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Abstract. Recent and future efforts at GE to develop modern environments for CADCS
are discussed. The basic elements of these systems are: :

o a User Interface which combines a “point-and-click” menu- and forms-driven
interface with other access modes for the more experienced user,

« a Data-Base Manager organized in terms of Projects, Models and correspondin
Results and other related data elements and including version control, 8

« an Expert System Shell, which performs routine higher-level CACE tasks, and

o a data-driven Supervisor that integrates the above elements with existing CACE
packages for linear and nonlinear simulation, analysis and design.

As is usually the case, it has been learned that much more can be done to provide a
fully supportive environment for controls engineering, and it has also become clear
that certain things might better be done differently. This presentation will focus on
such areas, especially on generic issues that can be applied to other CADCS systems.

Keywords. Computer-aided system design; computer interfaces for CAD; data-base
management systems; expert systems; control engineering applications of computers.

1. INTRODUCTION

Analysis and Design; Taylor and McKeehen,

1.1. Motivation

Control system performance requirements are con-
tinually becoming more stringent. This trend fuels
the demand for the use of advanced controls tech-
nology, which in turn translates into the current
growing need for advanced computer-aided control
engineering (CACE) software. This has given
impetus to rapid strides made world-wide in CACE
software development and usage, and has strongly
motivated the GE MEAD Project.

The development of CACE software started several
decades ago with the production of routines to per-
form specific functions that had previously been
done manually (e.g., root locus, Bode analysis). In
the 1970s the emphasis shifted to the “packaging”
of routines to integrate them, share common data
structures, and broaden their scope. In this second
phase attention was also given to creating numeri-
cally robust algorithms; libraries such as LIN-
PACK and EISPACK began to supplant “home-
brew” algorithms that had been us fore. More
recently, the focus has shifted to further broaden-
ing of functionality (e.g., block-diagram interfaces
for model building, automatic code generation) and
to improving the overall environment.

Broadening and improving the CACE environment
is the concern of thus presentation. The areas to be
addressed include the user interface, a “super-
visor” to serve as the integrator for broad CACE
functionality, and support facilities for data-base
management and expert aiding. Much of the
description of needs and considerations that fol-
lows 1s based on the GE MEAD Controls Environ-

ment (MEAD = Multi-disciplinary Expert-aided

1989), and the experience gained in the course of
the GE MEAD Project.

1.2. GE MEAD Controls Environment Overview

The GE MEAD Controls Environment (Taylor and
colleagues, 1989, 1990) has been designed to
- address the support and environmental issues out-
lined above while taking maximum advantage of
existing software modules. This software is the
successor to a mature “production” environment
prepared for the US Air Force, also called MEAD
(USAF MEAD; Taylor and McKeehen, 1989; Hum-
mel and Taylor, 1989). The basic elements of
MEAD systems are:

» a point-and-click menu- and forms-driven User
Interface (Rimvall and colleagues, 1989) that
all basic CACE activity plus other

access modes for the more experienced user
(command-driven modes and a macro facility),

o a Data-Base Manager (Taylor, Nieh and Mroz,
1988) which organizes the user’s work into
Projects which are populated with models,
results, and other related data elements,

an Expert System Shell, which is programmed
to perform routine higher-level CACE tasks that
are beyond the capabilities of standard pack-
ages and require a level of beuristic decision-
making or iteration (Taylor, 1988; this is only
working in USAF MEAD), and

o a data-driven Supervisor (Rimvall and Taylor,
1991) that provides a shell for existing CACE
packages for linear and nonlinear simulation,
analysis and design, and interfaces with the
Data-Base Manager and Expert System.
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The resulting software architecture is depicted in
Fig. 1. The CACE tools (;‘con: packages”) now
include the PRO-MATLAB™ package for linear
analysis and design, and the SIMNON package
for nonlinear simulation, equilibrium determina-
tion, and linearization. Other modules are also
based on existing software: the user interface was
built using the GE Computer / Human Interface
Development Environment (CHIDE; Lohr, 1989)
which rests on the ROSE™ data-base manager; the
MEAD data-base manager (DBM) uses ROSE and
the DEC™ Code Management System (CMS -
DEC, 1989) for version control; and the expert
system uses the GE Delphi™ shell which rests on
VAX™ Lisp. The supervisor and the front-end of
the DBM are coded in the Ada™ language.

In the course of developing, testing, and evaluating
USAF and GE MEAD, we believe that substantial
progress has been made in supporting the controls
engineer in a number of areas previously given lit-
tle or no attention. In particular, the higher-level
user interface, data-base management scheme, and
expert-aiding are noteworthy new contributions.
The MEAD User Interface is much more “user-
friendly” compared with those of the underlying
packages which have rigid command-driven inter-
faces. The data-base management capabilities
solve important problems associated with version
control of the user’s models and tracking related
files such as results - in essence, every element in
the user’s MEAD data base is fully documented as
to how it was obtained. The MEAD expert system
adds yet another area of support, which at this
point has not been used to full advantage.

As is usually the case, we have also learned that
much more can be done, and that certain things
might better be done differently. The focus of this
presentation will be on those areas where the
MEAD concept and implementations can be
modified, extended and improved. Particular
emphasis is placed on generic issues that may have
application to other modem CADCS environments.
First, however, a short survey of the most prom-
inent state-of-the-art CACE packages is provided to
set the context for the discussions that follow.

