Data-Driven Supervisor Design for
CACE Package Integration

Magnus Rimvall, James H. Taylor
Control Systems Laboratory
General Electric Corporate R&D
P.O. Box 8, Schenectady, NY 12301, USA

Abstract: Large industrial control problems often require the use of several different
control packages, each of which has a different user interface and incompatible data
formats. The GE-MEAD Computer Aided Control Engineering (CACE) program
attempts to alleviate these problems by providing a shell for integrating different
commercial CACE packages together with a graphical front end, a data-base manager,
and an expert system. The GE-MEAD package as a whole will be presented, with
emphasis on the unifying philosophy behind the MEAD data-driven Supervisor. Main
features of this Supervisor include a full command language with procedural/macro
capabilities, control units for different core packages, and a data-driven translator from
generic MEAD commands to specific commands for these core packages.

Keywords: Computer-Aided Control Systems Design, Man-Machine Interfaces,
Command Languages, Databases, Formal Language Translation

Introducti
The control engineer of today will find that most of his
problems can be solved accurately and efficiently by
the use of robust and commercially maintained
Computer-Aided Control Engineering (CACE) pack-
ages. However, it is quite commonplace in an indus-
trial setting that several CACE packages need to be
used, as no single package has the capability of solving
all aspects of more complex problems. Unfortunately,
as these different CACE packages all have different
user interfaces and as few packages give any explicit
support to project data-base management and data
compatibility, the engineer is burdened with opera-
tional and administrative duties which decreases his
productivity. Our recent effort in software
development for CACE has attempted to alleviate
these problems through the integration of standard
CACE packages into an environment called GE-
MEAD] that includes an advanced user interface2, a
supervisor which coordinates the execution of CACE

tasks among the included packages, a data-base
manager3, and an expert system4. The resulting
software architecture is depicted in Figure 1. The
focus of this presentation is the overall design and
implementation of the package integrator (the
“Supervisor”), as seen both from a control engineer's
or “user’s” perspective and the package designer’s or
“developer’s” perspective.

Recent developments in CACE has been dominated by
improvements to the man-machine interface aimed at
“enhancing the user friendliness" and "deliver more
broadly supportive CAD tools”. These were two of the
main motivations for developing GE-MEAD. The
areas we chose for improvement were the user
interface and support facilities for data-base
management and expert aiding. In this paper, we first
given an overview of the MEAD Environment and its
architecture, before concentrating on the Data-Driven
Supervisor that is the “heart” of MEAD

EXPERT
SYSTEM b:usl:s
SHELL
{Delphi)
USER
@ INTERFACE 1=+ gypervisoR [™ %I:;%AE%E \
(CHIDE) ROS,
(ROSE) (t’c“s&? Data Base
\ projects
/ \ onoonen
Y ults “
res
Macros PRO-MATLAB s',, ,;“’.'i'””"‘”“
ACSL

Figure 1. The GE-MEAD
ages Pro-Matlab and Simno:

33

hitecture. The User-Interface, the Supervisor, the Expert System and the core pack-
ACSL all run in separate processes. The Data-Base is part of the Supervisor process.

Rctive lCollund lﬂccro

I Trash IEx X} J

ln-!p

Dato Base

Define Model
Def Conditlon

Simulation Dafinition

Steady State

Lin hd) Xform |
Lin Analysis

Lineer Design

/

Store Var (Nonlinear)
End Time (sec) |16
Time Siep [8.015

IExocuh I

Display l Seve]Don.
Enter result neme:|siauRss oK
Algorithas »x_ax.u_______lé [Sisulation Varlables Store |
® Runga-Kutta 4th-order vorlcbl.-:l-g] Inputs Save Outputs Save
| L Haeming Pred/corr varisble-stian . BTINE o
[JRungg-Kutta tth-order {ixed-step
OEuler ist-order fixed-step — REF -]
Enter Tolcrunccl 1.9E~-03 Ovour x VPLNT]
oK l(:oneol
b BIAS a
O REF]
L nipint.X1 s]
List Plot | ACTUATOR]
L-HCepy |P-HCopy niplint.X2 [=}
Done
Sample iInterval (s\.ps)l!.' lox lCunecl

Figure 2. The MEAD simulation screen and affiliated forms. The buttons/entry-fields of the simulation form are
positioned in the order they are to be used. Thus, the user would first select integration algorithm, variables to be
stored away and the simulation parameters and then execute the simulation. Finally, the user may display or save
simulation results. Each of the forms on the bottom is brought up by clicking on the appropriate button.

