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Random-input describing functions for multi-input
non-linearitiest

JAMES H. TAYLOR{

Random-input describing functions for three broad classes of multi-input non-
linearities are shown to be readily derived from quasi-linear representations of
constituent non-linearities that have fewer input variables.

1. Introduction

-Random-input describing function theory plays a central role in a recently
developed method for the statistical analysis of non-linear systems with
random inputs. The technique represents an extension of linear covariance
analysis, based on statistical linearization; for simplicity, it is designated
CADETT™__the Covariance Analysis DEscribing function Technique. For
details, see Gelb and Warren (1973).

As demonstrated in the above reference, and in Warren ef al. (1973), Siegel
and Warren (1973), and Taylor and Price (1974), the CADET methodology
has proven to be a powerful tool for the statistical analysis of highly non-
linear system models. In developing realistic models for particular applica-
tions, a number of scalar multi-input non-linearities have been encountered
having one of the forms

f1=v19(v,)
fa=v19(2s, v3) (1)

fa=vifg(v,), k=2,3, ...

The variables »; in (1) may be arbitrary state variables in the system model,
or linear combinations thereof, and g( + ) represents a general function of its
arguments. The direct derivation of random-input describing functions
(ridf’s) for such non-linearities is generally quite tedious; it is fair to state
that the effort involved can be a very real impediment to the application of
CADET to systems whose models involve non-linearities of the forms indicated
in (1). This note provides a general approach which alleviates this problem
to a great extent. Specifically, it is shown that given a quasi-linear representa-
tion of the constituent g( - ), ridf’s for the overall non-linearities indicated in
(1) can be obtained with a relatively modest analytic effort.

2. Basic definitions
The ridf’s for the non-linearities indicated in (1) are based on the assump-
tion that the input signhals »; are comprised of a deterministic component
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(‘ mean ’) m; and a random component 7, ; in vector notation,

m=E[v] -
2

r=v—m

where Z[-]is the expectation operator. The random components are assumed
to be jointly normal, with second central moments given by the covariance
matrix

P=E[rrT] (3)

In general, for a non-linear function of several input variables the quasi-
linear approximation sought is of the form

1, Vg o, v 2 gy gyt g 2 0T (4)
where
a1 °°
f=W } :O.oj' f(vy, gy ..., 1)
xexp (—3rTP1r) dv, dv, ... dv,
1 ) (5)
nT éW ) _mj rTf(vy, vy, ..., v;)
x exp (— 1rTP-1r) dv, dv, ... dv;, P!

The definitions (5) retain the exact non-linearity output mean and input—
output cross-correlation properties in (4); this quasi-linear approximation
was first proposed by Booton (1954) in the zero-mean case, and extended to
the general case by Somerville and Atherton (1958). The relation above
defining the random-component ridf gain vector n need not be evaluated
explicitly, since

Y
nT= —‘f (6)

om
as can be observed by direct differentiation (Phaneuf 1968). Consequently,
attention can be primarily focused on the calculation of f.

3. Main results

The derivation of general ridf’s for f; in (1) provides a demonstration of
the approach for treating all non-linearities that are linear in one input vari-
able. Consider the argument of the exponential factor, r™P—1r in (5): a
linear transformation w= R~!r can be used to simplify the integrand. For
two variables, choose the matrix R in terms of the elements of P to be

o1*  poyoy o1v/(1—p%) oyp
P= , R& (7)
pog, 02 0 0y
so that
rfP-1lr=wlw (8)
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This change of variables in (5) leads to

. l e [ve]
Ji=5= I {m1+‘71(\/(1—P2)wl+P'l"a)}g(gzwz+"n2)

- 2 L -
x exp [ — 3(w,2+ wy?)] dw, dw, (9)

The matrix R in (7) is specifically chosen to be lower triangular, i.e. zero
below the diagonal, in order to make v, a lineai function of w, alone. This
permits integration with respect to w, to be carried out in (9) irrespective of
the form of g. Integrating with respect to w, yields

o 1 ©
Ji =W _j (M1 + 01pw,)g (0510, +my) exp (— $w,?) duw, (10)

which has reduced the evaluation of f; in (9) to an integration in one variable.