1.3. ECSTASY Overview

The Environment for Control System Theory,
Analysis and Synthesis (ECSTASY) infrastructure
has been developed under the sponsorship of the
UK’s SERC Control and Instrumentation Sub-
Committee (Munro, 1990). The conceptual design
architecture of this software, depicted in Fig. 2, is
quite similar to that of MEAD, being broader in
some areas (e.g., report generation) and less ambi-
tious in others (e.g., expert-aiding, data-base
management). This environment is based on the

™ MATLAB is a regi trademark of The MathWorks, South
Natick, Massachuseits; SIMNON is a trademark of Lund
Univenitgll.lmd. Sweden; VAX, DEC is a nﬁiﬂemdh“kade-
marks of Digi uipment Corp., Maynard, Massachusetts;
ROSBilnmoaninthwick,RPl,Tmy.New
York; Delphi is a trademark of GE; and Ada is a registered
trademark of the U. S. Government, Ada Joint Program
Office.
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same strategy of providing a “shell” for a variety
of standard /commercial packages, as indicated in
that figure. The design philosophy is also much
the same, i.e., to focus on providing high-level sup-
port suitable for both aca&g:lic and industrial con-
trols  practitioners and leave functional /
numerical / algorithmic concemns to the developers
of the underlying core packages. Being more
recently conceived, ECSTASY takes advantage of a
more up-to-date workstation platform compared
with MEAD; nonetheless, the look and feel of the
user interface has a number of similarities. The
decision to launch the ECSTASY project was made
in 1986; the system is presently in the otype or
“embryo software” stage (Munro, 1 ). In many
respects, ECSTASY and MEAD are the most similar
of the modem controls engineering software
environments currently reaching maturity,

The core packages in ECSTASY cover about the
same functionality as MEAD in terms of nonlinear
modeling and simulation through linear analysis
and design. PRO-MATLAB and ACSL are the most
prominent commercial packages used for this pur-
pose; these are augmented by CLADP (Edmunds,
1979) and CSS (Edmunds, 1988), two British pack-
ages with great strength in the “UK School” of
frequency-domain design; CSS is reviewed below.

14. CSS Overview

The CSS package (Edmunds, 1988) has a complete
coverage of the standard repertoire of nonlinear
modeling and simulation and linear analysis and
design. The main emphasis is on generalized
frequency-domain methods for linear multivariable
systems, parameter estimation for single-input/
single-output systems, and block-diagram-oriented
nonlinear modeling. The linear multivariable sys-
tems capabilities of CSS are a quite direct reimple-
mentation and extension of those in CLADP.
Parameter estimation is embedded in a unique
framework that directly translates parameter uncer-
tainty into the frequency domain, to serve as the
basis for robust control system design. The non-
linear modeling interface provides a front-end to
ACSL, which then carries out the nonlinear simula-
tion and analysis functions (e.g., linearization).

The UI of CSS has been substantially modernized
co‘:lgared with that of CLADP. A block-diagram
modeling environment is provided, and user inter-
action modes have been extended to include forms
ixéom, panel input, and question & answer styles in
addition to a command-driven interface. As in
CLADP, the present context of the user’s activity
determines what functionality is available; the
context-dependent help system is designed to guide
the user in this respect. In essence, the help sys-
tem is an on-line Reference Manual for CSS.

1.5. Matrix Environments

The so-called “matrix environments” all trace their
origins to MATLAB, a freeware “MATrix LABora-
tory” (Moler, 1980). This interactive linear-
algebra workbench was not dw;zleed with controls
engineers in mind, but the powerful expressiveness
of the MATLAB command interface and the relia-
bility of the underlying algorithms (LINPACK and
EISPACK) made it well suited for control ﬁ
poses. Several commercial vendors exploited



features, and during the first half of the 1980’s the
three packages MATRIXx", Ctul-C™ and PRO-
MATLAB set a de facto standard for linear CACE
tools. These packages all extended MATLAB with
numerous controls analysis and design algorithms,
an extendable command language interface, and
powerful interactive line graphics.

Several research projects during the mid 1980’s
advanced the concepts of MATLAB within a CACE
framework, resulting in packages such as IMPACT
(Rimvall and Cellier, 1985), EAGLES (1986), and
BLAISE (Delebeque and Steer, 1986). A major
thrust of these projects was to extend the matrix-
pased systems with controls-oriented data-
structures for state-space and frequency-domain
system and signal representations. Much of this
work influenced the design of the Xmath™ pro-
gram to be released by Integrated Systems in 1991.

The three dominant matrix environments can today
be acquired with companion graphical block-
diagram editors for hierarchical nonlinear modeling
and simulation. MATRIXy is paired with the Sys-
temBuild_ ' package, Ctrl-C is accompanied by the
Model-C™ simulator, and PRO-MATLAB can be
combined with the SIMULAB™ environment.
These are all coupled through linearization algo-
rithms and through the sharing of common data
(such as the A,B,C,D matrices of a linear sub-
system). SystemBuild, Model-C and Protoblock™
were compared and evaluated by Spang and
coworkers (1990) for their modeling capabilities
and user friendliness (SIMULAB was not available
at that time); they concluded that SystemBuild and
Model-C are basically the same, although System-
Build is more mature and currently has more block
types. Both of these tools are comparable to other
modem graphical drawing tools found for example
on the Macintosh™ and Sun™ computers. Proto-
block takes a different approach to user interaction,
with less use of mouse and cursor control, and thus
does not fully exploit the interactive graphics capa-
bilities of modem workstations. Some unique
characteristics of these three product pairs will be
discussed in the next subsections.