A J

Powerful CACE packages exist that jointly provide the
overall functionality needed in an all-encompassing
CACE environment such as MEAD. The use of such
packages allows for the decoupling of numerical func-
tionality from the environmental issues of support and
user friendliness. The MEAD system can therefore be
viewed as a "shell” for existing software rather than
yet another package developed from the foundations
of numerical analysis and control algorithms. The
incorporated packages ("core packages”) include the
Pro-Matlab™ package for linear analysis and design
(GE-MEAD; the Air-Force version of MEAD uses the

' ‘The origin of the acronym MEAD (Multi-disciplinary Expert-
Aided Analysis & Design) is the US Air Force MEAD ijects, which
is & parallel/synergistic effort to the somewhat different “GE version”
of MEAD described here. The USAF MEAD effort was sponsored in
part by the Flight Dynamics Laboratory, Wright Research and
Development Center, Aeronautical Systems Division, USAF -
WPAFB under Contract F33615-85-C-3611. Development of the
GE-MEAD Supervisor was internally funded at GE.

™ Pro-Matlab is a trademark of The Mathworks; Matrixx is a
registered trademark of Integrated Systems, Inc; ACSL is a registered
trademark of Mitchell and Gauthier Associates; Simnon is a
trademark of SSPA. Ada is a registered trademark of the U.S.
Government, Ada Joint Program Office; VAX and VMS are
registered trademarks of Digital Equipment Corp.; Unix is a
trademark of AT&T Bell Laboratories.

MATRIX,‘"‘ package), and the ACSL™ or Simnon™
nonlinear simulator. Standard, "off-the-tape” versions
of these core packages are used to diminish interde-
pendencies between the packages and the supervisor.

Access to the numerical software is given via the User
Interface (UI) illustrated in Figure 2. The graphics-
based Ul gives the user convenient and predictable
access to the full functionality of MEAD. The system
has been carefully designed to constitute a single,
uniform interface to the very different core packages.

The Supervisor, which is situated at the center of the
architecture, contains most of the "intelligence" of
MEAD. It not only controls the core packages, it also
directs the activity of the DBM, and manages the
command and data flow between itself, the user
interface and the expert system. It tracks the high-
level activity of the user, including knowing what
model(s) have been activated. Data is converted to
ensure compatibility among the packages.

The supervisor is the only module of GE-MEAD which
is completely built from scratch. All other modules are
partially based on pre-existing softwarel. The super-
visor and the front-end of the DBM are coded in the
Ada™ language. MEAD runs under VAX/VMS™ with
plans to port it to Unix™ Workstations.

LINPP10S NLPPFBS

(ABCD) (Simnon}
Description Desoription
Rel_Le lnpp1os nipint)
statefd
I mepoonn
vardef
_______ us ||

Figure 3. The MEAD data-base architecture. The models NLPLNT, LINPLNT and so on are grouped into projects
such as cadcs91. Each model may consist of several interconnected components. NLPPFBS consists of the unique
component statefb and the shared component nlplnt, these two components are connected and configured

according to the information in ncpconn and vardef.

The GE-MEAD User Interface

The task of producing a single program serving a
. large, heterogeneous community is non-trivial. In
designing the MEAD User Interface (UI)2, two basic
principles have been consistency and agility. The
user is presented with a very predictable menu/form
environment operated with “click-and-point” opera-
tions as illustrated in igure 2. Careful menu/form
layout design passively aids the user in his work, and
an interactive help facility gives active assistance
when necessary. More experienced users are also
given the ability to enter complex commands in a fast
and efficient manner. Thus, to accommodate the
largest number of control engineers, a user may drive
MEAD in different modes, each suiting different needs
and level of experience.

