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The Cramér-Rao Estimation Error Lower Bound
Computation for Deterministic Nonlinear Systems

JAMES H. TAYLOR

Abstraci—For continuous-time nonlinear deterministic system models
with discrete nonlinear measurements in additive Gaussian white noise, the
extended Kalman filter (EKF) convariance propagation equations lin-
earized about the true unknown trajectory provide the Cramér—Rao lower
bound to the estimation error covariance matrix. A useful application is
establishing the optimum filter performance for a given nonlinear estima-
tion problem by developing a simulation of the nonlinear system and an
EKF linearized about the true frajectory.

INTRODUCTION AND PROPOSITION

The problem of estimating unknown deterministic variables (in partic-
ular, the state variables generated by a nonlinear time-varying state
vector differential equation driven by deterministic input variables) from
discrete nonlinear observations in additive Gaussian white noise arises in
many applications of modern estimation theory. Two typical examples
are: tracking a deterministically maneuvering spacecraft from a platform
that follows a known trajectory (e.g., estimating the target’s position and
velocity in a relative coordinate frame from noisy measurements of the
platform /target line-of-sight angle); and estimating unknown nonran-
dom parameters in the nonlinear dynamic model of a system subject to
known inputs, from nonlinear measurements of selected systems vari-
ables corrupted by additive Gaussian noise.

Since the practical estimation algorithms that are generally developed
for such tasks are rarely optimal, a very real concern is determining “the
best that can be done,” and comparing a given algorithm’s performance
with that estimation error lower bound to see if the filter is adequate or
to determine if seeking a more effective algorithm is worthwhile. Estab-
lishing the performance of a filter algorithm generally involves develop-
ing a computer simulation of the nonlinear system and observation
models to provide realistic measurement sequences that can be processed
by the algorithm which is also mechanized in the simulation. The system
and observation models used in this simulation are generally called the
“truth model”; it is often more detailed and realistic than the model used
as a basis for deriving the filter algorithm (the so-called “filter model”).

A powerful result in such a performance assessment is the Cramer—
Rao inequality (cf. [1]). In essence, defining P to be the estimation error
covariance matrix corresponding to any unbiased estimator' of the
unknown deterministic variables, then the inequality can be stated as®
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IThe most general result known to the author [8] when the estimate x exhibits a bias
b(x) is P>P* g I+ @b /3x))J — (I +(3b/x))7; see also [1). However, the term b(x) is
generally not available in analytic form, so this result is of questionable value here.

2The matrix inequality P > P* is equivalent to stating that (P—P*) is positive semi-defi-
nite. Ensuring that J ~! exists is straightforward, and not considered in this development.
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where J is the Fisher information matrix. Thus, P* defines the best that
can be done, in the above sense.

In many instances, obtaining P* is difficult (cf. [2]-[5]). For the case
considered in this paper, however, the following result will be proven.

Proposition: The inverse Fisher information matrix (P*) correspond-
ing to a dvnamic system modeled by a nonlinear time-varying state vector
differential equation with deterministic inputs and nonlinear time-varying
observations of the state variables corrupted by additive Gaussian white
noise sequences propagates according to the same equations as the filter
covariance matrix for an extended Kalman filter (EKF) linearized about the
true (unknown) trajectory. :

This exact result permits Cramér-Rao lower bound analyses to be
performer very directly for this class of problems, with no additional
analytic effort, and often with little programming effort in studies where
the EKF has already been mechanized in a computer simulation as
described above. In the latter case, it is simply necessary to change the
EKF linearization from #, the EKF’s estimates of x (the normal “realiz-
able” EKF [6]), to x (an “idealized” EKF) to obtain the Cramér-Rao
lower bound.

PROOF OF THE PROPOSITION

Consider the following nonlinear continuous-discrete estimation prob-
lem. The continuous-time system dynamics obey

x=fx,u,1) )

where x is the n-vector of state variables, u is a deterministic r-vector of
inputs, and f{-, *,f) denotes a general® nonlinear time-varying formula-
tion of the system dynamics. The unknown deterministic trajectory to be
estimated is then

x(0)=x(t;xq,u(7): 0<7<1)

where x; is also unknown. The value of x at each “sampling time”
t=kT, is denoted

%, = x(kTy; xu(r): 0<7<kT), k=12--
and discrete observations having the form
2= h(x, k) + v,
L+v, v~NQOR,) €)]

(where z, is an m-vector) are available at each sampling time. Finally, it
is assumed that some unbiased a priori statistical information about xg is
available, of the form

fu"‘N(Io» So)- )

This information may be viewed as a “random filter initialization,” i.c.,
x(0) may be provided to the estimator by other means (e.g., a boost-
phase tracking system in the spacecraft tracking problem outlined
above), or it may be considered to be an “additional fictitious measure-
ment” at /=0,