1.6. PRO-MATLAB/SIMULAB Overview

PRO-MATLAB implements numerical algorithms
similar to those found in the original MATLAB pro-
gram of Moler. However, it is completely rewrit-
ten in C, making it substantially more maintainable
and efficient. PRO-MATLAB introduced the con-
cept of “toolboxes™, which can be bought as exten-
sions to the base product or developed by the end-
user. A toolbox is a collection of algorithms pro-
grammed in the proprietary PRO-MATLAB com-
mand language; these algorithms may be buiit on
the base numerical algorithms of the PRO-MATLAB

™ MATRIXx, SystemBuild, Xmath and AutoCode are registered
trademarks of Integrated Systems, Inc.; Cirl-C and Model-C
arc registered trademarks of Systems Control Technology,
Inc.; SIMULAB is a trademark of The MathWorks, Inc.; and
Protoblock is a trademark of Grumman Aircraft. Macintosh
is a trademark of le Computer, Inc., Sun Workstation is a
trademark of Sun Mi Inc., and Motif is a trade-
mark of The Open Software Foundation.

kemel and/or algorithms of other toolboxes. There
are now 8 vendor-supported toolboxes ranging
from classical controls, system identification, and
robust control to signal processing and
chemometrics. In addition, many individuals and
organizations have implemented their own,
domain-specific toolboxes - the work of Minto,
Chow and Beseler (1989) is a noteworthy example.

SIMULAB is the newest block-dia editor com-
panion. It is based on the Motif  standard, and
thus shares the look-and-feel of other Motif appli-
cations. Nonlinear simulation, equilibriation, and
linearization operations are available. SIMULAB
runs as part of PRO-MATLAB, simplifying the
exchange of data between the two programs.

1.7. Ctrl-C/Model-C Overview

Cul-C is a true extension of Moler’s original
MATLAB code. Better parameter handling and
modem graphics have been introduced together
with a large set of control-oriented algorithms.

Model-C is a graphical block-diagram editor and
nonlinear simulator which also supports equilibria-
tion and linearization. It has a look and feel simi-
lar to that of Macintosh applications, with powerful
graphical editing capabilities. Model-C is strongly
tied to Cul-C, thus all state-space systems and
other non-scalar numerical data must be defined in
Cul-C before they can be used in Model-C.

1.8. MATRIX, |/ SystemBuild/ Xmath Overview
MATRIXx is very similar to Cul-C in its appear-
ance and implementation. Its nonlinear companion
package SystemBuild features a hierarchical
modeling environment, a large set of building
blocks, and a state-transition module for modeling
discrete events. SystemBuild can linearize modelis,
but cannot find equilibria. Another companion
product, Autocode ™, can automatically translate
control block diagrams into PORTRAN, C or Ada.

Xmath is the newest matrix environment (Floyd et
al, 1991), and the first commercial package to
break away from some of the inherent constraints
of the original MATLAB program:

o Xmath features control-related data structures
in an object-oriented fashion. In addition to the
complex matrix, which is the only structure
explicitly supported in the classical matrix
environments, Xmath provides data structures
for state-space models, transfer-function
representations (rational functions in root or
coefficient form), parameter-dependent descrip-
tions (e.g. tables) and special matrices (e.g. tri-
angular and diagonal matrices).

» Data in Xmath may be into partitions
in a way similar to files being grouped in direc-
tories under an operating system.

» Operations are overloaded in a versatile and yet
unambiguous manner. For example, the opera-
tor ‘*’ is overloaded as follows:

matri*matr2 matrix multiplication
polyl*poly2 convolution of two polynomials
systl*syst2  state-space Systems in series
syst*timehist time-domain simulation



In addition to these fundamental extensions to the
matrix paradigm, Xmath introduces a graphical
user interface based on Motif, powerful p}qm’ng
capabilities, and programmatic user extendability.

2. USER INTERFACE IMPROVEMENTS
AND EXTENSIONS

The ‘ﬁpment generation of CACE user interfaces, as
typified by MEAD, combines the sim licity of
modern graphical interfaces, using d};op-down
menus, forms, and “point-and-click” techniques,
with the flexibility of command- and macro-
interfaces, as found in the MATLAB family. This
gives both the novice and expert user a powerful
and yet fully manageable access to the packages.
This is a particularly critical issue for CACE appli-
cations, since many users are quite computer-
literate and demanding. Thus a user interface for
CACE must provide a carefully-designed graphical
interface, as well as a richer set of interaction
modes, so that an experienced user can perform
operations effectively and efficiently. The MEAD
User Interface (UI), for example, is designed to
facilitate access to the CACE capabilities of MEAD
for a heterogeneous industrial user group.

The MEAD UI'’s multifaceted design:

* supports users with widely different levels of
familiarity with the environment,

e provides a single tool both for the engineer
confronted with an occasional control problem
and the expert control engineer using the most
sophisticated control methods on a daily basis,

» provides access to different control packages in
a uniform fashion,

e provides uniform interactions for similar but
disjoint tasks, and

o helps to manage the data for very large projects
in a reliable manner.

To do this, there are four modes of interaction:

» The primary UI mode, which is a menu- and
forms-based point-and-click style interface, is
the most suitable for beginning or once-in-
awhile users. Moreover, the expert user is also
well served by its efficient operation, as many
individual point-and-click action buttons launch
more powerful commands than the ones avail-
able in the underlying packages. For example,
a ‘connect’ action in the MEAD model-building
environment may translate into more than a
dozen commands which are sent to the underly-
ing linear analysis package. However, the
functionality is definitely prescribed in this
mode, 8o the expert user may not be able to
achieve all desired results.

» The MEAD command mode allows the user to
directly enter supervisor-level commands (see
Section 5). This mode is primarily intended for
the expert user wishing to use the full power of
the Supervisor’s command language (which
includes conditional statements, loops, etc.).
Although most commands on this Ievel are
available via the more friendly menu/forms
mode as well, the ability to combine and struc-
ture commands freely can expedite tasks for the

expert.