Action forms (such as the simulation form in Fig. 2)
vary in size and content, but they all have the same
general layout. The top setup buttons enable actions
that the user may want or need to perform before
executing the function; the Execute button triggers
the actual operation (e.g., simulate). The bottom row
of buttons allows the user to view and save results ,
and to quit. Whenever the user must enter any
alphanumeric information, such as the name of a
result, an input form will open up.

The GE-MEAD Data Base

Though largely independent of the underlying CACE
packages, the architecture of the MEAD Ul is closely
coupled with the structure of the MEAD Data Base
Manager (DBM). It is used to store away models, and

Results derived from a model are stored under that model.

results associated with these models, in a structured,
safe and maintainable manner3. Various "Browsing
Forms" are used to present the user with the available
choices, together with any pertinent information about
the selectable items. The information within these
forms change dynamically as objects are created or
deleted. Items presented to the user for selection
correspond to the data-base hierarchy, which in turn
mimics the way control engineers naturally organize
models and results, as shown in Figure 3. The control
engineer typically analyses models of real or planned
systems, and thereafter designs controllers based on
these models. Thus, models form the main entities of
the DBM. Models are grouped into projects; a DBM
may contain several projects. A model consists of
components (e.g. plant, sensors, controllers and
actuators), connected together according to a model
description. Associated with each model there are
results (e.g. frequency or time response data).

While the CACE database categories are few in num-
ber and simple, there are a few more dimensions to the
problem: Models tend to change over the life-time of
the project. Thus, the DBM must be able to keep track
of a series of updated models , so that each analysis or
design result can be associated with the correct model
instance. Moreover, individual components (e.g. an
actuator model) may be used in several models, but for
maintenance reasons only one copy of that component
is to be kept in the data-base. Finally, results (e.g.
linearizations) may be viewed as models themselves,
so they must be stored also as models so that they can
be used for further analysis and design operations.

The MEAD Supervisor plays the role of the hub in
MEAD's spoke-and-hub like architecture (see Fig. 1).
In this position it serves as execution coordinator and
package integrator. The various core packages run as
separate processes under the direct control of the
supervisor, and the supervisor is responsible for
combining and controlling these packages as well as
reformatting or converting data, when necessary, to
ensure compatibility. The supervisor is also
responsible for facilitating communication with the
UVuser, the data-base and the expert system.

As mentioned in the previously section, the MEAD
User Interface provides a consistent and unified inter-
face to the different core packages and to the data-
base. This relieves the user from having to learn the
intricacies involved in using each package. However,
the core packages are used in their "native” form, and
thus each package has a command language of its
own, a non-standard error protocol, and unique data
formats and file-name conventions. To minimize the
complexity of the Ul (its finite-state machinery
nonetheless has 900+ states) the Ul itself is essentially
oblivious to the fact that different core packages may
be invoked for different commands. The UI under-
stands only the MEAD command language, it is the
responsibility of the supervisor to translate these
commands into the appropriate "package commands”.

User modes

The MEAD command language is not only the stan-
dard means of communication between the graphical
Ul and the Supervisor, it is also made available to the
user in different ways. This allows the user to alter-
nate the regular point-and-click operations with dif-
ferent kinds of command entries, each suiting differ-
ent needs and level of user experience. From a users
perspective, four operating modes are available:

e IDEAS Mode (IDEAS = Integrated Design Envi-
ronment for All Systems): the menu and forms
based, “point-and-click” style graphical interface
presented in the previous section. The Ul will
translate each user operation into one or several
MEAD commands, which are then interpreted by
the supervisor and either directly executed or
passed on to the correct core package.

IDEAS gives quick and convenient access to basic
CACE functionality. The well structured menus
and forms, together with context-dependent help,
makes this mode suitable for beginning users.
Moreover, as each individual action button and
form typically launches more powerful commands
than the ones available in the underlying packages
(for example, & connect action in MEAD translates
into over a dozen commands which are sent in to
the core package), the expert user is also well
served by its efficient “point-and-click” operation.
However the functionality is definitely prescribed
in this mode, so0 the expert user may not be able to
achieve all desired results.

