American Control Conference, Minneapolis, MN, 10 June 1987, © AACC.

CONVENTIONAL AND EXPERT-AIDED DATA-BASE MANAGEMENT
FOR COMPUTER-AIDED CONTROL ENGINEERING

James H. Taylor
General Blectric Corporate Research and Development
Control technology Branch
Schenectady, New York 12345

ABSTRACT

There has been substantial recent progress in the
development of software for computer-aided control
engineering. This includes both “conventional” software
as well as environments based on the use of expert sys-
tems. One major area has not received much attention
until very recently: date-base management. In this
paper, we define a framework for data-base manage-
ment, describe a set of design assumptions and
corresponding functional requirements, and describe
several roles that an expert system can play in this
activity.

1. INTRODUCTION

The past decade has witnessed a major effort in the
development of software for computer-aided control
engineering (CACE). This involves both “conventional”
software such as CTRL-C and MATRIXx [1, 2] (to
merely name two well known and widely marketed pack-
ages) and, more recently, environments based on the
use of expert systems (e.g., CACE-III [3,4] and CAS-
CADE [5]). A comprehensive overview of CACE
software may be found in the Extended List of Control
Software (ELCS, Rimvall [6]). There is one major area,
however, that has not received much attention until
recently: data-base management (DBM).

As CACE environments become more powerful, the
need for keeping track of the models, analysis results,
control system designs, and validation study results
becomes more pressing. In a real industrial project, the
number of files generated in the complete design cycle
and the relations among these files can be very difficult
to comprehend and manage without support. In addi-
tion, an unmanaged data base can become more of a lia-
bility than an asset after a short period of time.

In this paper, an expert-aided or expert-system based
approach to DBM is developéd. Certain concepts under-
lying this approach are founded, in part, on the recent
work of Maciejowski [7] and Rimvall (8], who have con-
tributed to delineating a systematic description of data
structures and organizations for CACE. This DBM
definition is also based on our own requirements analysis
and experience. Once the basic requirements are out-
lined, we consider the following elements in detail: main-
taining the integrity of the data base and implementing
high-level DBM activities such as reconstituting an
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invalidated DB, archiving the DB, guiding the conduct
of a session or project, documenting the outcome of
such activity, ete.

The framework for the higher-level DBM functionality is
a rule-based expert system. We believe that there is a
sufficient amount of heuristic decision making and/or
decision support required for a high-capability DBM sys-
tem to justify this implementation.

2. DATA-BASE MANAGEMENT FOR CACE
2.1 The Problem:

The magnitude of the control engineer’s DBM problem
can best be appreciated by looking at CACE in a larger
context than linear analysis and design. We assume that
the user starts with nonlinear models of the process to
be controlled, and progresses through the following
range of CACE activity: nonlinear simulation (e.g.,
model validation and behavioral analysis), equilibrium

determination, linearization, linearized system analysis

and design, nonlinear control system design, and control
system validation [9,10]. Much of this activity is
exploratory and iterative in nature. Several systems have
been developed that cover most or all of this gamut -
OTRL-C 4+ ACSL, MATRIXx + SYSTEM_BUILD, the
GE Federated System [11] are major examples - but
none of these manage the resulting DB beyond imple-
menting rudimentary file-naming conventions.

In many applications, such activity develops a substantial
DB. In flight control, for example, a typical DB may
contain one nonlinear airframe model, 20 linearized
models (corresponding to 20 points in the flight
envelope), 20 linear control system designs, one or
several candidate nonlinear (“full-envelope”) control sys-
tems, and innumerable time-histories and analysis results
(eigenvalues, frequency responses, root-locus data,
singular values, . .. ).

A portion of such a DB is shown in an informal network
diagram in Fig. 1. The primary elements of project
PROJ_07 provided by the user are shown in the second
row, namely, operating point definition data (UO_1,
U0_2, . . .), a nonlinear plant model (PLANT), control
system specifications (C_S_SPECS), and the definition of
a control system configuration (here, a connection
specification C_S_CONN and o signal generator or
“driver” C_S_DRV). Derived entities include equilibria




(EQ_1, EQ_2), linearized models (L_S_1, L_S_2),
analysis results (e.g, f{requency response data,
L_S_1_FR), compensators based on linearized models
and control system specifications (L_S_1_C, L_S_2_C),
control systems based on compensator models (C_S_1,
C_S_2), time-histories (e.g., step response data;
T_H_1.01,...), etc. Note that some entities have mul-
tiple parentage (e.g., each linearized system model is
based on the nonlinear model PLANT and a specific
operating point (in this case, equilibria EQ_n), and some
elements have multiple offspring (e.g., PLANT); clearly,
the DB cannot be represented as a tree structure. Based
on; this example, it is also clear that multi-disciplinary
applications such as integrated flight and propulsion con-
trol (IFPC) can produce an even larger and more compli-
cated DB. For a typical IFPC project the DB size and
complexity is compounded by the necessity of combining
20 flight regimes with 9 engine operating conditions, for
example.

As the above cases make clear, CACE project activity
can generate hundreds of results and files, of which the
user may wish to retain and manage a substantial percen-
tage. This may not be a “large” DB in terms of commer-
cial DBM systems, but it is beyond the capacity of most
human users to manage effectively without support.

