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STATISTICAL PERFORMANCE AMALYSIS OF NOMLINEAR
STOCHASTIC SYSTEMS BY THE MONTE CARLO METHOD
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Until the recent advent of extended covartance analysis utilizing qunsi-linenrization techniques, the only appreach fog
assessing the performanee of a nonlineas system with rundom inputs nnd inltial conditions has been the monte carlo meth-
od, This method involves direct simulation, i, delermining the system response 1o a finite number of *typleal™ initial
conditung and noise input functions which are penerated according to their specified stalistics, snd averaging over the
resulting ensemble of responses (“lrals™) 1o obtain cstimated or sample statistics.

While the monte carlo method semains the most general trustworthy fechnigue available for the estimation of nomline:
svslem performance statistics, sample statistics may be unrelpble unless hundreds or perhops thousands of trials are per-
Formed. Since computer budget constmints may not permit such extensive simulation of high-order systems, there is ofien
a temptation to “*make do'' with ssingle statisties based on 20 10 23 trinls. While tils precedure might provide menningful
results in coses tiat are “oearly paussian®, it is domperoees (o rely on linited sample statistics if devintions from noriality
are significant, This point is demonstrated in detail in this peper using 2 peneralized confifence band concepi {not Chi-
square) as o mensite of the relability of monte carlo sample statistics for nonenussin rmadon variables, Some compensa-
Lory approsches are discussed, including estimating higher-order momenns and generating histograms (approximate cumla-

tive distributions),

1. Introduction

Monte carlo methods provide a steaightforward
approach ta the statistical analysis of the performance
of a nonlinear system with random inputs, based on
direct simulation. It entails determining the system
response toa finite number of “typical™ initial condi-
tions and noise input Tunctions which are gensrated
according to their specified statistics. Thus, the infor-
mation required for monte carlo analysis includes the
system maodel, initial condition statistics, and random
input statisties.

The system model can be given in the form of a
state vector differential equation,

2=p(z, 0.0, (I}

where z is the veclor of system states, ¥ a vector of
random inputs, and gz, v, 1) represents the noenlinear
time-varying dynamic relationships in the system. We
assume at the outsel that the elements of p are corre-
lated random processes with deterministic compos
nents that may be nonzero: in this case, we can use

system mode] of the form
F=flx 0 E Gl win, {2}

where X is an gugimented stale veclor, xT = |= fp] T,
and w the sum of a vector of white noise processes
and a deterministic vector which serves as the input

to generate the random vector ¥, Such 2 model can
generally be obtained that is equivalent to (1), Hence-
farth, we treat (2) as the basic system model. It is por-
trayad in block dingram notation in Fig. 1.

We will specily the initial condition of the state
vector by assuming that the state variables are jointly
normal, Thus, given an initial mean vector and coviri-
ance matrix !,

E[x(0}] = my .

(3)
E[(x(0) — mo}(x{0) — mg)"] = Py

the initial condition specification is complete, As
stated above, the input vector w is assumed to be

VE[ ] denoies the expected value of the bracketed variable,
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IFig. 1. Menlinear stochastic system models (n) example Fenm of eq. 011 (b) form of eg. {2},

composed of clements that are white noise processes,
plus an additive deterministic component or mein:
thus

E[w(t)] = (1),
E[(w(f) — b(e))(w(r) — BN = Q0 6t - 7).

where (M) is the input spectral density matrix and
the impulse function & {f — 1) indicates that the input
vector random components have zero autocorrelation
for ¢ # 75 i.e., the quantity #(7) = wi{r) — b1} is
‘white noise’, a5 stated.

