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Abstract. The sinusoidal-input describing function (SIDF) technique
is a well-known approach for studying limit cycle phenomena in non-
linear systems with one nonlinearity [1,2]. 1In recent years, a number
of extensions of the SIDF method have been developed to permit the
analysis of systems containing more than one nonlinearity. In most
cases, the nonlinear system models that can be treated by such exten-
sions have been quite restrictive (limited to a few nonlinearities, or
to certain specific configurations). Furthermore, some results involve
only conservative conditions for limit cycle avoidance, rather than
actual limit cycle conditions. The technique described in this paper
removes all constraints: Systems described by a general state vector
differential equation, with any number of nonlinearities, may be
analyzed. 1In addition, the nonlinearities may be multi-input, and bias
effects can be treated,

The general SIDF approach was first fully developed in [3], and its
power and use were illustrated by application to a highly nonlinear
model of a tactical aircraft in a medium angle-of-attack flight regime
[4,5]. Some problems associated with direct simulation (especially
"obscuring modes" and the initial condition problem) were also dis-
cussed in [5]. This presentation highlights the basic results from
[5], and treats a new application (bifurcations in a two-mode panel
flutter model) in detail.

1. Introduction. The study of limit cycle (LC) conditions in non-

linear systems is a problem of considerable interest in engineering.
An approach to LC analysis that has gained widespread acceptance is
the frequency domain/sinusoidal-input describing function (SIDF)

method [1,2]. This technique, as it was first developed for systems

with one dominant nonlinearity, involved formulating the system in
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the following form:

‘é = Fx + gv

(1) Vv =-¢(0)

o = h?§_+ KU

where x is an n-dimensional state vector. There is thus one  single-
input/single-output (SISO) nonlinearity, ¢(0), and linear dynamics of
arbitrary order that may be represented by the SISO transfer function

(in Laplace transform notation) W(s) =_ET(SI"F)—1 g+ K.

It is then assumed that the input O may be essentially sinusoidal,

e.g., 0 = a cos wt, and the output approximation

1p:

(2)  ¢(0) = Re [y, exp (iwt)]

e

Re [nl(a) * a exp (iwt)]

is made*. The fourier coefficientT wl (and thus the '"gain" nl) is
generally complex unless ¢(0) is single valued; the real and imaginary
parts of wl represent the in-phase (cosine) and quadrature (-sine)

fundamental components of ¢(a cos wt), respectively. The so-called

describing function nl(a) in (2) is "amplitude dependent", thus retain-

ing a basic property of a nonlinear operation. By the principle of
harmonic balance, the assumed oscillation -—— if it is to exist —-- must

result in a linearized system with pure imaginary eigenvalues,
liw = F + 0y gh'| =0

for some value of W, or by elementary matrix operations

(3)  W@Ew) = - 1/n ()

Condition (3) is easy to verify using the polar or Nyquist plot of
W(iw) [1,2]; in addition, the LC amplitude a is determined in the

process.

*If ¢(0) is not odd (¢(-0) # -¢(0)), a constant term ("bias" or "D.C.
value") must occur in (2); such cases present no difficulty [1,2], but
are omitted to simplify the discussion.

The usual definition of an SIDF is that n,(a) is chosen to minimize
the mean square error between f(a cos wt) and Re [nl(a) * a exp (dwt)];
thus a nl(a) is the first fourier coefficient [1,2].
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It is generally well-understood that SIDF analysis as outlined above
is only approximate, so caution is always recommended in its use. The
standard caveats that W(iw) should be "low pass to attenuate higher
harmonics'" and that ¢ (o) should be "well-behaved" (so that the first
harmonic in (2) is dominant) indicate that the analyst has to be
familiar with the system behavior, by direct experience or by simula-
tion. Given an appreciétion of these warnings, SIDF LC analysis has

proven to be a very powerful engineering tool.

The utility of SIDF analysis for systems with one significant SISO
nonlinearity as outlined above has naturally resulted in a number of
attempts to generalize the technique to the multiple-nonlinearity case.
In most cases that preceded [3], only SISO nonlinearities were consid-
ered, and bias effects (either due to constant inputs or to "rectifi-
cation" caused by nonlinear effects) were excluded. Also, special
model configurations were often assumed. The earlier results are
discussed more fully in [5]. The LC analysis approach described in
this paper removes all restrictions with respect to model configuration,

nonlinearity type, or the presence of biases.