“Package Mode™ gives the user the option of
entering arbitrary commands directly to the
underlying packages, using their native com.
mand syntax, This requires the user to know
how to operate the underlying package in
stand-alone fashion; it is intended to be used
when the exact desired functionality is not
available through the use of MEAD commands,
Commands are entered via the isor, so
full data-base management capabilities are
available on this level (Taylor et al, 1990).

» Macro Mode facilitates defining sequences of
commands for repeated execution. These com-
mands may be captured in script form during
normal operation of MEAD, or they may be
entered using a regular text editor. Macros
may contain both MEAD and package com-
mands, they may be edited for customizing,
and they are automatically loaded into a selec.
tion form for easy access in menu mode.

2.1. Improved UI Look and Feel

In designing the MEAD UI, two basic principles
have been consistency and agility. The MEAD
gmrgu'cal a(;Feratiug environment allows the user to
perform controls-related operations in a very
consistent manner over mouse-operated menus and
forms. A menu hierarchy is used to group related
operations together into domains familiar to control
engineers (Taylor et al, 1990). The menu tree
hierarchy is limited to two or three levels for quick
access to all domains. At the bottom of the menu
tree, selection and action forms are used to give a
highly interactive execution of most operations. A
menu-tree path and action form are portrayed in
Fig. 3, to illustrate these features.

A UI with these attributes is very complex and
must manage a diversity of inter-related functions.
As is true in the MEAD UI, the selections available
and the context of the UI is highly dependent upon
the past activity of the user. For this reason, the
UI must retain past history and provide a safety net
around actions which may be dangerous or time-
wasting. For example, before any CACE operation
can be done one must select and load a model -
therefore, most of the MEAD menu tree is inacces-
sible until this is done. At a lower level, it would
geperally be foolish to perform a simulation
without either defining input signals or initial con-
ditions, so the MEAD UI logic also guards against

~ this. Many of the refinements identified after ini-

tial evaluation of the MEAD UI involved improving
the logic in the Ul in this way; the underlying prin-
ciple is that the UI should always make these
issues transparent to the user.

Another consideration is the consistency among all
applications found on the user’s workstation,
including non-CACE tools. First, basic software
standards such as the X Windows System™ should
be adopted for this reason. Further measures
within the X Window framework include:

™ X Windows System is a trademark of MIT; Open Look is a
trademark of AT&T Company.
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« Choose a style for forms and menus which is
accepted industry wide, so that the look and
feel of the CACE application follows accepted
style guidelines, as offered for example with
Motif or Open Lcuk™, This will ensure that
less time is required for the user to become
familiar with standard operations.

» Present options in menus or forms so that their
applicability is understood before selection. An
option should be “grayed-out” or invisible if
pot valid, and options should appear
consistently in the same location. Also, options
which proceed on to other menus or forms
should be distinguished from those which
immediately cause an action.

» Provide easy access to auxiliary information,
regardless of which menu or form is active,
without disturbing the context of the UL In
MEAD, for example, access is provided to on-
line helps, status displays, notes, and, most
importantly, to data-base browsing.

» Provide constant feedback to the user as
operations are performed. This is particularly
needed during tasks which may take tens of
seconds or longer, such as loading a model
from the data-base or performing a simulation.
A protocol recently introduced into the MEAD
Ul now enables the Supervisor or Expert
System to report intermediate status through the
Ul during lengthy operations.

» Manage the setup and initialization of auxiliary
grogmms, such as plot utilities, text editors, or

lock diagram editors. Invoking these utilities
can be done manually, but this is generally not
required, since the object of interest in the
data-base and the operations appropriate to that
element are usually known in advance, so this
step can thus be performed automatically.

» Provide context-directed helps which key upon
the currently active form or menu.

Most of the above recommendations were imple-
mented in MEAD, although without the advantages
of using X Windows and Motif or Open Look.

2.2. Improved Ul Functionality

The improvements previously outlined relate to
user effectiveness within the existing environment.
Extensions can also be made to increase the func-
tional capabilities of the Ul. These include:

» a smart editor for entry and execution of com-
mands and macros,

o user customization of the menus and forms,
» tools for adding new rule bases, and

» interactive manipulation and viewing of data-
base objects.

Smart editor: A smart editor would provide a facil-
ity for the interactive entry of MEAD and package
commands, and assist with the construction and
execution of macros. This would combine a
language-sensitive editor with an interactive mode
for immediate command execution. The com-
mands could be built from scratch, or taken from a
buffer which contains the sequence of commands
previously executed. (The present version of the

MEAD UI already provides access to the previously
executed commands, via a standard text editor.)
The smart editor would contain knowledge about
the command syntax, providing either menus of
available commands to select from, or command
completion with prompting for parameters associ-
ated with a command. It would be loaded from the
same command-definition files used by the data-
driven supervisor, thus ensuring consistency.

User Customization: A toolbox of standard
“dialog-boxes” and forms would enable the user to
customize the functionality provided in the menus
and forms, by installing custom macros. An action
form, similar to that shown in Fig. 3, could be
automatically instantiated from the interface
definition specified in the macro, thus achieving the
seamless integration of user-developed macros as
additional functions appearing in the menu tree.
(The present MEAD Ul automatically provides a
selection form for user-developed macros, but this
form is not integrated with the main menus.)

Adding new rule bases: To rt this, the Ul
must provide a more general framework for
queries and responses, to facilitate the interaction
of the user with the expert system. (USAF MEAD
Supports some simple communication protocols;
however more generality is needed.) The required
UI extensions should prove to be minor in addition
to those outlined in the item above.