Given the above system mode] and statistical infor-
miation, monte garlo analysis requires a large number,
denoted g, of representative simulations of the sys-
tem response, This involves performing the following
procedure ¢ times: First, an initial condition vector is
chasen according to the statistics indicated above;
i.e., a random number generator caleulates the ele-
ments of @ random vector x{0} hased on (3). Then a
random initial input vector, w0}, is generated, using
the statistics given in (4) *. These vectors provide the
duta For evaluation of #{0) in (2) which in turn s
used to propagate the solution fromi=0to f =4
according to any standard technigque for the digital
integration of a state vector dilferential equation.
Then, given x(R), simulation continues by the genera-

4

2 We simulate white noise with spectral density moteis G
by wsing 0 random number generter o obizin an indepen-
dent sequence of random vectors wikR), & =0, 1.2, ... sat-

isfying
Efuethiry] =0,  E[atkh uTikiy | = ::r—qum i

Then we define w1} by

pity =wikin),  Ahmrikh 110,

whare Jr is n small time increment. Fog b seaall (10 maech
lazger than the bandwidth of the 2vsiem in question), @)
15 an accuraie approximation to a white noise process,

tion of a new value of the input noise vector wiit),
evaluation of £0/), numerical integration to obtain
A 2h) and s on, 1o the specified terminal time rp.
Performing ¢ independent simulations yields an
ensemble of state trajectories, each denoted ¥l
(¢ 000y, wi 1)) to stress the dependence of the
trajectory om the random initial condition and noise
input sumple function:

xU0r: ¢m), Wi ey
@ ) W) | 0=, (5)

_‘-W}E‘; g ;;-‘-':-‘}{ﬂ]-, W{q]'[:f}}

Each satisfies the state vector differential equation
(2} to within the accuracy of the numerical integra-
ton method used, and the ensembles of initial condi-
tioms, x(0), and random inputs, wi(7), abey the
statistical conditions given in (3) and (4], subjact to
the limitations of the randem number generator em-
ployed. The mean m(f) and covariance #{t) of the
state vector are then estimated by averaging over the
ensemble of trajectories using the relations

¥
() 2 :; 2 200y = m(1) (6)

Pin ‘%‘q 1—1 § (e — s (o — m(en T

=P},
where sr(r) and P(r) denote the estimated values ?.

3 In eslimating /M, we ebeerve that il is necessary to divide by
{or — 1), since the sample variance,

1
P& ;E?_ 3 el — g el — iy T

is biased [5], d.e,
=1

E[#| = P
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Fig, 2. Schemalic characterization of the monte caslo techaigue; (2} randomn ensemble genetator; (b} ensemble statistical analysis,

The essence of the monte carlo fechnique is illustrated
in Fig. 2.

2, Assesmment of accuracy — confidence intervals

In order to assess the accuracy of the approximate
statistics given in (&), it is necessary 1o consider the
statistical properties of the estimates #i(s) and P{H.
To simplify the notation, consider # scalar random
variable ¥ (e.g., the value of some system state vari-
ahle at some time of interest), and let aand p repre-
sent the true values of the mean and variance of v,

m=E[r]. p=E[lr-mF]. 7

By performing one sel ol ¢ monte carlo trals, we ob-
tain a single estimate of m and p, which we denote i
amd . These estimates are also random variables: that
is, i another sel of ¢ monte carle trials were per-
formed independently of the frst set, but with the
same statistics for the imtial conditions and noise
inputs, then a different ensemble of simulations
resules, and different estimates far the mean and vari-
ance would be abtained. 1T g is sufficiently large, then
we can invoke the central [imit theorem to justify the
assumption thal the random variables b oand 5 arc

gaussian *, and thus that their distributions are 1EvImp-
totically specified by the Tollowing statistics for large
a [2]:

E[Wi] =m . o= El# —m)] :5 ;
(8)

. 2
Elpl=p, GpSE[A-pFl=—1—

where i is the fourth central moment,
pa = E[(y — m)'] . (9}

For many common probability density Tunctions
{pdf*s), a constant A exists such thad

pa =gt (10)

Table I gives o summary of values of 3, known as the
kuriosis or excess af the density, for same common
pdi*s. For pdt's of this type, we can express both of
the standard deviations of the estimated statistics

* Forg < 20, it is necessary o assume that i hos the chi
aquare distribution il » is a gawssian vardable [2], 11y is
significantly noagaussian, the validity of the Gaussian
assumption for g and ooy require considerably more
than twenty trials.
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Table |
Some common probability density funciions

Table 2
Cumulstive probability within iy standard deviaiions of the
mean For a Gavssian random variable

Designution I"unetiomal 5 -
represeptation ¥ My i
Exponential L Wz f 1.0 06527
. o e e | 1645 10,9000
Y i a - .
i 1960 L8500
o 2.576 0.9900

