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a; L —e<0
Bi; X —e<0

— n-1
VeuiBy = 5 (o5 + o)

can always be written in the form of (1),
although generally not in an unique way.
Therefore, 2) can also be considered in the
following theorem.

THEOREM

Consider the system of differential

equations
% = A(x, )z 3)

where x is an n-dimensional vector and A
an n X% matrix whose elements are functions
of x and i. Then the system of differential
equations (3) is uniformly asymptotically
stable in the large about the equilibrium
point x=0 if

dﬁS_€<0;

i=1,2 0, nvx, e 4)

n—1
Vaia; > — | o5 + anl,
= 1:2’ . ':‘n,‘v‘X,Vt'
j=i+1,i4+2,n 5
where A(x, ) = (aij(x, 8)).

Proof: Consider as a tentative Liapunov
function for the system

V =x'z 6)

Then
V = 2A%(x, )z )

where
A¥(x, ) = Alz, ) + A'(x, 1) 8

and the following expression is obtained on
expanding x'A*(z, #)x,

n n 2
x’A%x = Z Z aiixid
i=] j=it+l B 1
2 o
+2(e; + aj)wax; + P a,-,-x,--) )
If
Qi S —e< 0)
i=12---,n¥x (10)
and if
n—1
Vaia; 2 3 [ @ + a5,
i= 1)2: Cre B, VX, M

j=i4+1,i4+2--,n (11
then ¥ may be written
2 n n

2 2 (V—aum

n—1:350

< -

JE, 2
£ VIER) (12)

where ay;and g;; are defined by the following
relation
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i=1:21".1n)Vxle

. . (13)
j=i+1, 42, ,n

The negative sign is taken in the bracket if
(a+ei) >0, i=1,2,--+,n

=i, i42, .-, (14)

the positive sign is taken in the bracket if
(@5+a0;)<0, i=1,2,++-,n

j=it1,i42, - ,n (15)

and

n
i=1 j=i41

n 2
2 (\/Ta,'j N 3’:‘)
< —e<0, yx, ¥ (16)

Thus it has been established that

V>0 Wz 0, i
VS —e<0  yxs£0,3
Vo « as ||z} = =.

Therefore, V' is a Liapunov function! for
the system, and the result is proved.
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Stability of Nonlinear
Time-Varying Systems

INTRODUCTION

In this correspondence it will be shown
that several of the results obtained recently
in stability theory can be duplicated or, in
some cases, improved upon by using a
generalization of the quadratic Liapunov
function V'=4xTPx-+kx?Mx. The existence
of this class of Liapunov functions was first
conjectured to be a necessary and sufficient
condition for the asymptotic stability of
linear time-invariant systems for all values
of a parameter % in the range 0<k <« by
Narendra and Neuman.l!l It was subse-
quently verified by Thathachar and Sri-
nath.[?) The generalization used here pro-
duces rather general statements concerning
the stability of nonlinear time-varying sys-
tems in terms of the frequency response of
the plant, and it parallels much of the work
of Narendra and Chol®'%] ysing the func-
tional analysis approach. Some of the results
of Zames,!®] Brockett and Forys,[®l and
Sandberg!? can also be shown to be special
cases of the results obtained here.

Manuscript received June 16, 1967,

THE PROBLEM

The system considered is described by
the vector state equation

= Adx — bk()f(c), o= Wy [€))]

This is equivalent to a linear transfer func-
tion G(s) =hT(sI—A)~' with a single non-
linear time-varying feedback gain 2(£)f(s),
where o is the plant output, 0<k(f) < w0,
0<f(o)/o < =, and f(0) =0. The results can
also be extended to cases where 0 <k(¢) <Kj,
and 0<f(c)/o <Ko

It is further understood that the plant
is completely controllable, completely ob-
servable, and asymptotically stable. The
phase variable canonical form can thus be
used with no loss in generality(?l

BT = (ke -+ B,
6 7 0
| 0
4= | L=t - L@
o — *
—t e —an 1

By inspection
kb, gn—1 « 0. Y/ h
G(s) = —8 + thes b
S*tans? - tastan

This transfer function is assumed to have
m<nreal zeros at s=—m, —n2, * * *, —m.

3

The Liapunov function is of the form
1 m P
V= —atPut 2 k08 [ S0,
=0 o

where the matrix P is positive definite
(P>0), and the signals used in the upper
limit are of the form p; =7;Tx, po=0. Clearly,
V is positive definite as long as B;>0.

RL MULTIPLIER: MONOTONIC
NONLINEARITIES

[‘%? >0 all z]

It has been shown[ that if
7 = LTl 4 A)7,
Bs

then the following relations hold:
a) 76 =0
vi GGs)

b) #T(sI — A)-h =L
) rifls ) B: s+mni

1
©) #TAx = — (yic — Binipi)-
B:
Using these properties it can be seen that

= 5 APA+ ATP)x — T [E(Of(0) ]
— ak()of(o) — k(O)f(e) [Pb — ok
— BodTh — é vilk — 7]
- ?:_:1 yik() (e — o) [f(e) — f(o)]
- g E@®oif (o) [Bins — i)

dk & o
+ o 2B f T, @



CORRESPONDENCE

This is obtained by adding and subtracting
wokaf() and

f vikle — pi) [f(o)

i=1

~ fed)];

the first is positive semidefinite for all non-
linearities considered, and the second is
positive semidefinite for any monotonic non-
linearity.

