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Abstract

Recent research in the area of describing function approaches
(both random-input and sinusoidal-input) has laid the foundation
for a systematic approach to designing controllers for nonlinear
plants. This paper provides an overview of one school of thought
in this area, typified by the following key ideas:

1. Quasilinear models of the nonlinear system that account for
the operating range of system variables must be more realistic
than conventional linear models.

2. A staged design approach that applies more power (o
“‘difficult” nonlinear plants than to *‘easy’’ ones is more sen-
sible than a single design method.

3. The designer should be led to a nonlinear controller design if
and only if it is really required.

These points will be developed, illustrated and justified in this pre-
sentation.

Introduction

One of the most vexing problems in control system design is
the gap between the elegant methods of linear control theory and
“‘real world control problems.” A major cause for this gap is that
plant nonlinearity is often severe enough that a standard linear ap-
proach to control system design cannot be made to work satisfac-
torily without a substantial amount of cut-and-try modification and
“tuning.” Some help is available in the results of absolute stabili-
ty theory’? and robustness criteria;® performance considerations
often make these results unusable, however, since the stability or
robustness conditions are generally very conservative, in the sense
that too much performance has to be sacrificed in order to guaran-
tee stability or robustness in the face of nonlinearity, Overall, this
situation is not a happy state of affairs for most control design
practitioners,

An approach that offers a great deal of promise in dealing with
this problem is quasilinearization or the describing function (DF)
technique. It has not received a great deal of attention in the
Western literature in recent years, for several reasons: First, most
of the original work in DF theory (refer to Atherton? or Gelb and
Vander Velde® for an overview) dealt with the classical ‘“‘single
nonlinearity in the feedback path’ problem, which does not pro-
vide much help in dealing with modern real-world problems.
Second, most DF approaches were formulated in the frequency
domain, which has received little attention in the last two decades
until quite recently. Finally, DF methods have been depreciated
by many because they are inexact.

The first of these objections has been answered in the last de-
cade. Both the sinusoidal-input and the random-input DF
methods have been extended so that they can deal with plants that
have any number of nonlinearities, in any configuration.®’ This
generalization includes even systems having multi-input nonlinear-
ities, The second barrier is also being removed, as control theo-
rists are coming to recognize that the frequency domain is a very
powerful arena for dealing with robustness,” unmodeled dynam-
ics,® control system design,®!® and other considerations. Finally,
while the DF method is inherently inexact, there is growing recog-
nition that DF’s have capabilities for the analysis and design of
systems that is simply not available in any other approach,

The goal of this presentation is to show how one can use DF
methods as u basis for a systematic approach to designing control-
lers for nonlinear plants. We will proceed as follows:

1. A review of fundamental DF concepts
. An overview of DF use in control system design

. Two methods for designing linear controllers

2
3
4. A method for designing nonlinear controllers
5. Analogous concepts using random-input DF’s
6

. Summary and conclusions

Fundamental DF Concepts

The basic idea of the describing function (DF) approach for
studying and modeling nonlinear system behavior is to replace
each system nonlinearity with a (quasi)linear term whose ‘‘gain”’ is
a function of “‘input amplitude,”” where the form of input signal is
assumed in advance. This technique is dealt with very thoroughly
in a number of texts;*’ it may be summarized, in the primary
context of the proposed methods for control design for nonlinear
plants, as follows:

The nonlinear plant under consideration is characterized by the
general statezvariable differential equation and output equation

=1, u, y=hix w )

~ where x is an n-dimensional state vector, u is an m-dimensional

input vector, and y is a p-dimensional output vector. We are
going to concern ourselves with the behavior of the plant in the
presence of sinusoidal signals, for reasons that are given below, so

- we take u to have the form

u(® = u, + Rela exp(wt)] ‘ 02

where u, is a real vector denoting an operating point of interest,
and a is a complex-valued vector designating the sinusoidal com-

~ ponent amplitude and phase in the standard phasor notation. In

accordance with the usual DF assumption, the state variables are
assumed to be nearly sinusoidal,

x() = x, + Relb exp(jwt)] , | )

where b is a complex amplitude vector and X is the state vector
center value (which is not a singularity, or solution to
f(xg, uo) = 0, unless the nonlinearities satisfy certain stringent
symmetry conditions with respect to x,, in which case x, and x.
are identical). Then we neglect higher harmonics, 10 make the ap-
proximations