Mormal ! I _Ma—m)e 3
YTl ) :

Telargular e l—mel}, 2.4
'\.'I'ﬁll.'u‘ \.".ﬁ_ﬂ
m = offa xSt b
LUimiferm 1 1.8
120"
nr = JfIe s x st 3o
Bipodar iHJ.' — Bf = a) 1.0
{Discrele)

+ J:'-t-l.'r —m+a)

# Formulated to hove mean e and stondard deviation o.

given in (&) in terms of the true vadance, p, 1o obtain

I =T
i h. op=f —p (11}
The above discussion ol the statistics ol the Gaus-
sian random variable # provides the basis for deter-
mining a range in the vicinity of F such that the true
value of p is guaranteed to lie within that range with a
specified probakility, &, This iz done by determining
the number, n,, of standard deviations; gz, such that

Po=|p—-Bl=ng0:] =4 . (12}
Since § is approximately gaussian, m, is the solution

fo

E N
ﬁf exp(— ) df =y . (13)

For example, if the desired probability is 0.95, (13)
yields i, = 1.96, Other values of i, corresponding Lo
different values of ¢ can be obtained from probability
integral tables [4]; several representative values are
given in Table 2.

To reformulate {12} into an inequality for p, we

substitute far oz from (11) into (12) to obtain

B frpms | =i
1 +”|:|l." 1 =yl =—
q g (14)

that is, the true value of g lies between the values p
and f indicated in (14) with probability &. Altecna-
tively, in terms of the estimated rms value of the vari-
ahle, i, we have the comparable result

Ple<o=i] =1,

where o and T are given by

aS\p=

[I + ual‘-"llu

o .
Tited, (15)
3

a

ey = 4 A
ﬁ:\."'ﬂ-——l; -EE ﬁa_ f|5}

]

The quantities o and o are refermed to as fower and
upper confidence fimirs; the value of & expressed ws 2
percent is the degree of confidence, Eq. (15) demoane
strates that the standard devistion confidence limits
cin be obtained from & simply by using the multi-
pliers @ and g, The latter are functions only of the
kurtosis, &, the number of monte carlo trials, g, and
the number of standard deviations, i, required 1o
achieve the desired degree of conlidence,

The problem of making a reasonable choice of 3,
which depends upon the statistics of the random vari-
ahle ¥, must be faced before the confidence limit
multipliers can be caleulated. One option is to deter-
ming an approximate valug of A by estimating the
fourth central mament using the g sample valuss of
the varinble », and calculating

Ao o 24,
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Fig. 3, Typical confidence interval mulipliers For the estimated standard deviatlon of a gaossian random variable (& = 3],

The value of A need not be known axacily, since the
confidence limits o and @ are not extremely sensitive
to errors in this parameter, Unfortunately, as we note
in a subsequent example, a meaningful estimate of M
can often require several hundred trials. In the absence
of reliable information about the higher central mo.
ments, it is frequently assumed for the eonfidence

T T
g =256 MONTE CARLO
TRIALS PERFORMED;
- DEGREE OF CONFIDENCE =35%

1.

Ix

(]
T

UPPER LIMIT, ﬁ

S . ——————

ESTIMATED STANDARD DEVIATION
CONFIDENCE IMTERWAL MULTIFLIERS
o
T T

L=
o
T
Il

A= 2 (GAUSSIAN)

! i
a 5 140 15 20

KURTOSIS, &
[Fig. 4. Effect of kurtosis on confidence intesval limits,

limit caleulation that » is Gaussian; i.e., that h = 3,
Huwever, i there is any reason (o believe that the pdf
for ¥ has abnormally heavily weighted tails — as in
the case of the exponential distribution in Table 1,
fior example — then a larger value of h may be
required in order to arrive at o realistic assessment of
the aceuracy of an estimated rms value abtained via
the monte carlo technigue.