Dynamic access to data-base objects: An example
of the concept is shown in Fig. 4 and has the
notion of attaching various windows with
configurable views of objects in the data-base. The
windows would then provide either “direct mani-
pulation” or a continuously updated view of the
object. As shown in this example, the user has
devel a system model containing a compensa-
tor with some design parameters to be tuned, and
chooses to view both a root-locus diagram and the
step response of the system as the design parame-
ters are varied. Starting from the block diagram of
the system, three additional windows are opened.
One window contains a list of design parameters to
be varied, ps taken from com tor
block contained in the model data-base. The other
two windows display time-history and root-locus
results. Then, as the user types in new values in
the design parameter window, the plot windows
would automatically update.

Such windows must have dynamic access to data-
base objects rather than the static access now pro-
vided by the MEAD Ul. As shown in this example,
data-base objects must be simultaneously changed
and viewed; the present MEAD UI does not permit
this. This concept has great potential to improve
the productivity of the controls designer and is
currently an active research interest, such as the
demonstration in Ravn, 1989.

3. DATA-BASE MANAGER IMPROVE-
MENTS AND EXTENSIONS

It is fair to say that little was done in terms of pro-
viding engineering data-base-management support
for CACE prior to MEAD. A user’s models and
results simply accumulated in the w ace (e.g.,
in a subdirectory under VAX VMS), it was up



o perform version control, to relate

specific model instances and conditions,
to relate linearized models to the “parent”
nonlinear model and operating point, and so on.
To rectify this situation, data-base-mapagemem
requirements from the user’s perspective were
developed under the USAF MEAD project (Taylor,
Nieh and Mroz, 1988).

The CACE user’s data base is traditionally but
informally organized in the hierarchy Projects,
Models, Components, and Results. The user often
sets up a woﬂ:zpaoe for each project (e.g., Project
= GE_654), evelops models (e.g., Modei =
Turbine ) which are comprised of components (e.g.,
Component 1 = Stator, Component 2 = Rotor,
Component 3 = Fuel injector, ...), and which are
used to generate various results (e.g., simulation
time-histories, linearizations). This has been
accommodated directly in the MEAD data-base
tree, as illustrated in Fig. 5.

Within this framework, the MEAD Data-Base
Manager (DBM) was designed to address the
problems of maintaining the integrity and
documentability of the user’s models and analysis
and design results. It achieves this as follows:

» Rigorous version control exists at the Compon-
ent level, and classes are used at the Model
level to define specific instances. For example,
class=1 of Turbine might have included
Stator;1, Rotor;1, Fuel injector;l, ... where
the notation ";k" refers to version £ of a
component; class=7 of Turbine includes
Stator;2, Rotor;7, Fuel_injector;3, ... (in other
words, Stator, Rotor and Fuel_injector have
been modified once, six times, and twice,
respectively). Any class of Turbine that has
not been purged can be fetched from the data
base and used: any results generated with a
given class will be stored with other results
obtained with the same class, so there is never
any question about how a result was created.

o Traceability between derivative models (e.g.,
linearizations and reduced-order linear models)
and their parents (the original nonlinear or
high-order model) is maintained. For examg)le,
Lin Turbine is a linearization of Turbine

class=7 at the operating point Power = 10 000

HP; this information is stored in the data base

as a Reference and Condition_Spec.

Single-point storage of components is provided

for those that may be used in building any

number of models. For example, Turbine is the

“home” of the component Rotor; model

TurbCtrl uses this same component by Linking

to the component stored in Turbine.

¢ An on-line Note Facility pemmits the user to
store information/on-line documentation for
any given project, model, component, or result
in the data base. Headers are automatically
generated to uniquely identify the element to
which a note refers, and time-stamps are
included whenever a note is added or modified.

Elements of the user’s MEAD data base are
accessed by a Browsing Facility that allows the
user to display, annotate, purge and delete them via

a point-and-click “selection form”, as portrayed in
Fig. 6.

The main deficiencies of the present version of this
DBM are that it is somewhat limited in terms of
data manipulation, it is not easy to search for data
elements, and it is restricted to access by a single
user. In addition, there are some cts of
support that are only partially addressed. These
shortcomings can be alleviated by:

» making the DBM more open and flexible - e.g.,
allow the user to rename, move, compare, and
search for specific data elements, and permit
the interactive display of notes;

» complementing the point-and-click interface by
adding other access modes;

» extending the Notes Facility so the on-line
documentation of the user’s design activity can
be better supported, including automatic
document generation; and

» adding functionality to permit safe and flexible
multi-user access.

3.1. Flexible Data Element Manipulation

Renaming and moving data elements are elemen-
tary functionalities that are easy to implement.
(Thisisnecwsitatcdbythefactthatusexstypimlly
become dissatisfied with the original name they
gave an element or with where it was placed, and
are then very frustrated if such a change cannot be
done.) Any element can be renamed (as long as
name conflicts are avoided), and moves can be per-
mitted with the following limits: Results cannot be
moved from one Model to another, Components
cannot be moved to a Model where they are not
used (in other words, a Component could only be
moved from its “home” to another model that uses
it via the Link mechanism mentioned above).
Models (and associated components and results)
can be moved arbitrarily among the user’s Projects.