£(x, u) = fy(u,, a, X, b)

+ RelA(ug, a, X, b) -+ b sinwt]

+ RelB(u,, a, x, b) - a sinwt] )
h(x, ) = hp(u,, 8, X, b)

+ RelC(u,, a, %, b) * b sinwt]

+ RelD(u,, a, X, b) - a sinwt]

Minimum mean square approximation error is achieved when the
real vectors [y and hy and the matrix set (A, B, C, D] are obtained
by taking the first two terms of the Fourier expansions of the ele-



ments of f(x,+ Relb exp(wt)], u, + Rela exp(wt)]). This ap-
proach has been illustrated in detail. #>7L12 "The DF arrays
{fs, hy}) and {A,B,C,D} in Egn. (4) provide the quasilinear
representation of the nonlinear plant in Eqn. (1). Observe that
the constant or d.c. portion of the model is einbodied in fy and hp,
while the matrices {A, B, C, D}, which conform to the usual linear-
ized model notation, characterize the plant response to sinusoidal
inputs. The two signal components (d.c., first harmonic) are cou-
pled, as the above notation suggests, due to the failure of superpo-
sition in nonlinear systems. To stress the fact that this model
deals with periodic behavior, we will henceforth refer to this
miodel as an SIDF (sinusoidal-input DF) model of the system.

A wide variety of SIDF's have been catalogued.*® In addition,
there ‘is another, more direct way to obtain a DF-like amplitude-
sensitive plant model; Simulation plus fast fourier transform
methods.”” Using either approach, the designer can obtain the
required SIDF model in a straightforward manner. Thus, we will
not consider the computational aspects of the DF approach
further.

Using DI Models in Controller Design

Once an SIDF representation of a nonlinear plant is obtained,
it may be used in several ways, The most traditional SIDF analy-
sis problem is seeking limit cycle conditions,»>"!h12 A modern
algebraic approach to limit cycle analysis was first fully developed
by the author,!® and is treated in detail in elsewhere.” 1112

Determining the approximate response of a nonlinear plant to
sinusoidal inputs follows an approach similar to that used in limit
cycle analysis. Applying the same conditions of harmonic balance
that underlie limit cycle analysis using the DF approach,*%7 it is
possible to solve for {x,, b} determined by (u,, a} using

fa(u,, a, Xo» _Il) =0
b= (ul—A)'Ba )

These 2n nonlinear algebraic equations (n of which are complex-
valued) can be solved readily using standard computer routines.
In this case, one should be careful to ensure that A does not have
eigenvalues on or very close to the imaginary axis; otherwise limit
cycles may exist in addition to the response to the sinusoidal
input, in contradiction to the assumptions underlying Eqns. (3-5).

The sinusoidal component of the plant response can then be
characterized by the input-amplitude-dependent matrix *‘transfer
function®

G (jw; Uy, 2) = Cwl~A)"! B+ D (6)

where we observe that the SIDF matrices are explicitly determined
by {u,, a), since {x,, b} are eliminated using Eqn. (5),

This modern algebraic method for ascertaining the {A, B, C, D}
set and ‘“‘frequency response’’ {Eqn. (6)) for a nonlinear plant was
proposed in Taylor,!* and serves as the basis for the controller
design techniques delineated in this paper.

Based on the above mathematical development, we can sum-
marize a number of considerations that motivate the use of SIDF
models rather than conventional linear models as the basis for
controller design:

1. SIDF models are amplitude dependent, i.e., they account for
and realistically characterize the input/output behavior of a
nonlinear element or plant over a range of input variation
(specified by the analyst or designer) rather than merely for
“small” (infinitesimal) variation. .

2. SIDF models can deal with discontinuous and multi-valued
nonlinear devices (e.g,, relays, ‘‘stiction’ or static friction, re-
lays with hysteresis, backlash), while conventional lineariza-
tion cannot,

3. The SIDF model for small input variational ranges approaches
the conventional linear model (provided the nonlinearities are
differentiable and single-valued, so that such a model exists).

4. The departure of individual SIDF gains from their small-
variation values provides a useful measure of the relative impact
of a particular nonlinear element under the specified operating
conditions. '

\

5. The variation of the SIDF model (especially, variation of its
eigenvalues, eigenvectors and singular values) with respect to
changes in input amplitude a provides a good measure of model
sensitivity. Such a measure is completely lacking in conven-
tional linear models.