Values of p and @ for & = 3 are indicated as func-
tions of the number of monte carlo trials in Fig. 3,
lor tww Lypical values of confidence. As an example
of the significance of the confidence interval, iff we
desire to have 99% certainty that o is within 10% of
the estimated value, &; Le.,

P[0.906< 0= 1.16] =0.99 (16)

then Fig. 3 demonstrates that it is necessary to per-
Form 440 teials; 256 trials suffice for 95% confidence *,
Additional cazes are available in the confidence multi-
plier tables provided in the Appendix.,

Fig. 4 shows the deterioration that ocours in the
accurzey af the monte caclo estimated standard devi-
ation, for a given level of confidence, il the Kurtosis
of the random variable s greater than 3 due to » being
nongaussian, We discuss an instance where A= [5in
Section 3; in this case, even for 256 trials, the upper

f Mote that the bounds, g and 5 are not symmetric with
respect to one; thus the point at which @ crosses 1.1 deter-
mimes e value of g for whicl (16) i satisfied.
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05% confidence Hmil iz 367 greater than the esti-
mated value of o (o= 1.36). The Appendix gives 4
method of evaluating p and & for any value of A using
the corresponding normal values (3 = 3},

The conflidence interval calculation For the esti-
mited mean is quite direct, since o ((11)) 35 not a
function of the mean. The same value of ng is ob-
tuined lor the desired degree of confidence (e.g., from
(13, rip = 196 Tor o = 0.95 corresponding 1o 95%
confidence), and the valus  of f Is used in deriving
the result that for e and @ given by

M= —nu.ln"ﬂ, = ik “FVF (17)
q i

one can assert that

Plm=m=m]=. (18)

Here, we see that m and ir cannot be readily expres-
sad in terms of a multiple of #,

The confidence limit concept developed above
provides o statistical measure of the accuracy of the
estimated mean and standard deviation of a random
variable obtainad by using the monte carlo method,
It is only possible to assess the aceuracy of such esti-
inates in a probabilistic sense; e.g., for 256 trials, we
can assert, for example, that an estimated standard
deviation {rms value) of a paussian random variahle is
within 1% of the true value, with probability 0.95
(with 95% confidence), We note below that even this
assessment miy be open to guestion if kurtosis is not
known at least approximately, however,

3. lMlustrative example and the basie dilemma

Considerable practical experience has been gained
in applying the monte carlo method in studics under-
tuken to validate the wse of @ more recenily-developed
deseribing function method called CADET to provide
accurate and efficient performance evaluations for
tactical missile guidance systems [3,4,6]. The signifi-
cance af the confidence interval concept and the im-
portant role plaved by kurtosis have been graphically

& While o s given by -/pfg in (1), the tree value of p iz un-
known, Since s and fF ore independent [4], it con be shown
ihat fi can be used ingtead,

demonstrated by the results ohtained, as the following
example shows,

A variable of particular interest in the planar mis-
sile-target intercept problem during the terminal hom-
ing phase is the cross-range (lateral) separation
between the missile and tarpet, denoted v, Ina typi-
cal analysis. v (and all other system variables) is
assumed to be gawssian at the initiation of the termi-
nal homing phase and v remains quite gavssian until
the last few seconds af the engagement. Fig. 5 shows
the variation of ¢, with time during a six-second
engagement, where @ quite highly nonlinear system
mzdel with 17 state variables, 9 nonlinearities and 3
random inputs has been used for simulation purposes,
The solid curve is obtained by CADET [3.4.6],and
the results of @ 500-trial monte carlo study are indi-
cated with circled data peints to indicate &y and ver-
tical I-bars to indicate the 93% confidence interval.
The estimated value of kurtosis is also indicated near
each data point: as observed above, & is nearly 3 until
the last second, while at the finul time, £ = 6 sec, & is
15, which is indicative of the quite highly nongaus-
sian character af the (inal laveeal separation {miss dis-
tance).

Fig. & gives a more detailed view of the CADET
and monte carlo analysis depicted in Fig, 5; for two
vitlues of time the estimated oy, is shown as a funetion
of the number ol trials performed, . We note in
Fig. 6(u] that the estimated value ol o, at 1 =4
appears to ‘settle’ to about 145 ft after 3 few hun-
dred trials; after 300 trials we have the result that

P138 ft < o,(4) = 156 f1] = 0.93 (19}

which indicates that the monte carlo estimate of o,
Ias nearly converged 1o its true value with high prob-
ability. The situation at six seconds is quite different,
as demonstrated in Fig. (b)), For & = 15 the result of
S00 trials is

P[24.7 < o,(6) = 33.9 1] = 0.95 (20)

which indicate @ considerable margin for error in the
monte carlo estimate of g,, on a percentage basis.

