponding state
space model. One procedure is as follows: Identify the
input(s) and output(s) of each block as u; and y,
respectively. For each linear dynamic block,
represented by G,(s) of order m, one allocates s,
state wvariables, and a subsystem state vector
differential equation is set up using a convenient
canonical form {e.g., phase variables). For each non-
dynamic block, the input/output equation is ex-
pressed in algebraic form, e.g., y,= f,{u). The final
state variable model {equation 1) is obtained by the
preprocessor by concatenating the dynamic subsystem
states into one state vector, and using the subsystem
input/output relations (linear and nonlinear) to cou-
ple the subsystems dynamics. Since this preprocessor
concept is quite straightforward, it will not be dis-
cussed further. Henceforth, we assume that a state
space model {(equation 1) is available for the purpose
of technical discussion.

The formulation and input of the nonlinear system
state space model should be made as simple as possi-
ble. Many engineers have worked primarily in For-
tran, so the need for ready accessibility would seem to
dictate using that language. On the other hand, it is
widely recognized that Fortran is quite cumbersome as
a modeling language, so the introduction or use of a
substantiafly better modeling language might gain

ready acceptance. For greatest utility, it may be best to. _'

permit models to be wriiten either in Fortran or in a
flexible simulation language, as is the case with the
Lund Institute of Technology nonlinear system simu-
lation package SIMNON {(Elmqvist, 1975). In fact,
the SIMNON language (which is based on Algol 60)
has many excellent features that make it a strong con-
tender for use as the general CACSD model formula-
tor. The only major drawback to the SIMNON
language is its inability to perform matrix mathemati-
cal operations; this deficiency is easy to correct. The
ease with which a model can be formulated and inter-
faced with the CACSD program is a key factor, so the
selection of modeling languages should be given a
great deal of consideration.

Equilibrium Determination
Mathematically, the procedure for determining the
operating point(s) of a nonlinear system is to solve

.[(_"fm,yo) =0 (2)

to obtain x, corresponding to the value(s) of u, of
interest. Assuming that the equations are well posed,
especially, that solutions exist, then available routines
may be used—routine ZSYSTM from the Internation-
al Mathematical and Statistical Library (IMSL) is a
possible choice that the author has used successfully.
Another more powerful set of routines for solving this
problem may be found in MINPAC (More, Garbow
and Hillstrom, 1980).

Small-Signal Linearization (SSL)

Conventional linearization, also called Taylor
series linearization, can be expressed in terms of an
operating point {(x,,u,) as

V- ‘a_._‘l.r_ + QL[_ u
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where §x,8u,8y represent perturbations or “‘smali
signals’’ around x,, u,, and y,= g (x,, #,), respec-
tively. The arrays [0 f/9.x] etc., are evaluated as the
partial derivatives at x,, u,, and are matrices; the sub-
script o stresses the dependence of the arrays upon the
operating point.
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The matrices 4,, B,, C,, D, could be evaluated
algebraically, either using an existing high-level sym-
bolic manipulation program, or by hand. It is probably
easier, in most cases, to take the partials numerically,
e.g., in the scalar case,

f - flx+8) = flx—38)
dx 25

(4)

This process would be faster than explicit comput-
er differentiation by symbolic manipulation (unless
the matrix set {4, B,, C,, D,} is to be evaluated for
many operating conditions, in which case having
computer-written code would be an advantage), not as
error-prone as differentiating and coding the matrices
by hand, and would allow model updates to be made in
only one place —the routine for evaluating f(-) and
&(-)—which is highly desirable. Numerical
differentiation is also the method of choice if some
model nonlinearities are only available in tabular form
(e.g., aireraft “‘aerodata’). For poorly conditioned ta-
bular data, it might even be necessary to consider
spline function curve fitting and differentiation.

From these considerations, it would seem that the
best investment of first effort in this area would be to
find or develop a robust numerical differentiator. It
should be recognized, however, that using finite
difference methods for obtaining the linearized model
introduces numerical problems that require careful at-
tention. A useful discussion of this fopic may be
found in Dahlgvist and Bjorck (1974). Basically, one
must be concerned with round-off errors if 8 in equa-
tion 4 is too small, and fruncation errors (due to the
curvature of /) if 8 is too large. The author is now us-
ing the following extension of Richardson extrapola-
tion (Dahlgvist and Bjorck, 1974):
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Equation 7 results in minimum truncation error for
the & selected.