Comparing data elements can be done in several
senses. At the simplest level, one would like to
compare various time-histories obtained with a
model or several models by cross-plotting the
results; this is trivial. For higher-level comparis-
ons, it would be helpful to have an object-oriented
system, so each element has a method associated
with the operation of comparison; for example:

» Component Comptl can be compared with
Compt2 to see how they differ (these elements
could be different versions of the same com-
ponent or merely similar components); this
could be done on the data level (A,, might
have different values) or attribute level (e.g., by
comparing their Bode plots),

* Result] can be compared with Result2 to see
how they differ (again, either at the data level
by using an ASCII differs utility or at the attri-
bute level by cross-plotting the results or deter-
mining mean square error), and :

o Result] can be compared with Result2 to see
how they differ in their definition (e.g., Resultl
might differ from Result2 because Result] was
obtained with gain K,; = 1.5 and Result2
corresponds to gain K, = 2.33),

Sb




3.2. Improved Data Base Access

Adding other modes of access to the point-and-
click interface would do much to open up the
MEAD user’s data base. At present, the user has a
limited “window” into the DB, e.g., a Browsing
Facility Screen may display all the models in a
given project (Fig. 6), or all the results for a given
model class, and that is all. One way to facilitate
finding data elements by name would be to incor-
porate a way to portray the entire user’s data-base
tree in a g_raflncal form that conforms to Fig. 5.
Such a display would allow one to determine
which project contains Turbine much faster than by
searching the project screens in the DB Browser
one after another until it is located.

There are many cases where a command-mode
interface would be still more effective. For exam-
ple, a simple query language could be used to find
all simulation result(s) for all classes of model Tur-
bine with a step input of amplitude WF = 2.33
much more expeditiously than browsing. Perhaps
a limited subset of SQL (Standard Query
Language) would be a good choice for this use.

3.3. Improved On-Line Documentation

The Note Facility can be made much more accessi-
ble if the notes can be displayed or modified from
the current screen rather than from the Browser
(Fig. 6). For example, if a ‘Note’ button is always
available, then the user can:

» click ‘Note’ immediately after configuring a
model to annotate it,

o click ‘Note’ immediately after saving a result
to document it, and

e click ‘Note’ immediately after “modelizing” a
result (installing a result as a model in the data
base) to annotate the new model.

Further extensions could be made to create an
auto-documenting environment. For example,
MEAD presently does not prompt for notes as the
user works and produces new data elements. In
addition, the Notes Facility makes no attempt to
relate individual note files to an overall document
for a project or model. If an auto-documentin,
environment were implemented and AUTOD
were turmned on, then a document framework could
be created from templates and every user action
that results in saving a data element could be
recorded in that report and the user could be
prompted for comments/text blocks to narrate the
course of the effort. Organizations that require
standard report formats and design approaches
could thereby capture much of the required docu-
mentation material on-line.

3.4. Multi-User Data Base Access

Multi-user access to a single MEAD data base is
the most important and substantial extension of the
MEAD DBM. This would allow several engineers
to work on the same project without the duplica-
tion of data (models etc.) and the corollary prob-
lems of maintenance and coordination. The main
issues involved in developing multi-user data bases
relate to safety: How can users share models and
still be confident that they know precisely what
they are using (version and class control provide
some support here), and how can users update
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models safely (e.g., modify and create new classes
without using stale versions of components); soft-
ware engineering tools exist to solve this problem.

Preliminary thinking regarding opening the DBM to
multi-user access was presented in Taylor, Nieh
and Mroz (1988). The layer Sub-project was pro-
posed in addition to those shown in Fig. 5, to
accommodate a project leader (working at the pro-
ject level) and other controls engineers working in
individual workspaces cmonding to each sub-
project. With this exte hierarchy, standard
software development tools could be used to allow
the leader to maintain the integrity of the overall
data base and to control access to the various data
elements. For example, DEC CMS (which the
USAF MEAD DBM uses for model version control)
supports the following (DEC, 1989):

storing elements in a library, fetching elements
for modification in the user’s workspace, con-
trolling concurrent changes to the same ele-
ment, merging concurrent changes to an ele-
ment, creating successive versions of an ele-
ment, comparing two versions of a library ele-
ment, relating library elements into groups,
defining classes corresponding to versions ogsa
set of elements, tracking which users are
working on various elements from a library,
and maintaining a historical record of element
and library transactions.
Other higher-level functions can be performed on
CACE data elements to support multi-user access
rigorously. For example, the DEC Module
Management System (MMS - DEC, 1990) auto-
mates and simplifies building software systems
based on source code, object libraries, include files,
compilers, and compilation and link options. This
would further discipline and t;gguzz the building
of complicated models. The above examples are
based on VAX VMS tools; suitable support soft-
ware is also available under UNIX", e.g.,
Configuration Management Facility (CMF IE)
vides similar functionality to CMS + MMS.

3.5. DBM Conclusions

In summary, much can be done to extend and
improve the MEAD DBM. The features that might
be considered by other CACE tool developers
include flexible and convenient DBM access
modes; full version and class control and tracking
of results, references and links in the context of
multi-user data bases; and provision for auto-
documentation. These can be implemented using
existing support software tools (e.g., CMS and
MMS, as mentioned above) or by duplicating the
capabilities of such tools, as required.

the
pro-

4. EXPERT SYSTEM IMPROVEMENTS
AND EXTENSIONS

The coupling of an expert system to a CACE
environment was proposed in the early 1980s (e.g.,
Taylor, MacFarlane and Frederick, 1983), and

™ UNIX is a trademark of AT&T Company; CMF is a trade-
mark of EXPERTWARE, Inc.



The MEAD Supervisor was completely reimple-
mented between USAF MEAD GE MEAD. Its
design thus already reflects many of the lessons
leamed during the first 2 years of MEAD
experience. For example, the USAF MEAD Super-
visor contained explicit code for translating
“MEAD commands” into package commands.
Thus, knowledge of the syntax used by the
different core packages was hard-wired and spread
throughout the Supervisor. In GE MEAD, the data-
driven Supervisor (Rimvall and Taylor, 1991)
allows all MEAD commands to be defined in
external definition files, which include all
information needed to call the different core
packages. Actions to be performed are input in the
MEAD command language, which is then
automatically translated into the correct syntax for
the target package. These extemal definition files
are in some sense similar to the “.m files”
constituting a PRO-MATLAB toolbox, resulting in a
similarly open and extendable architecture. The
main difference between PRO-MATLAB and GE
MEAD command definition formats is that the
MEAD interpretive programming language is more

werful, to allow data-base and expert-system
interactions as well as the mapping of MEAD
commands into different core packages.