The result in (10) can be further interpreted to yield the fundamental
form for non-linearities which are linear in one variable. Beginning with the
ridf approximation of g(v,) as defined in (4) and (5), that is,

g(ve) =g+ myr (11)

" it is observed that the transformation used in (7) leads to

1 @0
Qé\/(zﬂ) _j'oo g(ogwy+my) exp (— $10,2) div,
(12)
Al 1 © o
n, :0—22 @) _j'w oWy §(0gW0s + My) eXP ( — Sw,2) duw,
Comparing (10) and (12), it is recognized that
fi=mg+ poyogn,
(13)
=My + P17,
The two random component ridf’s in (4) are found from (6) to be
of
n =a_mll ={(mq, 0,)
) (14)

afy on,
Ny =W2=mlﬂ’g +P1e a_m:

Consequently, given that the non-linearity g(v,) is readily quasi-linearized
(and ridf’s for a large variety of one-input non-linearities are available in
Gelb and Vander Velde (1968)), it is a direct matter of differentiation to
evaluate ridf’s for the multi-input non-linearity »,g(v,).

By using similar transformation techniques (refer to (7)), the three-variable
case

f2(v1, Va5 v3) = v19(v,, ) (15)
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has been proven to lead to a mean component quasi-linear term of the form

od od
Jo=mgd+ 91, —— Bm, At P13 oy 16)
=Myl + P157y, + D137y,
where the ridf approximation of g(v,, v,) is
(g, V) 2§ + 1, (05— my) + 1, (V3 — My) (17)

This result should greatly expedite the evaluation of ridf’s for three-input
non-linearities that are linear in one variable.

The results described above by (13) and (16) can be directly extended to
derive a general direct quasi-linear approximation for the non-linearity class

fa(vs, va) =v4"g(v,), k=2,3, ... (18)
First, consider
f(v1, ) =1°(5(v,) (19)
as a special case of (15) and (16) with g given by v,9,(v,). Applying (13)
yields
99, 0%
J=(m+ o §2+2m1P128 +P12 am22 (20)

One can then proceed by induction to show that the general form of the
mean component ridf for f, in (1) is

- ¥ ( ) pud Bl o, (21)
=0 2 .
where <k) is the standard binomial coefficient notation
<k> ék(k—l)....(k—‘7+1) (22)
J J!

The random component ridf’s are directly obtained by differentiation accord-
ing to (6). This simple and powerful expression for f, reduces the ridf evalua-
tion to a relatively easy task for a broad class of two-input non-linearities.

4. Examples

Ezample 1
For the non-linearity
H(v1, v3) =y sin v, (23)
the result
Elsin vy]=exp (—§p,,) sin m, (24)

(Gelb and Vander Velde 1968) and (13) and (14) lead to
J=[my sin my+py, cos my] exp (—4Ps,)

7y =€XP (— §Pygp) SiN My (25)

Ty = [y COS My — Py SIN My] €XP (— §Dss)
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Example 2

For a non-linear function with multiple trigonometric factors, e.g.
f(vy, vy, v5) =0, sin v, cos v, (26)
the standard sum-and-difference formulae lead to
g & sin v, cos vy =}[sin (v, + v;) + sin (v, - 5)]
Application of the result (24) yields
d = E[sin v, cos v,]
(27)

=% eXP [ — §(Poo + Pas) I[6XD (—Dyg5) sin (my+ my) .
+€eXp (Pg3) Sin (my—my)]

and the direct use of (16) leads to
F=md+% exp [—H(Pas + P33) P12+ P1s) €XP (—Pgg) CO8 (Mg +my)

+ (D12 — P13) €XP (Pay) €OS (Mg —my)] (28)

Obtaining this result by the direct application of (5) would be quite time-
consuming.

5. Conclusion

With the tools developed in this note and a catalogue of single-variable
ridf’s such as that provided in Gelb and Vander Velde (1968), a broad class
of non-linearities can be treated in a straightforward manner (with little or no
analysis of the sort illustrated in (5) to (13)). In particular, these results
obviate performing integrations over several variables as called for in (5),
which is generally an onerous task. It is the author’s opinion that similar
results can be obtained for analogous, more complicated multi-input non-
linearities (e.g. v1%g(vy, v3), v19(vy, v, v,), etc.). These contributions signi-
ficantly enhance the usefulness of CADET, and any other analytic techniques
based on ridf theory.
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