As illustration of the conversion from graphical
point-and-click operations to the MEAD command

language consider Fig 2. A click on the Execute

button would result in the command
Simulate(16.0,0.25)

being sent from the UI to the supervisor. A

subsequent click on the Save button and entry of

the result name would cause the following

command to be transmitted to the supervisor.:

Save_Result (simuRes)

MEAD Command Mode: this mode allows the user
to directly enter MEAD commands. It is primarily
intended for the experienced user wishing to utilize
the full command language of the supervisor
(which includes command flow statements such as
if-then-else and loops, as well as some 75 control
and data-base related commands). The ability to
combine and structure commands freely can
expedite tasks for the expert user. Thus, the two
“Ul<commands” above may be combined into one:

Simulate(16.0,0.25,result=>simuRes)}

MEAD Macro Mode. This mode allows the user to
define and save sequences of commands for
repeated execution. Macros may contain MEAD
commands, package commands, or a combination
thereof. Commands can be captured in script form
during normal operation of MEAD, or they may be
entered/edited in a regular text editor. Macros may
consist of linear sequences of commands or they
may be organized into general procedures with
parameters which may be given different values
each time the procedure is executed. The following
example shows a procedure which will make a
parameter sweep using ten simulations. The sweep
limits, the result name and end-time may be
interactively changed (the “<” character means
“use the value of”, and the for loop uses the range
expression from:increment:to.):

procedure Run_Range

(Par_Lo,
Steps : Integer;
Res_Name : String := "SimuRes™;

End_Time : Scalar := 16.0) is
begin
delta := (&Par_Hi-éPar_Lo) / (&Steps - 1);
for ThisPar in &Par_Lo:&delta:&Par_Hi loop
Para{controller.k, &ThisPar);
Simulate (¢End_Time, 0.25);
Append Result (&Res_Name);
end loop;
end Run_Range;
Macros are dynamically associated with menu
fields for convenient execution from Ideas mode.
They may also be called from command mode.:
Run_Range(0.0,10.0,11,Case2);
where the default end-time of 16.0 is used.
Alternatively, if the user had selected the macro
Run_Range from the dynamic macro menu, he
would have been presented with a form for
entering/changing the different parameter values.

Package mode: allows the user to directly enter
commands to a core package using the syntax and
command set of that core package. This mode re-
quires the user to know how to directly operate the
underlying package; it is intended to be used when
the exact desired functionality is not available

through the MEAD commands. Because the
commands pass through the supervisor, full data-
base management capabilities are still available 3.

Of these four modes, the first three utilize the MEAD
command language. Thus, the user can choose be-
tween four modes, but the Supervisor needs to distin-
guish only between MEAD and Package commands.
Package mode is basically a transparency mode
where the Supervisor passes the commands over to
the package without checking or interpretation (the
Supervisor does look for two special commands sig-
naling that data is to be stored away in the data base,
and for the command terminating package mode).

From an implementational standpoint, the reuse of the
MEAD command language in three out of the four
main user modes has advantages beyond the obvious
simplification of the Supervisor’s complexity:

¢ The complexity of the Ul can be minimized by
relieving it of any knowledge of the particular
syntax and command limitation of the individual
packages. This advantage should not be
underestimated, as the inherit complexity of the
graphical Ul is considerable.

The User Interface is made insensitive to upgrades
and changes in the core packages, and the
introduction/exchange of a core package requires
only minor changes to the Ul

The GE-MEAD command language

The MEAD Supervisor is accessed over a direct-execu-
tion, interpreted command language. Entered
commands are translated to an internal "threaded
code” and thereafter immediately interpreted - the use
of threaded code instead of pure interpretation short-
ens the execution time for all repetitive code segments.
The command language follows a syntax similar to
that of Ada. Regular control flow statements such as
assignments, if-then-else and loop-end loop
constructs are available. Procedures/functions may be
interactively defined, they are thereafter available for
immediate execution. The regular “programming-
language” statements have been augmented with
control-oriented data structures such as matrices and
system representations using a syntax similar to that
found in the Pro-Matlab and IMPACT® packages.