The open architecture of MEAD allows the system
to be extended in several ways:

« allowing the creation of new commands (e.g.,
new aggregations of core package commands),

o accessing added functionality /commands in
upgrades to already supported packages, and

« supporting new core packages.

5.1. Creation of New Commands

Individual users should be able to create new func-
tionality by aggregating existing primitives into
more powerful commands. In GE MEAD, this can
be done by writing command-language macros.
The Supervisor command language includes com-
mand flow statements such as conditional state-
ments and loops, as well as some 75 control-
theoretic and data-base related commands. These
can be combined and structured freely to expedite
tasks for the user. A detailed example of this is
included in Rimvall and Taylor (1991).

In order to provide the individual user/user-gro
the ability to add functionality to MEAD throu
command-language macros without interfering
with regular updates of the kemnel MEAD system,
macros may be declared on four different levels:

» system macros (common to all MEAD installa-
tions and maintained by the developers),

» site or implementatioﬁ macros (to be distributed
and maintained on a site-by-site basis),

* group macros (to be used by individual groups
wishing to share added functionality), and

» user macros (to be utilized by one person).

This “layering” allows upgrades to be made to the
overall system without interfering with any func-
tionality introduced on another level.

5.2. Accessing New Core Package Functionality

As we have seen, one advantage of a general-
purpose command language is that new commands
can be added in the form of macros and procedures
at any time. In MEAD, this capability may also be
used to accommodate any upgrades (especially,
new operations) made to the core packages.

5.3. Supporting New Core Packages

The GE MEAD Supervisor allows new commands
to be added without coding. However, to add a
new package one must:

» extend the existing MEAD macros to define
how various MEAD commands are to be
mapped into package commands (these macros
are data-driven (no compilation necessary), and
coded in the MEAD command language),

» create Ada-coded translation modules to accept
MEAD-language commands and translate them
into the new core package syntax, and

o create Ada-coded modules to
Interact with the package at the lowest level
(recognizing prompts, error messages, etc).

The first step may be accomplished by editing
non-compiled data-files; only the two last tasks
presently require any programming in the tradi-
tional sense. It is possible to make the two latter
modules data-driven as well, and thus allow the
addition of new package drivers without further
coding. This would have the advantages that
access to the Supervisor source-code would not be
needed, and users would be able to hook on pew
core packages without having any detailed
knowledge about the Supervisor intrinsics.

To reach this state, it will be necessary to provide a
means for formalizing the command language of
the new package so that an automatic translation
from the MEAD command language (or, more
accurately, from its internal “threaded-code”
representation) to the package command language
can take place. This translation is in some sense
the reverse of the “compiler-compiler” problem,
and similar to the problem of generating a code-
generating back end for a given compiler.

An even more challenging problem will be to for-
malize the hand-shaking mechanisms and error-
detection/error-recovery schemes of a generic
command-driven package so that the supervisor
knows what kind of state the new package is left
in. Pattern matching and dynamic state transition
tools might provide the necessary machinery.

In summary, our experiences with the MEAD
supervisor and with integrating kemel programs
such as MATRIXy and PRO-MATLAB indicate that
the openness of the architecture is the key factor in
both ease-of-design and ease-of-use. This will
become even more important in the future as dif-
ferent groups experience the need to comnect or
integrate different controls packages, or integrate
controls packages with non-controls software.

6. OTHER EXTENSIONS

6.1. Automatic Controller Code Generation

Most CACE environments are limited to controller
analysis and design, whereas controller



early work at GE and RPI (Taylor and Frederick,
1984; James, Frederick and Taylor, 1985/87),
 resulted in a specific plan for such a system and an
_implementation called CACE-IIl. Based on this
_expe e, and activity in this area at other institu-
ions ‘question of selecting the best model or
paradigm for expert-aided CACE was considered; a
survey of Al applications and paradigms may be
found in Taylor (1988) along with conclusions
concerning their applicability and efficacy.

CACE-IIl was based on the idea that the expert
system would serve as an interface and completely
shield the user from the underlying CACE tools.
The MEAD Expert System (ES), in contrast, has
been founded on viewing the ES as a “control
engineer’s assistant”. According to this paradigm
(Taylor, 1988), the user invokes a rule base to
carry ou(tb: g.:k as follows: The button for an
e -ai ction is clicked, the correspondin
n’l‘gﬂl‘)‘ase is loaded into the ES, and it proceeds tg
elicit set-up information (e.g., specifications for a
dqmggpm;)aqdcanywt&netask(perh S
with intermediate interaction with the user).

ES then prepares a report, which the user can
display and either initiate a new or modified task or
move on. Since most controls engineers are quite
computer-literate and aware of the use of
conventional tools, this seems more appropriate
than the approach used in CACE-IL. Again, note
that the ES is only operational in USAF MEAD
(Taylor and McKeehen, 1989).

The present MEAD ES is very limited in scope and
behavior. While it takes advantage of its capability
to apply heuristic decision-making in the course of
executing a clear-cut task, many other high-level
benefits of this technology are neglected. The
following extensions are applications of ES
functionalities so far unused or underused:

e smart helps - asking ‘why’ and ‘how’ can elicit
useful answers based on the underlying rule-
base. Examples (based on the rule base for
lead/lag compensator design in James,
Frederick and Taylor (1985/87)):

— The ES asks for a closed-loop bandwidth
(CLBW) specification to serve as the basis
for lead/lag compensator synthesis; instead
of supplying a number, the user clicks
‘how’. The response could be to use the
corresponding ES “reasonableness” rule to
say: "You might try a value between 2* and
5* the CLBW you can achieve using a gain
adjustment to achieve the same desired gain
margin you specified in the Frevious step.”
A higher-level response could be given by
having the ES carry out the gain adjustment
and find the resulting CLBW.