Zo=%g+vy  vg~N(0,S;)
which is of different dimensionality from z,,2,,- -+ . In either case, it is
desired to determine how well x, can be estimated given the data

ZK= {-fo,zpzz:' " =ZK}

={ZQ,Z],' s 1ZK}-

3The only restriction is that the associated Jacobian matrix F = 3f/8x must be continu-
ous for all x and ¢ in the domain of interest.
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Following Van Trees [1], the conditional information matrix* for the
unknown deterministic state vector x at r= KT, is given by

9%Inpy
Jpg=—E| —— | X 5
K ax’% K ( )

where py is the conditional density of Zg,
Pk =Pz xx
and Xy is the set
Xg={xpxp, "+ 2}

Given Jy, the Cramér-Rao lower bound for an unbiased estimator is
given by (1); in particular, for each element of xy,

ok = E[(xm —)EK,.(ZK))z] > (7 = Py

where P§; denotes the (4,7) element of P§ in (1).
By assumption, (3) and (4) yield

- 1 —1/2(x—x T{‘ —
Pz x= (zw)"/2|80|1/2e /2(xo—xo) 55 '(x0—*0),,
K 1 ;
Il e VA A R = B (6)
k=1 2m)" AR
SO

—lnpg = constant+ 1 (x,— %;) TSD_ Y(xq—%g)
& T
e kZ] (2= h(x)) Ry (2~ h(x,)).

Taking the expectation of the second partials of —Inpy in accordance
with (5) yields

dxg \T _1f 9xo K [ om \T _qf Ok
-’K'(m) Sl ane )t 2\ a ) B\ ) O
where several unstated terms have been eliminated by noting that

dxg/dxy and 0k(x,)/dxy are deterministic, so taking the expected values
of terms of the form indicated below yields no contribution to (7):

E[(deterministic factor)=(x,— £,)]=0
E|[(deterministic factor)«(z; — k(x;))]=0.

Finally, (7) is reformulated by defining

o 0h(x,, k)

Hy ox,

®)

50, by the chain rule of partial differentiation,

dxg \T_ -, f 0 K (g \T 8.
_]K=(“ﬁ) Sﬂ—l(ﬂ)_{_kz (_;r!&) HkTRk—IHk(a_::f()_ ©

Oxg Oy —1\ Oxg
K auxiliary matrices® are needed to evaluate J4 according to (9):

& O (BIK

My=+—= a—xk

) 2ogl,  k=0,1,23,-,K-1. (10)
0xy »

Under the general condition that the Jacobian matrix

4Equation (5) is valid if the indicated partial derivatives exist and are absolutely
integrable; these conditionsaarc guaranteed by the problem statement; cf. p in (6).

M, is'nonsingular if xf = x(KT,; x;,u(7): kT, <7< KT,) is continuous with respect to
x; this condition devolves from uniqueness, which is guaranteed if (2) is globally
Lipschitzian [7]. Continuity of the Jacobian matrix is a stronger constraint,
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o & Yom) (11

is continuous in x and ¢, it can be shown [7] that @ ; can be determined
exactly by integrating

= F(1)® (12)
from t=kT, to KT, subject to the initial condition
O(KT, kT,)=1.

These relations are identical to the transition matrix relations that form
the basis for the discrete EKF [6], except that F is evaluated along the
true state trajectory x rather than along £ as in the usual EKF realiza-
tion. In addition, the continuity property

¢'}(,k=¢'K,K— 1‘1)1@1.:(

permits (9) to be written in a recursive form; by inspection,
Te=(2511) Vo OxL + HIRG Hy (13)

where the shorter standard notation ®,_, = & k. k1 s used for simplic-
ity. In terms of P,

(PE)_I=(‘I’K—1P§—1‘I’§—E)4+H§R1?1HK (14)

which is identical in form to the EKF inverse covariance matrix propa-
gation equation in the absence of process noise [6]. This observation
completes the proof of the proposition.

CONCLUSION

The generality and simplicity of the proposition presented in this
paper should prove to be of considerable value in assessing the perfor-
mance of unbiased estimators for nonlinear systems in which the state
variables can be assumed to be deterministic, i.e., random initial condi-
tions and process noise can be neglected. The inclusion of estimator bias,
if known, can be taken into account as well.® The result will be
particularly useful in studies where the EKF is a candidate estimator,
and a simulation with the EKF embedded in a “truth” or “real world”
model that provides measurement data to the EKF has been developed
to study its capabilities; the accompanying truth model provides the
required linearization trajectory x. In such instances, the changes needed
to linearize about the true state vector instead of ¥ are generally simple,
yielding P* directly,
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