procedure C_To_D{(New DT : in Scalar;
Result : in Result := null;
New Model: in Model := null;
Model : in Model := null)

begin
XX_Set_Context(GModel,Linear);
case XX_Return Context Package is
when “PRO_MATLAB" =>
case XX Return Context LinForm is
when "ABCD" =>
APro_Matlab

new_ss model := pack_ss(a,b,c,d);
Send;

is

{aa,bb,c,d} := unpack_ss(ss_model);
new_dt := &New DT;
{a,b} := c2d(aa,bb,new_dt);

The close coupling between the MEAD Supervisor and
the data-base provides the Supervisor with the means
for taking an active role in defining the context of each
command. Thus, the commands entered in command
mode can be kept short by relying on the supervisors
ability to insert default values (for project, model, and
result names; for model, component and result type
information; for tolerances and scaling, etc).

The Supervisor is responsible for translating the
generic MEAD commands to specific commands to be
sent to the core packages, data-base and/or operating
system, as well as for interpreting the result and status
flags echoed back. Typically this involves translating
single MEAD commands into a set of more primitive
package/data-base commands. Rather than having
the individual commands such as BODE or C_to_D
(Continuous_to_Discrete transformation) imple-
mented within the supervisor as Ada procedures, this
functionality is again coded in the MEAD command
language using more primitive MEAD commands.
This approach is similar to the "toolbox” concept used
in Pro-Matlab. However, the MEAD supervisor adds a
further dimension to this approach by not only
equivalencing MEAD commands with toolbox entries,
but also transforming primitive MEAD-commands
into the correct syntax for the particular packages.

The MEAD supervisor is "data-driven” in the sense
that all MEAD commands are transformed into
correct package commands by executing macros, i.e.
ASCII data files, rather than having such detailed
knowledge of the core packages coded in Ada. This
allows for an easy and quick extension of the
supervisor to support new commands, as no
recompilations or links are necessary. Moreover, as
the normal user may formulate his own macros, the
adaptability of the supervisor to the requirements of
individual users is virtually unlimited.

We will illustrate this with the implementation of the
command C_to_D (note that the code driving
MATRIXx has been included for sake of illustration;
GE-MEAD does not presently support this package
although it was supported under the version of MEAD
sponsored by the US Air-Force4):

no default

def: no result saved
def: no model created
def: context model

-- >1<(see comments
~- >2< below)

-- >3<

-- >4<
-=- >5¢<

-~ >5¢
-- >6<

XX_Modelize_Result (&Model, &éNew_Model, DABCD, new_ss_model, new_dt);
XX_Save Result (éModel, DABCD_Model, éResult, {new_dt,new_ss_model});
when "DABCD™ => i -

XX_Propagate_Error ("MEAD_U_ILLEGAL_CONT_ONLY", &éModel);

3

when others =>

XX Propagate_Error ("MEAD_U_ILLEGAL_LINEAR_FORM", &Model);

end case; -- model class
when "MATRIX_X" =>
case XX Return_Context_ LinForm is
when "ABCD" =>
tMatrix_x
newdt := &New_DT;
newss := discretize(ss,ns,newdt);
send;

- >4<

- >6<

XX_Modelize Result (¢Model, éNew_Model, DABCD, {newss,ns},newdt);

more of the same
end case; =~ model class
when others =>

XX_Propagate_ Error ("MEAD_U_LINEAR_PACKAGE_REQUIRED", &éModel);

end case; -- context package

end C To D;

Comments:

>1 The supervisor always designates the last-used
model as the "context”; this is used for all subse-
quent commands unless another model is specified.

>2 This case/branch determines which core package
is to be used.

>3 The c¢_to_b command is available only for
continuous models, this branch makes sure an error
message is transmitted otherwise.