— The user might click ‘why’ instead of
‘how’ in the above instance; in this case the
ES could use its “ready_to_go” rule to say:
"The problem is not completely defined
until you provide specifications for gain
margin, CLBW, and steady-state error."

o tutoring - the ES could continuously display
logical and numerical steps to the user.
Example (again. based on James, Frederick and
Taylor (1985/87); this represents backward

chaining to achieve a goal):
— The design task is done if the specifications
have been met . . .
— The design specifications have been met if:
steady-state error is within . . .
and the CLBW is within . . .
and the gain margin is within . . .
— The steady-state error is within . . . if
DC_Gain is within . .
— DC_Gain can be adjusted if initial
DC_Gain is known
— If initial DC_Gain is unknown then call

.

Find_DC_Gain
— The initial DC_Gain is 12.83 dB
— ...and so on.

e progress reports - an intermediate level of user
information could be provided every time the
ES reached a milestone - e.g., after each
iteration of lead compensation the lead
parameters  (gain, center frequency and
pole/zero  ratio), achieved performance
(bandwidth etc.), and open-loop characteristics
(e.g., Nichols plot) could be displayed; and

user influence - at each “progress report” the
experienced user could be allowed to modify
the lead parameters if it is believed faster
convergence will be achieved.

(Acknowledgement: the last two ideas have been
Im%lemented elsewhere (personal communication
of D. K. Frederick).)

5. SUPERVISOR IMPROVEMENTS AND
EXTENSIONS

All CACE packages, whether command-driven or
graphics-oniented, will have some central control-
ling kernel, or supervisor, governing the execution
of commands, storage and retrieval of data, error
handling, external file handling, and so on. In
command-driven packages this kemel primarily
consists of a command-language parser accepting
and decoding user commands, a command inter-
preter mapping these commands onto action rou-
tines, and a data handler for storing and retrieving
the results of the commands. More modem,
graphics-oriented packages such as MEAD,
EAGLES or Xmath relieve the user from having to
enter detailed and often ideosyncratic commands,
yet these packages also have a similar kernel per-
forming the above operations (where the command
parser may be replaced with a module interpreting
the user’s interactive menu or form operations).

The MEAD Supervisor plays such a central role in
the MEAD architecture (Fig. 1). In this position, it
serves as coordinator and package integrator. The
various numerical core packages run as separate
processes under the direct control of the Super-
visor, which is responsible for combining and con-
trolling these packages as well as reformatting or
converting data, when necessary, to ensure compa-
tibility. The Supervisor is also responsible for
facilitating communication among the UI/user,
the DBM, and the expert system.




on must presently be done outside the
\D nvironment (this is now true for MEAD).
is requires a manual transformation of the
_controller as represented in the CACE environment
(for example as a state-space matrix representation
or a controller block diagram) into computer code.
Such a manual translation is not only very tedious
and time-consuming, it is also quite error-prone
and, depending on the available experimental
setup, hard to verify. Various attempts to automate
this process have been made. The SystemBuild /
MATRIXx companion package Autocode will
translate block diagram representations of linear or
nonlinear controllers into FORTRAN, Ada or C
real-time code. Autocode actually uses the same
block-diagram editor as SystemBuild, making it
possible to perform simulations or linearizations
and produce real-time code from the same
diagrams. ALS CASE, a block-diagram to code
translator developed by Draper Lab under NASA
sponsorship (CSDL, 1989), is another recent code-
generation package that produces C or Ada.

These first-generation code generators are not with-
out their problems. They often operate on a
block-by-block basis, producing unoptimized and
ill-structured code. In conjunction with todays
immature Ada compilers, this results in un-
acceptably slow code. Moreover, their ability to
generate code customized to a particular environ-
ment or real-time operating system is often limited,

Despite these shortcomings, they constitute a first
step in the right direction - an automatic code
generator to translate block diagrams into real-time
code is essential for gaining the engineering
productivity sought today. In the case of MEAD,
this code generator should preferably tie in directly
with the data base so that the different components
of a model can be automatically translated into a
consistent real-time code unit,

6.2. Disciplinary Extensions

Many extensions can be made to mﬂ specific
disciplines more completely. N. ar system
modeling is often time-consuming and prohibi-
tively expensive, so replacing or augmenting
general-purpose simulators (see section 1) with
domain-specific modeling environments would
result in substantial improvements in CACE
efficacy. For example, one can add a NASTRAN
interface for structural modeling, or a special-

electromechanical simulator for analog
device simulation, e.g., Saber™, to broaden the
scope of the environment. A variety of extensions
of this sort can be made to realize a broadly mul-
tidisciplinary CACE system - however, the UI and
Supervisor extensions in previous discussions are
essential for providing the infrastructure to make
this feasible in a fully integrated fashion. The
problems and factors involved in the cross-
integration of such packages with the generic
CACE functionality remains a topic for further
research - it is not sufficient merely to “hang” a
new core package below a CACE Supervisor, as the

™ Saber is a trademark of Analogy, Inc.

preceeding discussions make clear.

7. SUMMARY AND CONCLUSIONS

We hope that the lessons learned in developing
MEAD will be helpful in charting new courses in
CADCS, and that the ideas and extensions
described in this paper will be of broad applicabil-
ity and benefit to many package developers. In
addition, we trust that the overview of ackages
and functionality will be useful for contro practi-
tioners in evaluating and selecting CACE software.
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