Quasilinearization

There are two fundamental quasilinearization
methods (cf., Atherton, 1975, Gelb and Vander
Velde, 1968): the sinusoidal-input describing function
(SIDF) approach and the random-input describing

function (RIDF) approach. In the former, signals in
the nonlinear system are assumed to be comprised of
constant (dc) values plus sinusoids, while in the latter
case, signals are of the form bias plus gaussian random
variable. Quasilinear gains that depend on the signal
amplitudes are calculated for each nonlinearity, and
they collectively define the quasilinear system model
that can be used for a wide variety of analysis and syn-
thesis tasks. The major advantage of a DF model over
an SSL model is that the former characterizes the sys-
tem with nominat signal amplitudes (as specified by
the analyst), instead of for infinitesimal variations.
Another benefit of guasilinearization is that meaning-
ful DF gains exist for nonlinear elements such as the
ideal relay and hysteretic nonlinear effects for which
SSL gains are completely undefined. The efficacy of
the DF approach in capturing nonlinear effects in an
efficient and accurate manner is well documented; cf.,
the above-named texts.

Both of these DF techniques have recently been
extended so that general nonlinear system models can
be quasilinearized (Taylor, 1980; Taylor, Siegel,
Price, and Gelb 1980). The use of both methods in
the context of designing controllers for nonlinear
plants is discussed in Taylor {1982): a detailed treat-
ment s not repeated here. An important point made
in the latter reference is that the SIDF approach gen-
erally appears to be the better technique for control
system design.

The major requirement for the purposes of
CACSD is the set of SIDF gain matrices {A4,,, B/,
Cupo Dyt It is well known that this matrix set pro-
vides a more realistic characterization of the behavior
of the nonlinear plant compared with SSL, as men-
tioned above; however, evaluating the describing
functions is not as simple. Two approaches are dis-
cussed in Taylor (1982): using a library of describing
functions (coded directly from Atherton (1975}, for
example), and using a direct numerical method that
combines simulation of the plant with sinusoidal
inputs of specified amplitudes and fast fourier
transform techniques to obtain the gains associated
with the first harmonic (fundamental) component of
the output of each nonlinearity. The latter approach
would seem to be the most suitable for use in a
CACSD environment such as that proposed here, for
the same reasons that numerical differentiation is best
suited for SSL.



Eigenvalues

Linearized models (SSL or DF) can reveal a great
deal of information about the behavior of the system
in the vicinity of a given operating point. The most
important characterization of the dynamic perfor-
mance of a system is provided by the eigenvalues,
which allow the dynamic response to be categorized
for perturbations as being unstable, underdamped or
overdamped. Many linear system performance mea-
sures can be directly related to eigenvalues—in partic-
ular, bandwidth, percent overshoot, and risetime.
With appropriate interpretation, the eigenvalues of a
DF model can also provide some idea of how a non-
linear system will behave. Another valuable use of
the DF system eigenvalues is to obtain an indication
of how important the system nonlinearities are for the
assumed signal amplitude levels. Clearly, if the eigen-
vaiues of the SSL and DF models are very nearly
equal, then the dynamic behavior of the system is not
being influenced strongly by the system nonlinearities
for the signal amplitudes under consideration. There
are many standard routines available for obtaining
eigenvalues, some of which are robust and well pro-
ven, so we need not consider the numerical aspects of
this procedure.

Simulation

There are many aspects of nonlinear system
behavior that can only be revealed by simulation. For
example, no amount of SSL analysis will give an en-
gineer a meaningful idea of how a fighter aircraft will
perform in a violent maneuver. While there are
mathematical techniques for studying nonlinear
effects {e.g., absolute stability criteria and describing
function methods)}, none of them provide all of the
answers. Many well-proven simulation routines are
available (e.g., SIMNON, as mentioned previously),
so that aspect of nonlinear CACSD presents no prob-
lems.