>4 The statements within $Pro_Matlab .. send
and sMatrix_x send have these packages
as their destination. However, these lines are
expressed in MEAD syntax which is then translated
by the Supervisor into commands following the
Pro-Matlab and MATRIXy syntax, respectively.
For example, assuming that the macro c_to_p is
called with New_DT=0.1, the Pro-Matlab section is
translated into the Pro-Matlab statements:

[aa,bb,c,d] = unpack_ss(ss_model);
new_dt = 0.1;

[a,b] = c2d(aa,bb,new_dt)
new_ss_model = pack_ss(a,b,c,d)

Note how the syntax has changed to

>5 The state-space model representation of ISICLE7
is used throughout MEAD/Pro-Matlab to express
and store away linear models. unpack_ss and
pack_ss are ISICLE commands to convert model
representations to standard Pro-Matlab matrices.

>6 If the parameter Result is given a value, the
result of the operation will be stored away in the
data-base. Moreover, as the result from this
conversion may be interpreted as a model itself, the
result will be stored away as a configurable model
if the parameter New_Model is given a value. This
new model may later be activated as the default
model for analysis or design.

The workhorses of the package interfaces in the
Supervisor are the command translators which accept
commands in MEAD syntax as input and produces
package commands acceptable to the core packages.
These translators have made it possible to implement
90% of the analysis and design commands in a
completely data-driven fashion (the data-base related
administrative commands are Ada/Rose coded, due to
the constraints of Rose). Moreover, new packages can
be introduced into MEAD after only a relatively
modest effort: a new command translator has to be
written (or adapted from an existing one), and code

38

interpreting the error and status messages of the new
package has to be inserted. Thereafter, the data-
driven files have to be updated for the commands
supported by the new package. Compared to
rewriting large Ada-packages describing every
analysis and design command (which was the case in
the Air-Force version of MEAD), this saves a factor 3-5
in implementation time, and simplifies both debugging
and maintenance as the total lines-of-code (Ada+Data-
driven files) is relatively low.

Conclusions
There has been a growing realization over the last
years that existing CACE packages may be reaching a
good state in terms of functionality and numerical

power, but that the lack of User Interface and data
standardization decrease the efficiency at which they

can be employed for large industrial problems. In this °

paper we have shown how the unifying UI and
package coordinator integrator can make the of GE-
MEAD quality commercial CACE packages more
attractive in large and complex projects.

References

(11 Taylor, J. H.,, Frederick, D. K., Rimvall, C. M. and
Sutherland, H., “A Computer Aided Control Engineer-
ing Environment with Expert Aiding and Data-Base
Management®. Proc. IEEE Workshop on Computer-
Aided Control System Design, Tampa, FL, 1989.

(2 Rimvall C. M., Sutherland, H., Taylor, J.H. “GE-
MEAD's UL A Computer Aided Control Engineering
Environment with Expert Aiding and Data-Base
Management®. Proc. IEEE Workshop on Computer-
Aided Control System Design, Tampa, FL, 1989.

{3) Taylor, J. H, Nich, K-H, and Mroz, P. A., “A Data-
Base Management Scheme for Computer-Aided
Control Engineering®, Proc. American Control
Conference, Atlanta, GA, 1988. .

M4} Taylor, JH., McKeehen, P.D., *A Computer-Aided
Control Engineering Environment for Multi-
Disciplinary Expert-Aided Analysis and Design
(MEAD)". Proc. National Aerospace Electronics
Conference (NAECON), Dayton, Ohio, May 1989.

(5] Taylor, J.H., “Expert Aided Environments for CAE of
control systems®. Proc. 4th IFAC Symposium on CAD
in Control Systems, Beijjung, PR China, 1988.

6] Rimvall, M., Schmid, F., and Cellier, F.E., *The
different modeling capabilities of IMPACT®. In
Proceeding IEEE Control System Society 3rd
Symposium on Computer-Aided Control System
Design (CACSD), Arlington, VA, September 1986,

(71 Minto, K.D., Chow, J.H., and Beseler, J., “Lateral
Axis Autopilot Design for large Transport Aircraft:
An Explicit Model-Matching Approach®, In
Proceddings of the ACC, 1989

hig