A synopsis of o part of the data portrayed in Fig.
b} is provided in Table 3, hroken down into five sets
of 100 trials (set 1 cormespending to the first 100
trials, set 2 including trials 101 to 200, ete,). The data
demonstrates that in this case the result of 100 trials
iz highly random — with &,(6) varying between
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The value of & need not be known exactly, since the
confidence limits o and & are not extremely sensitive
to ercors in this parameter, Unfortunately, as we note
in a subsequent example, 3 meaningful estimate of A
can often require several hundred trials. In the absence
of reliable information ahout the higher central mo-
ments, it is Mrequently assumed for the confidence
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limit calenlation that v s Gaussiand e, that A= 3.
Hoewever, if there is any reason to believe that the pdf
for ¥ has abnormally heavily weighted tails — as in
the case of the exponential distribution in Tahle 1,
for example — then a larper value of & may be
required in order to arrive at a realistic assezsment of
the accuracy of an estimated rms value obtained via
the monte carlo technigue.

Values aof p and g foc d = 3 are indicated as fune-
tions of the number of monte carlo trals in Fig. 3,
for two typical values of confidence. As an example
of the significance of the confidence interval, if we
desine to have 895 certainty that o is within 105 of
the estimated value, a; ie.,

P[0.906 <o < 1.14] =099, (16)

then Fig. 3 demonstrates that il is necessary o per-
form 440 trals: 256 trials sulfice for 95% conlidence .
Additional cases are available in the confidence multi-
plier tables provided in the Appendix.

Fig. 4 shows the deteroration that oceurs in the
accuracy of the monte carlo estimated standard devi-
ation, for a given level of confidence, if the kurtosis
afl the random variable is greater than 3 due to v being
nongaussian, We discuss an instance where h = 15 in
Section 3:in this case, even for 256 trials, the upper

¥ Mot that tie bownds, g and @are nol symmetric with
respect to one; thus the point at which g crosses 1.1 deter-
miimes the value of i for which {16) is satisfied.
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Fig. 5. Timse history of rms missile-tarpet lateral separation,

19.72 fi and 35.88 it: the variation exhibited by & is
even more dramatic. We also observe that there exists
a clear relation hetween & and &, 8, is small if & is
small and &, is large if A is large. This phenomenan is
a direct result of the basic significance of kurtosis: if
A is apprectably larger than 3, then the “tails” of the
density function are abnormally heavily weighted -
implying that there is a high probability of the cccur-
rence of very large values of the random variable in
comparison with a gaussian random variable having
the same standard deviation, {To cite an example,
given two random variables with unity variance, p
normally distributed and ps exponentially distributed
(& = &; Table 1), the probability that [¥,| > 3 is only
0.0027, compared with the probability of 0.0144 thai

| a1 = 3.) Thus the incidence of several large values of

|| in the space of a few trials results in a sudden
jump in the estimated o, as evident in the vicinity of
160 and 440 trials in Fig, 6(h), while it is probahble
that the “setiling™ observed during the third and
fourth sets of trials is due to the untypically benign
character of thess trials (an abnormally small number
of trials ecurred in which |y is large).

Table 3 thus demonsteates a fundamental dilemma
with the monte carlo method applied to nonlingar
sysiems: Analysis based on g modest bur seemingly
Foasonable numiber of iriale feg, g = [00) map be
uite inconclusive weless the value af A s krown

gisite pectraredy i adrance. Thus the analyst should
be extremely cautious in assessing the reliability of
monte carlo estimated statistics, even il the estimated
kurtosis is monitored. In the preceding example, the
importance of a few large values of miss distance that
accur in a set of trials in characterizing the tails of the
pdf, and thus in determining the kurtosis of & non-
gaussian random variable, also demonstrates that the
common practice of “*discarding the pathological
trials™ can lead to very misleading resulls.