2. The General SIDF Limit Cycle Analysis Method. The most general

system model considered here is
(4) x=£ (x,u)

when X is an n-dimensional state vector and u is an n-dimensional input
vector. Assuming that u is a vector of constants, denoted us it is

desired to determine if (4) may exhibit LC behavior.
As before, we assume that the state variables are nearly sinusoidal,
(5) §7; X, + Re (a exp (dwt)]

where a is a complex amplitude vector and X is the state vector center

value (which is not a singularity, or solution to ﬁ_(go,go) = 0 unless

the nonlinearities satisfy certain stringent symmetry conditions with
respect to 50)_ Then we again assume that higher harmonics are negligi-

ble, to make the approximation
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o

~

(6) f(x,u) =f

£Gou) F fpp(usx ,8) + Re [Fpp(u,x,2) a exp (1wb)]

The real vector EDF and the (generally complex) matrix FDF are obtained
by taking the fourier expansions of the elements of ﬁjgﬂ + Re a exp
(iwt), Eo)’ and provide the quasi-linear or describing function repre-

sentation of the nonlinear dynamic relation. The assumed limit cycle

exists if X, and a can be found so that
(l) "EDF(EO’EC’E) = 9

(7)
(11) [iwIl - Fyp(u ,x ,a)]a =0, a+ 0

(F has a pair of pure imaginary eigenvalues, and a is the cor-

DF
responding eigenvector.)

The nonlinear algebraic equations (7) are generally difficult to solve.
An iterative method, based on successive approximation, has been used

successfully for a ninth-order, highly nonlinear DE [5].

3, TIllustratiomns.

Example 1. The general SIDF representation of a multi-input nonlinear-
ity is illustrated as follows:

3,3 3

%
f = = — —
s = xS [x g x ot g x, (X Tyt T19) + g T1p Tyl
3 3 .
+ [Xcz + 7 ¥eo r22] Re [al exp (iwt)]
+ [3 2 g2 ro.+2x . 1r,..] Re [a, exp iwt)]
3% 1 Boo T 7 Bay Top TG ¥ap Tad 7€ L3y &XP 2

A

exp (dwt)] + £ Re [az exp iwt)]

£ - + f Re [al

5D 5,1 542

where, denoting the conjugate of aj by aﬁ,

= x il | =
rij Re [aiaj] Bl 1,2
The above result is obtained by substituting for x using (5), applying
trigonometric identities and discarding the higher harmonic forms. The

quantity £ is the (hypothetical) fifth element of f and f5 10

5DF —DF’
f5 9 become entries of FDF' By contrast, if Taylor series or ''small-
signal' linearization is used, the approximation is
f_(x) = x X3 =x . X 3 + x 3 Re [a, exp (dwt)]
5 L2 ol “o2 02 1
+ 3x . x 2 Re [a, exp (diwt)]
ol “o2 2
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While this representation is much simpler, it is only realistic when

al and 32 are small.

Example 2. The following second-order differential equation has been
derived to describe the local behavior of solutions to a two-mode

panel flutter model [6,7]:
8 %+ @+x)x+ (B+x) x=0

Heuristically, it appears that limit cycles may occur for o negative
(so- that damping is negative for small values of x but positive for
large values). Observe also that there are three singularities if

8 is negative: X = 0, + v-B8 . The corresponding state vector DE is

) X 0o 1 0
O E=l 7l o) 27kl +xy)

The SIDF assumption is that

X, = = + a 0os Wt
1 X X(_‘, lC
x2 = % = —alw sin Wt
(From the relatien Xy = X it is clear that X, has no center value,
and that a, = iwal in (5)). Therefore, the combined nonlinearity in

(9) is quasi-linearized to be

2 2 .
+ =" = i
xl(xl xz) (xc + a; cos wt) (xc + a, cos wt a, w sinwt)

~ 3.3 2 2,3 2
= (xc + 5 2] XC) +(3xC + Z—al) a, cos wt
2 1 2 ;
+ (XC + Z—al)(—al w sin wt)

Therefore, the conditions of (7) require that

T 0
= :O
(10) fp 6+ =2 43 a2 B
e TR |

L

[ 0 1 0 1
(11) F = =

DF
2 3 2 2 1 2 2
“—(B -on Bxc - Z’al) - (o + X + . al) —w 0
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Relation (10) shows two possibilities:

(12) Case 1: x, = 0 --:--a.1 = 2vV-a
w = v¥YB - 30

As predicted, o < 0 is required for an LC to exist centered about the
origin. The second parameter must satisfy B > 3c, so B can take on

any positive value but cannot be more negative than 3a.