Choosing 8 sufficiently large so that
Bmi—vi=e&>0 and defining
T = zﬂoth
and

P
Fo) = of) /[ s,

the Lefschetz form of the Kalman—-Yabubo-
vich lemma can be applied:

Given the stable matrix 4, a symmetric
matrix D >0, vectors b0, and %, and
scalars 7 >0, ¢>0, then a necessary and suf-
ficient condition for the existence of a solu-
tion as a matrix P (necessarily >0) and
vector ¢ of the system

a) ATP + PA =
b) Pb— k= +/7¢

is that e be small enough and that the Kal-
man relation

¢) 71+ 2Re[kT(jwl — A)"b] >0

—4qq" — D

be satisfied for all w. This yields

V=—

1 —
> [qTx 4+ /7 k()] — exTDx
— 22 vikle — p)[f(0) = f(p3)]
i=1

N NCH RO &

m Pi & . dk .
-6 fo fle)ds [Emp‘-) -2 @

The Kalman relation required is

BoiTh + Re% I:aoh + BodTh

+ 3l =10 Gt ~ 7w} 2 0.0
This may be expressed in the form
Z(s)G(s) = positive real (p.r.), if the relations
BolhTh + KTA(sI — A) ] = BosG(s)
and
yilh — r)T{sI — A) ™

vi 1 )
=1 -2
¥ ( 8 s+ Gs)

are used; Bl they yield

Cins
Z() = (oo + o) + 35 7 1% ()

i=1 ST N

where 0 <C;=1—v:/8imi =e:/Bim; <1. It can
be seen that Z(s) has the form of an RL
impedance and, hence, is of the form

Zne(s) = (s +FA)( +2ng) < v v (54 Mmy1) ®

S (s +n2) -0 (5 9m)
where it is well known that
M<m<Az<n-- <7gn<AniL

It can be shownl! that +;* >0 always exist
such that

A
(s+>u)+2w sth
=1 s+

Thus in (5) and (7) set
ao/Bo = Cini = &/Bi = M

Zgi(s) = C)]

with no loss in generality. Hence the expres-
sion for V (5) can be seen to be negative
definite for any k(1) satisfying

dk
— ® 2= S MbkFain (10

where

Funin = min {F(5)}
z

and A is the largest value of N\ such that
Z(s—A) has all its singularities in the left
half-plane. Zames(®] obtained a less general
result with Fp;, replaced by unity; for
monotonic nonlinearities, 1< Fppn<®© so
that the specific form of f(¢) may allow a sig-
nificantly larger upper bound on dk/di.

Special Cases

1) If a Popov multiplier (s+8;) exists
such that (s48)G(s) is positive real, then
for any nonlinearity (not necessarily mono-
tonic) the requirement is (10) with A =8y,
where Fuin for nonmonotonic nonlinearities
has the range 0 < Fpin< *. For the ]inear
time-varying case f(z)*c and Fanin=2 so
that £/k<28, This special case has been
obtained by Brockett and Foryslfl and
Sandberg.[1

2) If the system is linear time varying
and an RL multiplier is used, dk/df <2Mk.

RL+RC MuLTIPLIER: ODD MONOTOXNIC
NONLINEARITIES

df
[—- > 0Oall 3 f(—2) = —f(z)]
dz
In a development similar to the pre-

ceding, a multiplier for odd monotonic non-
linearities of the form

e s+ A
Z(s) = (s +a) + 2 —I—-L
j=1 ST
m2 .
N . (11a)
o1 St

is found. The first two terms are the RL
portion, and the last term, where 5; <u; <2%;,
is an RC impedance. This portion is

’Yi
S+(""+~3_;

S+,ui_ {
S+

Zzre(s) y
7

5+(2771""—
s+

If 8mim=min {1, ¢/8:} the dk/dt require-
ment (19 is

I

(11b)

dk
— 0 < — < kdminFmin. 12
® = di = in ( )

A physical interpretation of .8min is not ap-
parent at this time. However, this result is
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still useful and completely new with this
correspondence.

For linear time-varying systems, I sim-
plifies to a form which allows

Smin® = min {Aq, 7:} (13)

to replace 8min in (12). Note that the 9
considered are only those that appear in the
RC portion of Z(s). Physically, 6min* is the
minimum of the zeros of the RL portion of
the multiplier and the poles of the RC term.

CoxcLusioN

The authors feel it should be evident
that the form of the Liapunov function used
has proved to be of significant value in pro-
viding simple stability criteria in a number
of problems, which have been solved in
other ways, as well as in the new case of odd
monotonic nonlinearities. For further de-
tails the reader is referred to Narendra and
Taylor.110]

K. S. NARENDRA
J. H. TayLor
Yale University
New Haven, Conn.
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A Graphical Method for
Finding the Real Roots of
nth-Order Polynomials

INTRODUCTION

The problem of determining the roots of
a polynomial is fundamental to many fields
of engineering, and much effort has been ex-
pended in this direction. Since it is not possi-
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