Table 3
Estimated standord devintion and kurtosis for el
separation, § = b wec

100-trial fiye (F1) A
sel number

1 19.72 4
2 3208 L5
1 2225 i
4 25,67 4
5 33.B8 23
Agpregale 9 27.78 15

(SO0 trials

e

2 To obain aggregated values for dy and R, it is necessary o
average the corresponding values of sarinnee and fourtl
central moment (Eqs {8) and {23
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4. Resolution of the dilemma mate the statistics of nongaussian (especially high-
kurtosis) variables. A better course of aciion is Lo
The problem identified in the preceding section develop approximate cumulative distribution Munc-

can be avoided by abandoning any attempt to esti- lions or histograms from the simulation ensemble, 4
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tvpical empirical miss distance distribution T is shown
in Fig. 7.

Two advantages 1o the recommended procedure
{generating approximete distribution functions) are
readily apparent in Fig. 7. First, it is estimated that
the kurtosis of the distribution is A = 24; thus for the
30 trinls shown, the 95% confidence interval multi-
pliers are undefined {from (25), e equivalent mm-
ber of trials for the guussian case is geq = 4 for which
(15} is meaningless). Inverting the relations given in
the Appendix shows that many more trials (¢ = 230}
wauld he needed to obtain the usual 20-trial 95% con-
fidence limits for o gaussian variable (p = 0.78, 7=
| .66). The second advantage is that even il Lhe esti-
mated rms miss distance of 102 ft is nearly correct,
this statistic nlone does net characterize the missile

performance meaningfully unless the undarlying distri-

Bution is known, Ta illusteate this point, a gaussian
distribution with the same standard deviation is also
portrayved in Fig. 7. The latter distribution indicates
very poor performance (in one half of the rials miss
would exceed 60 ft) while the empirical distribution
is quite good (in one half of the Urials, the miss is less
than 4 ft). Thus, in this case the rms value alone
could be quite misleading.

¥ This is not the same case as that shown i Fig. 5.

5. Summary and conclusions

The basic principles of monte carlo analysis [or
assessing the performance of nonlinear stochastic sys-
tems have been outlined, and a method for determin-
Ing the statistical accuracy of the monie carlo-gener-
ated estimates of svstem varable means and standard
deviations has been given, A Nundamental difficulty
has been illustrated: unless the analvst knows in
advance what types of distributions he is dealing with,
ar can afford 1o perform a very large ensemble of
simulation experiments (perhaps several ffousand
trialsh, it may be very difficult to quantily the quality
of the resulting estimated system variable statistics.
The recommended solution (o this problem is Lo use
the simulation ensemble Lo create approximate distri-
bution plots, and base the performance evaluation of
the nonlinear stochastic system on this information,

Appendix, Confidence interval limit caleulation

The confidence inierval limits of an estimated
standard deviation & can be expressed as multiples af

i, viz.,
g=ai, 7=ga, (211

where g and @ are determined only by the desired
degree of confidence, the kurtoesis of the random vari-
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Tatle 4
90 percent confidences inlerval Uimits, gaussian random vartables, g trials (g = 1.64.5)