6. General SIDF models are not particularly difficult to obtain,
either by analytic means*>"112 or by simulation combined
with fast Fourier transform techniques.

From point 3, we observe that the SIDF model subsumes the con-
ventional linear model, when the latter exists, so there need be lit-
tle concern that the designer will obtain ‘‘strange’ results. The
facts that SIDF models are more realistic, that they allow one to
identify those nonlinear effects that have an impact. on plant
behavior for a given set of operating conditions, and that they may
be perturbed with respect to input amplitude to determine sensi-
tivity are of major significance in the control design context. In
addition,- the wusefulness of general DF methods lies in the subse-
quent treatment of the resulting quasilinear model using linear
system analysis and design techniques, which are well established
and usually very straightforward to apply.

One issue that is generally not a major concern is the sensitivi-
ty of DF’s to the exact form of the nonlinearity input signals, here
taken to be sinusoidal. The general concept of the DF can be ex-
tended to treat signals of any amplitude distribution (cf. Gelb and
Vander Velde®), and the easiest way to demonstrate that signal
form sensitivity is not a big issue is to calculate DF’s for a com-
mon nonlinearity under a number of assumed distributions, and
see how much variation is obtained in the corresponding DF gain
versus input amplitude plots. An example is shown in Fig. 1,
where it can be observed that for a rather comprehensive set of
input amplitude distributions (gaussian, triangular, uniform,
sinusoidal, and bimodal trianguldr) the gain is not very sensitive:
The gains for a limiter with these input distributions are within 10

.to 15 percent of the gain plot for uniformly distributed inputs,

which is about as accurately as the designer will know any model
parameter.
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Figure 1. DF Gain Sensitivity to Input Distribution

It is necessary, however, to reiterate the standard caveat re-
garding the use of DF models for nonlinear systems: Although
DF models are more realistic than those based on conventional
linearization in many cases, it is always possible to find pathologi-
cal systems where DF models are not useful. Generally speaking,
these are cases where higher harmonic effects are dominant {either



due to high-frequency resonances or to particularly ‘‘strong’’ non-
linear effects), The use of simulation as an adjunct to DF

methods to validate assumptions and final system designs is thus,

always advised.

The general suggestion that DF models can be used to advan-
tage in control system design is of long standing. Standard DF
texts®® treat this approach in detail, and provide references for its
inception. One of the major reasons why this idea may not have
enjoyed widespread use appears to be the lack of generality of ear-
lier DF model formulations. In particular, the standard system
configuration was formerly restricted to plants modeled by a linear
scalar transfer function of n' order in series with a memoryless,
single-input/single-output (SISO) nonlinear element. Generaliza-
tion of .this configuration proved to be a major barrier, especially
in the area of SIDF theory. Until recently, such extensions were
typically very restrictive, e.g.,, nonlinear systems could be
comprised of a series interconnection of alternating linear dynamic
blocks followed by SISO nonlinearities, or of a paralle] network of
<linear dynamics plus SISO nonlinearity> paths. The first exten-
sion of DF theory into the general state-space model format of
Eqn. (1) was in the realm of random-input DF’s (RIDF’s; see
Kazakov,!S Gelb and Warren'®), More will be said about -this ap-
proach below. For the case of sinusoidal-input DF’s, Eqn. (4),
early contributions are Taylor!? and Hannebrink, et al.!’

The recent use of SIDF models as a basis for controller design
in the context of multi-variable systems has been actively pursued
by Gray.'® The approach developed therein is a major step for-
ward compared with earlier SIDF methods, in terms of system
configuration constraints; it is not applicable to the completely gen-
eral plant formulation in Eqn. (1), however. Also, it does not
take full advantage of the computational simplicity and efficiency
of the modern algebraic solution outlined in this paper. Finally, it
is based on the concept of limit cycle avoidance, which does not
address performance issues or any other aspects related to the con-
cept of design operating range which is employed heye,

Linear Controller Design Methods

Single-Range Linear Controller Design

The basic ideas of this lowest-level SIDF-based controller
design approach are as follows:

1. The designer supplies.a state space nonlinear model, as in
Eqn, (1), and an operating range (u,, 2} in Eqn. (2),

2. DF analysis or FFT methods are used to obtain the complete
state veotor amplitudes {x,, b} determined by {u,, a} and the
quasilinear model in the form {A, B, C, D} or G{(jw; u,, a).