“Closing the Loop’* Around the Design Process
Once a designer has explored the behavier of the
nonlinear plant, determined the desired operating
conditions(s), and obtained linearized models at those
points, he will generally use an existing linear CACSD
package to design an appropriate controller. Since the
resulting closed-loop system design is based on an
idealized model, it is usually necessary to simulate the
system using the more realistic nonlinear plant model
in conjunction with the controller. This often resuilts
in an iterative controller design procedure, wherein
the designer refines the plant model, adds features or
“fixes’” to it, performs the exploratory steps outlined
above, and redesigns controllers until he is satisfied
that the model is sufficiently realistic and that the

closed-loop system including the nonlinear plant
behaves satisfactorily. This control systems design
methodology has been illustrated in Figure 1.

Many essential tasks in control system design for
nonlinear plants have been discussed above, in some
detail. From the iterative flow of this process, it is
clear that automating this procedure will be highly
beneficial, in terms of obtaining a better design, and
increasing engineering productivity.
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Figure 1. Control system design process.

CACSD ENVIRONMENT

The procedures delineated above can be greatly fa-
cilitated by the appropriate computer-aided environ-
ment. The functional diagram of Figure 2 illustrates
the concept presently being implemented at General
Electric Corporate Research and Development (GE
CRD) by the author and his colleagues (most notably,
H. Austin Spang, III). The manner in which this in-
teractive {command-driven) CACSD package ad-
dresses the needs presented above is as follows,

1. Modeling. Developing a realistic and appropri-
ately detailed model of the plant is the most criti-
cal requirement for control system design. The
environment depicted in Figure 2 provides a
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Figure 2. Functional CACSD environment.

unified model database, convenient modeling
languages (the SIMNON language mentioned
above, based on Algol, which we are presently ex-
tending to include matrix/vector model formula-
tions; and Fortran) a parameter identification pack-
age (IDPAC, also from Lund; Wieslander, 1976)
and a simulator or interactive numerical integra-
tion and display routine (SIMNON) to study the
behavior of the plant and to validate or refine the
model.

. Regime definition. Several features of the con-
struct in Figure 2 aid in regime selection. The
simulator allows the user to determine operating
points where the plant behaves well in terms of
dynamic response; the equilibrium solver (added
by GE CRD to SIMNON as a new interactive
command) allows the user to obtain the exact
steady-state value of the state for a given constant
input vector, and the linearizer (also added direct-
ly to SIMNON by us) permits the analyst to study
the small-signal behavior of the plant near any op-
erating point using analysis Toutines, such as
eigenvalue/eigenvector solution, etc.

. SIDF model development. Currently, the user
must supply his own quasilinear model of the
plant. We envision implementing two approaches
to SIDF modeling: an extensive catalogue of
SIDFs as in Atherton (1975) or Gelb and Vander
Velde (1968), and a combined simulation/fast
Jourier transform “‘direct method” to determine
{446, Byr Cyp, Dyl numerically, as outlined
above.

4. Control system design. The CLADP design suite
is currently the only completely checked out and
integrated approach available. An interactive
state-space design package (SSDP) (Spang, 1981)
is defined and being incorporated. The CACSD
environment has been conceived to allow any
other design package(s) to be added with little
effort. The design process results in a
specification of a control system structure, and
additional subsystems (“‘compensators’’) that are
written directly into the system model database in
the SIMNON modeling language.

5. Control system validation. The ‘‘closed-loop™
structure of the CACSD environment, whereby
the controller design is directly added to the sys-
tem model database without user intervention, is
ideally suited for testing the controller design
realistically (in conjunction with the nonlinear
plant model) and performing sensitivity analysis.

The basic CACSD structure depicted in Figure 2
has been completed, except for the direct interface of
IDPAC-identified system models into the model data-
base, and direct SIDF model generation. Even at this
preliminary stage of development, it has been demon-

. sirated to be an efficient, flexible, and effective tool

for designing controllers for nonlinear plants,

SUMMARY AND CONCLUSION

The ultimate goals of CACSD are reducing the en-
gineering effort involved in control systems design to
the greatest extent possible, and achieving the best
possible designs. While the linear system CACSD



software developed in the last decade addresses very
important aspects of the control system design pro-
cess, it is hoped that the software concept presented
here that permits taking a more global approach to this
problem will prove to be valuable, especially in light of
the need to deal with plant nonlinearity in an effective
manner.
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