g o » 4 A A
n 0807487 1464364 20 0926523 1.094 255
22 0514433 1425104 210 0928115 1091678
4 [L.R20599 1.393521 2206 0929604 1.089268
16 0.826]1 26 1.3RT472 230 0431001 1087032
28 n.E31122 1.345555 iy 0532315 1084951
30 0.B35670 1.326815 250 [L933555 1.8 3007
32 (LEIRE34 1310573 260 (L934724 1081 TRE
34 (LA43669 L.296336 0 L935835 1079476
36 0.847216 1.283735 280 1L936E48K LO77867
EL 0830511 1.272488 280 (L93TERG 107632438
40 (LA535R4 1262375 oo 04938843 L.n749i2
42 (.A56454 1,2531%3 120 0940621 1.07224]
44 0.BSTL5T 1, 2493 140 0.942743 1065863
46 (L8651 636 1.237273 a0 004 3745 1LO6TEHG
48 (LE64092 1. 230269 38O (945127 1.O6S6ET
S0 LA6hR35E 1.223804 400 0986410 1063863
a3 LETIS2T 1209615 420 0947605 1062173
60 fL.aTal0l 1197662 440 0948721 1 .0&a3a07
03 N.ABO1ES 1IETE2T 460 0949767 1059151
0 0.EB3ETD 1.178543 4Bk nasiis 1057793
Ta 0887213 1.1707432 S00 0551676 L5652
B0 0.830265 1.163826 320 D.952350 1055319
85 (LG 306HE 1157642 540 (L953378 1054207
Bl 0.895655 1152072 560 (L954163 1.053149
a5 (LEDEOSS 1.147023 580 (954208 1052149
10 0900284 1.142420 &40 0a55617 1051203
105 0.902367 1.138202 &850 0957251 1043040
110 0904314 1.134320 oo 0958713 1047126
115 05041 50 1.130731 T50 0.9AHIE2 1045415
120 LS TE T 1.127402 B 0961230 145874
125 0LA0R506 1124303 350 0962324 1.04247E
130 (L1 15 1121408 00 (1L9a3320 L041205
133 912509 LI1EG9Y as0 964257 L. DdiEiES
140 0913898 1.116154 100 0.965116 L.D38963
143 0,81 5220 1113760 1100 N9G6660 1037046
150 0.9 L6480 1.111501 1200 (0.96801 3 1.0353832
160 1918833 1.107343 1306k 0969212 1.033922
170 (L5 20990 1, 103600k 14006 0.5970283 100326246
180 0.921977 1. 100203 | 5040 0971248 131466
15y 0.9248135 L.097LEy 200 (L9 74959 1027075
able, A, and the number of trials pesformed, ¢, These i 1
multiples, p and 7, have the form LT 1l
1 [I a ""V _}
Iz g P B . ¥
[I + ""'V = j| where m; is determined by the confidence b expressed
iq (22} a5 3 decimal fraction,
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(23)

(see Table 23 This formulation, (21, makes it partic-
ularly convenieni to present the confidence interval
multipliers in tabular form. This we include Tables 4

Table: 5

te & for easy reference, giving confidence interval
multipliers o and @ for 920% confidence (@ = 0,904,

3

95% confidence and 99% confidence. These data are
directly applicable to gussian varisbles, or any other
case where = 3,

For other values of kurtosis, the confidence inter-

95 pereent confidence interval Hmits, paussian random varables, g trinls (g = 19640

q il i b il A
20 TR R4R 1.657247 i) 0514210 1.11358K
12 0. 789172 550824 20 0916033 1.112290
14 0, 796071 1.539303 220 0917740 1109265
16 0.E020492 1. 497989 230 1914342 1.106453
28 0L.BOTS46 | 464009 240 LO20ES0 1.103840
k1] n.B12522 1435490 250 L922274 L.101402
32 MLE1TORT 1411156 260 (L923620 [.099121
34 LE21299 1390109 270 0.9 248596 1096082
36 (LE25200] L7169 280 0926107 1094970
38 (LE2ERI2 1.355420 290 0,927259 1.093074
40 0.532223 1.340917 ann 0928358 1.0%1283
42 (LB 35400 1.3276595 120 0530407 1R T80
a4 08383186 1.316127 340 0932284 1084990
46 0841109 1.205430 16D 0934012 1.OBE2253
48 0.E43E56 1.205656 380 0935610 1.079822
E11} 0.E46372 1. ZH66ED 4040 0.937094 1077554
55 0852122 1.267138 420 0936476 1075463
G 0LB57222 1250839 4410 0939769 1073527
G5 0.86]1 789 1.23699% 460 (LA940980 1L07172%
0 (LEGIYT] 1235069 480 0.4942120 1070053
15 OLER9G59 1.214659 A0 059431493 1.0aB485
R0 0.BT73087 1,2054 78 320 0544208 |6ET01A
B3 0BT6240 1.197308 340 n.545169 105634
Qi 0LETH153 1.1 B9RED S [.94a080 1 (ME4323
Q5 (LER1RST 1.183363 280 09456044 1063104
100k (554375 1.177348 Ay (.947770 |0 B i)
105 (.B86T29 1.1T1ES6 B50 0L.949670 () R
(R i) (LEBRD3G 1 166ELD 700 1951372 L.N568938
LI3 (LEY10T] L.1a216S 750 (.95 2908 1053843
120 (LE92987 1157863 800 0954303 1.052954
125 (LEB4813 L153IBGT 250 055581 1.051251
130 (LABASER 1.150143 Q00 0956754 1.049696
135 0898227 1.14B662 430 0057837 1.048271
140 O HYIB06 1143400 1000 0955 R40 1046960
145 (L8001 309 1.1403335 1100 0. 960645 1044624
150 0.502744 1.13744R 1200 0.96232% 1.042600
V&0 0505425 1132145 130K} L963632 1 diFR2S
170 0907885 1.127385 1400 LAGIEET L.O3%248
180 LY I0I54 1.123081 1500 0LaBANTE 1.037840
1510 [(L912256 LII%1GT 20400 0970373 1.032517
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Table 6
99 percent confldence interval limits, gaussiin randone variables, ¢ trials (ng = 2,576}