3. A conventional linear design method is used to obtain a con-
troller for the SIDF model that meets desired performance
specifications.

4. The performance of the controller is verified by simulation.

This basic SIDF approach to linear controller design is discussed in
greater detail elsewhere.!® In that paper, many issues regarding
the practical implementation of this idea and of SIDF methods in
general are treated in somewhat greater depth.

Two-Range Linear Controller Design

A linear controller based on a SIDF model for a single operat-
ing range may not perform adequately for small signals (small
compared with the specified design range), or it might not perform
well for larger signals (especially, large signals may cause the
closed-loop system to become unstable). It may still be possible to
obtain a linear controller that will not suffer these deficiencies.
The following procedure should allow the designer to obtain such
a controller with a minimal amount of trial-and-error:

1. Obtain a second model for ‘‘small”® or “‘large’’ signals, as ap-
propriate to the problem. (A small-signal model may be a

conventional linear model if the nonlinearities are
differentiable; otherwise, one may use another SIDF-based
model based on a value a' that is appropriately small compared
with the origidal 3.) Denote this model G'(jw; u,, 8.

2. Fit the two SIDF models with stable rational matrix faclorized
representations.®!0

3. Proceed with linear controller design using the simultaneous
stabilization approach of Vidyasagar and Viswanadham? to
obtain a characterization of al/l linear controllers that will si-
multaneously place the closed-loop poles of G and G' (the
poles of a feedback system with G or G' compensated by such
a controller) in a desired portion of the s-plane.

4. Use an optimization procedure to get the best linear control-
ler, i.e., the member of the set found in 3. that most nearly
meets the designer’s performance specifications for the nomi-
nal DF-based plant model G (jw; u,, a).

5. Determine if the ‘best’ controller achieves satisfactory perfor-
mance. If so, accept it; if not, design a nonlinear controller
(see below).

The rationale for this procedure is as follows: The problems that
the designer will most often encounter in trying to use the single-
range SIDF-model-based method outlined in the beginning of this
section will be that

1. The operating point of the resulting closed-loop system will
not be stable (generally, there will thus exist small limit cy-
cles), or

2. Signals somewhat larger in amplitude than the design range
will cause instability,

These problems are most likely to occur when the nominal-signal
SIDF plant model is substantially different from that obtained for
smaller or larger signals. The new approach outlined above wiil
force the designer to restrict himself to the class of linear control-
lers that will deal with that problem. The controller design is com-
pleted by getting as close as possible to the desired performance
for the nominal operating range; if this fails to achieve satisfactory
behavior, then the designer will be forced to resort to Inverse DF
Synthesis (see below) of a nonlinear controller,

Designing Nonlinear Controllers

The two methods outlined above should provide the designer
with the tools required to arrive at an acceplable linear controller
design in many situations where the plant is not extremely non-
linear. If the plant nonlinear effects are less benign, however,
even simultaneous stabilization based on two SIDF models may
not produce adequate results. The following approach, which we
will call the Inverse DF Synthesis Method should prove to be
effective in many such situations:

1. Choose a number of design ranges as defined by {u,, al in
Eqn. (2) (at least three ranges are needed, e.g., small, medi-
um, large), and obtain a SIDF model for each.

2. Select a fixed controller configuration (e.g., PID, lag, lng-lead,
ete.).

3. Design a controller of the selected type for each SIDF model
(controllers must have a common configuration; some or all
controller parameters will differ for different design ranges).

4, Interpret the varying controller parameters as describing func-
tions for controller nonlinearities; invert the SIDF’s to obtain
the corresponding nonlinear element.