(13) Case 2: Xc=j-_/8;—6a —»al=2/a;8
w =B - 30

For Case 2 limit cycles to exist, it is necessary that 3a < B < a, so

again limit cycles cannot exist unless o < 0. One additional constraint

must be imposed: |xcl > a, must hold or the two limit cycles will

I
overlap. This condition reduces the permitted range of B to 20 < B < a.
One final condition should be investigated: for 20 < B < a, the case
2 1.C's must lie inside the case 1 LC: from (12) and (13) this is true
il §
B - 6x 4o - B)

5 5

=20 — 38 < =20«

< =4o,

which is indeed satisfied over the range 20 < B < 0.

The stability of the case 1 LC can be determined as follows: If

2 :
= — — -
aq 4o £ 4o, then FDF is

0 1
FDFz[—(B—:’,oc—%e) %"Eil

which for € > 0 has slightly unstable eigenvalues. Thus a trajectory
just inside the LC will grow, indicating that the case 1 LC is stable.
A similar analysis of the case 2 LC is more complicated, and thus
omitted.

Another viewpoint is provided by the traditional singularity
analysis approach (refer to [8]), which involves linearization about

Xx =0 and (if B < 0) x = + v-B . The linearized F-matrices and singu-
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larity characterizations for o < 0 are given as follows:

B <0 » saddle

0 1 1 9
x =0 F = 0 < B < 7o > unstable node
| Ll 1.2
R >AZ o -+ unstable focus
Bl < B8 <0 -+ unstable node
o < B < B, =+ unstable focus
0o 1 .
x =+ /-8 F = B=a -+ center
_ 28 RB-o.
82 < B <o o> stable focus
B < 82 » stable 'node
where
Bl = (0 - 4) + 2v4 - 2q
’ B, = (a - 4) - 2/4 - 2q

The LC analysis and singularity analysis are completely consistent
for < 0, B > 20. For all B > 0, the single singularity is unstable,
and for o < B < 0, the three singularities are unstable, so in both
cases the predicted existence of a single stable LC is reasonable. For
B = o, the existénce of two center singularities at X, = + V- 1is in
exact accordance with the condition B < o for two interior limit cycles
to exist, with centers XC ;,i /:E_. The only range of B which seems to
give rise to contradictory results is 3a < B < 20, where the disap-
pearance of the two inner LC's is not consistent with the stable nature
of the singularities at x = i_/téh and the continuing presence of a
large stable LC centered about the origin . The seemingly anomalous
result that the SIDF analysis predicts the existence of two overlapping
LC's for 3o < B < 20 might suggest that there may in fact be a single
"peanut-shaped" LC inside the large stable LC -- but such a conclusion
would only be an intuitive speculation. Since the conjectured inrer
limit cycle would be quite distinctly nonsinusoidal, it would be neces—

sary to include higher harmonics (e.g.,_ﬁ = x_ + Re [El exp (dwt)] +
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Re [23 exp (3 iwt)]) in the SIDF analysis in order to reveal its pre—
sence. Such an assumption gives rise to substantially more compli-

cated LC existence conditions, so it is not pursued here.

In the terminology of bifurcation theory, we observe that the SIDF

analysis indicates the following:

* Bifurcation from a single stable singularity at x = 0 to a single
stable LC centered about x = 0 for B > 0, a passing from positive

to negative,

* Bifurcaticn from one stable LC enclosing three unstable éingular—
ities to one stable LC enclosing two unstable LC's and a saddle

for o < 0, B passing from greater than o to less than «,
* Disappearance of the two inmer LC's for a < 0, B < 20,
* Disappearance of all limit cycles for B < 3a.

One quite simple analysis has revealed a great deal of the rich variety

of behavior that the DE can exhibit.

5. Conclusion. The basic result in Section 2 shows that there are
no inherent restrictions to the generality of the SIDF approach to
studying limit cycle conditions. Very complicated high-order and highly
nonlinear systems of differential equations have been treated using
appropriate comﬁuter algorithms fér solving nonlinear algebraic
equations [5]. A second-order example of significant complexity has

been treated in detail, illustrating the power of this method.
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