i a 3 q @ B
20 (.738071 2467137 200 081497 1161088
22 0746410 2.20E] 8% 210 0893711 1. 156225
24 0753870 2039417 220 0,893806 1.151753
26 0, 760604 1.919369 230 0897765 1.147613
1B 0766724 1.828951 240 NEMeLS 1143756
LY 077213354 1758031 250 (.90 358 1140234
12 0.77749% 1.700693 260 0903010 1136915
34 078271 I.G53232 270 (La045TE 1133807
36 (LTRETON 16131499 2RI 090606 1.1308%1
36 0.790848 1.5 TRIDG 290 0907457 1128149
40 0,704725 1.549151 300 0.50HEHD L.125563
42 0. 798365 1.523045 30 (L2113 L.120ED%
44 (801 794 1499934 340 (0,91 365 LL11G533
S 1] (LE05031 1479303 A6l 04915830 1112663
48 DA0B05S 1.460754 380 0917811 1109139
50 IR RTID 1443971 A0 0.919653 1.105912
5% [.E1 7664 1408197 420 0.921371 L.102%45
G0 (523597 1370144 4410 1.922979 L. 100204
&3 [LE2B92E 1.355002 il 0924488 1097662
70 0.833757 1.334565 480 0425909 1. 045298
75 (L.E381 60 1317003 S04 0.52724%9 10930491
&0 0642199 1301717 20 0LO2ES1T L.0B1024
BS [.845922 I. 288260 540 0929718 L.OBIOES
o0 (L845371 1.276330 560 930858 1087260
95 0852579 1.265644 SE0 0.931942 1.0R5539
LEH) N.B55572 1.256012 B0 0932076 1.0E391 3
105 [LB543T746 1347278 B50 0935350 1080208
110 0.86100% 1.239313 T00 (L9 T498 1076540
115 ILEGIED [.232014 50 (.93541] L.074030
L2 (LER5EI 1.225295 00 09411091 L.O7T1418
115 O REE047 1219067 B0 [.942R01 1OEI0ST
130 0BT 44 1.213328 QO 0544252 1066509
125 0872145 1.207%6% 50 1945651 | DGdDds
140} 0874046 12035966 LOon (L946920 | 063139
145 (LATS85E 1198283 1140 0,949208 1055974
I50 (LRBTTSES 1193588 1200 0451216 1057152
140 [.B&E30 1.1R5856 1300 0952599 154720
170 O.EBIELD L.1TE6EG 14060 [.954595 1.052569
180 0.E36563 1. 172238 1504 (L956035 1050647
190 (LERSLIE [ 166402 2000 (0,961 594 1043404
val can be determined by use of the gaussiar equive- those for (feq. 3), where g, i5 chosen to satisfy
femt mremmber af trials, derived as follows: for a speci- o N
fied degree of confidence (or, cquivalently, a given = (24)
value of n,) the multipliers o and 5 (22) are deter- fleq 4 s

mined solely by the ratio (A — 1)/g. Thus given a set or
of monte carlo trials typified by the parameters (g, A),
the confidence interval multipliers are identical 10 Bog S (25)
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The desired multipliers g and @ may then be obtained
{rom the appropriate table of confidence imterval mul-

tipliers for gaussian random variables under g

Example, In the preceding section we discussed a
study of 500 trials, where k= 15; to obtain g and &
s

| 000
"'-1|¢'I o _.|_4 =70

as given in {25). From Table 5, under the entry for
TO trials, we see that the 95% confidence interval
limit multipliers are p = 0.866, 5 = 1.215.
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