An illustration of this approach is provided in Fig. 2: In part (a),
the common PID controller gains are plotted as functions of the
appropriate controller signal amplitude (e, integral of e, or deriva-
tive of €). One can see that the ‘‘gain patterns’’ make the choice
of a corresponding nonlinearity readily apparent, as shown. By
fitting the corresponding SIDF to each gain pattern, the nonlinear
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Figure 2. Illustration of the Inverse DF Synthesis Method

controller in part (b) is easily obtained. Of course, there are many
nonlinear characteristics that will yield a given pattern; the
designer is free 1o choose any one of these according to its ease of
implementation, or any other consideration,

There are several ways one might carry out the SIDF inversion
process needed for the last step. If the number of ranges con-
sidered is small, e.g., three, then the number of possible gain pat-
terns is small. For three ranges there are four patterns: monotoni-
cally decreasing (K1), monotonically increasing (K3), concave up
(K2), and concave down. One would only require a “‘catalog” of
four nonlinearity types, and a perfect gain/SIDF fit can be
achieved. If more ranges must be considered, then the use of a
general piece-wise linear characteristic, Fig. 3, can be recommend-
ed, where the number of segments, slopes, and breakpoints can be
selected to fit any gain pattern.
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Figure 3. A General Piecewise-Linear Nonlinearity

The basic idea that underlies this procedure is that the original
linear controller designs that are to be coalesced into the final non-
linear controller by SIDF inversion must be based on the same
basic performance objectives or design specifications. The non-
linear closed-loop system obtained by this approach will then be
“nearly uniform”’ in terms of the performance measures used in
designing the controllers for the set of signal ranges (e.g., small,
medium, large). If it is not possible to design for a common
specification for the set of SIDF models under consideration, then
the designer must try another controller configuration; otherwise
the Inverse SIDF Synthesis step does not make sense and will
probably not succeed.

The justification for this third design technique is simply that a
nonlinear controller is much more likely to provide the desired
performance over a wide range of operation than a linear one if
the basic input/output behavior of the plant (as characterized by
the various SIDF models) differs substantially. This new approach

to nonlinear controller design is completely systematic, and the
designer is not trying to directly cancel nonlinearities, which is at
best a questionable. practice and is often not possible or practical.

It is the author’s opinion that this method promises to be a
major breakthrough, in terms of being able to deal with difficult
nonlinear problems. It is always to be recognized that no single
approach or set of approaches will handle every conceivable
situation — but the above three-stage attack should prove to be
quite powerful.

Analogous Ideas for Random-Input DF¥’s

The use of RIDF models derived from the general state-space
plant formulation, Eqn. (1), us a basis for control system design
has been suggested by Hedrick.2! Such an approach is especially
appropriate in the contex! of nonlinear stochastic systems, as the
resulting RIDF model can be used directly as the basis for an LQG
(linear-quadratic-gaussian) controller design. There are several is-
sues that would appear to explain the lack of common use of this
statistical linearization approach, particularly in industrial applica-
tions:

1. Tt is not widely known that RIDF models are readily obtain-
able for general system configurations (cf. Taylor et al.% for an
overview of applicable RIDF results for non-SI1SO nonlinear
elements).

2. It is not possible to deal with multi-valued nonlinear effects
(hysteresis, backlash) in a meaningful manner.

3. Many designers aré not familiar with the stochastic coatrol
problem, and work more easily in the frequency domain.

4. Il is not possible to use RIDF models to investigate possible
limil cycle conditions, while the SIDF approach is powerful in
this arena,” The occurrence of limil cycle behavior is & very
common cause of “unsatisfuctory performance.”’

The use of SIDF’s is thus a more natural and powerful approach,
in light of the above points,

It is worth pointing out that the SIDF-based design approaches
outlined in previous sections can be carried over to the RIDF
technique in a very direct manner, In particular:

1. The single-range DF model as a basis for linear controller
design is alreacly known.2!

2. The concept of using simultaneous stabilization® on RIDF
models for two operating ranges carries over directly. Two
{A,B,C,D} sets may be obtained for different input spectral
density values, then these RIDF models can be converted itto
frequency domain models, and simultaneous stabilization (or
designing a controller to place the closed-loop system poles in
a desired region of the s-plane) can be carried out as outlined
above,

3. The multi-range approach wherein the designer obtains DF
models for three or more operating ranges, designs linear con-
trollers of the same configuration and with the same design
objectives, then uses DF inversion to coalesce the linear
designs into a single nonlinear controller also presents no con-
ceptual difficulty.

Applying these ideas would be a valuable research effort.

Summary and Conclusions

The modern algebraic formulation of the sinusoidal-input
describing function method for modeling and analyzing nonlinear
systems brings this approach to such a state of power, generality,
and analytic simplicity that it should come to play a major role in
nonlinear systems design. The design approaches outlined in this
paper should provide a good framework for such a development.
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