2.2 CACE DBM Functions

The primary areas of DBM that provide helpful support
for CACE may be informally summarized as follows:

a. Relation Management - e.g., given a file name, the
DBM should be able to determine what type of data
element it is, what model was used in its generation,
"what conditions were imposed, etc.; or conversely,
the DBM should be able to find a data element that
was generated using model <model_name>> under
conditions <condition_spec>, if it exists.

b. Integrity Checking - e.g., if the user edits a model
file, the DBM should tentatively invalidate all data
elements created with that model as a ‘parent’; the
user should be warned and have the final determina-
tion as to the actual validity of the data. (Reformat-
ting the model, adding comment lines, or other
cosmetic changes would not actually invalidate all
‘offspring’; only the user can make this determina-
tion in most cases.)

c. Reconstituting ¢ DB - e.g., if the integrity of all or
part of a DB has been compromised, the user should
be able to command that the DBM system eliminate
the invalid elements and regenerate them using the
new ‘parent’ data element.

d. Archiving a Project DB - e.g., the DBM should be
able to delete all unnecessary or redundant data ele-
ments, organize the information in relational form,
and store it on tape or other off-line medium for
future reinstallation and use.

e. Annotating a Project DB - e.g., the DBM . system
should allow the user to add notes to the informa-
tion in the relations to enhance the future under-
standing of the items in the DB.

f. -Documenting a Project- e.g., the DBM system should
be capable of producing a summary report of the
transactions that took place in the course of a project
to provide at least the raw material for project docu-
mentation. '

2.3 CACE DBM Design Assumptions

The requirements of control engineers for managing an
effort of the sort envisaged in Section 2.1 are somewhat
different from those of a commercial application such as
personnel record keeping. One difference is that the data
is quite disparate, rather than fitting into one or a few
straightforward data elements that can be represented by
a simple schema or template. Another is that some
information is well-suited to maintenance in relations
(e.g., the relation between a nonlinear model and its
linearized offspring), while other data is better kept in
files (e.g., time-history data). Finally, the engineer gen-
erally wishes to have relatively free access to the data
(e.g., to be able to edit a file containing a model), while
typical commercial DBM systems closely control or deny
such access.

Before DBM requirements can be specified, it is neces-
sary to establish certain ground rules or design assump-
tions. The following is proposed as' a model for DBM
for a project involving several engineers working on a
problem:

1. Each project has a central primary model DB:

« managed by the DBM system under one person’s
(the Project Manager’s) control and

o« accessed by other wusers having read_only
privileges;

o changes in a primary model cause integrity flags
to be set in all users’ DBs (project and sub-
project DBs) for any data elements based on that
model.

2. FEach user employs the DBM system to create and
manage his/her own sub-project DB.

3. Integrity checking is based on time stamps or file
version number (not file contents).

4. Primary storage of engineering data is carried out in
a file system.:

o it is recommended that each sub-project be organ-
ized via subdirectory tree (VAX/VMS) or other
standard organization; this would not be forced;

« most engineering data is not in the DB - only
relations and file_names are managed;

o the user can modify file contents:




— using the same file_name — integrity flags are
set for all ‘children’ of that entity;

— using a different file_name — new entity (no
children).

These conventions are quite typical of medium-sized
multi-disciplinary projects such as those encountered in
agrospace control applications, for example. Note that
thers is a strong trade-off between discipline and ‘safety’
on one hand versus user freedom and risk. The above
design assumptions attempt to make reasonable
compromises in this regard; clearly, there is no absolute
answer to this problem.

2.4 Organization:

A CACE DB such as thab informally sketched in section
2.1 needs to be organized in some fashion. We propose
the use of a hierarchical framework, which, at the higher
levels, is described by the following set of data entities
(relations): '

o PROJECT - tracks and relates the primary model(s),
any CACE activity performed by the Project
Manager, and the relation of each Subproject DB to

the overall project (see the first template example,
Table 1).

« SUBPROJECT - tracks and relates any CACE activity
performed by a Project Engineer ( ‘user’).

« NONLINEAR_SYSTEM_MODEL* - defines the
configuration of a system in terms of the subsystem
interconnections and provides DBM access to selected
system variables and parameters (see the second tem-
plate example, Table 2).

« NONLINEAR_SUBSYSTEM_MODEL - provides
DBM access to subsystem states, variables, and
parameters (see the third template example, Table 3).
A subsystem can be continuous- or discrete-time, and
may represent a plant, controller, sensor model, or
any arbitrary dynamic system or component.

+» NONLINEAR_SYSTEM_PROPERTIES - contains or
points to results such as equilibrium values, time-
histories, points of discontinuity, describing-function
based frequency response [10], bifurcation points,
efe.

e NONLINEAR_SUBSYSTEM_PROPERTIES - con-
tains or points to results such as those enumerated
above pertaining to a nonlinear subsystem.

*  We regard all system models as being ‘configurations’, comprised of
blocks or subsystems. For example, the system PLANT_0 might be
made up of an actual plant model (set of nonlinear ordinary
differential equations) and a signal generator; FDBK_SYS might be
comprised of a plant model, precompensator, sensor model, and
signal generator, assembled in the standard feedback configuration;
etc. Allowing nesting (configurations of configurations) is not a
necessity (cf. SIMNON [12]}; the desirability of this capability
depends on both the discipline and the complexity of the system
structures supported by the particular selection of analysis and
simulation software in the CACE environment.

e LINEARIZED _SYSTEM_MODEL - similar to
nonlinear_gystem_model, except it is permitted to
possess properties denied in the nonlinear case (e.g.,
eigenvalues).

. LINEARiZED_SUBSYSTEM_MODEL - same as the
nonlinear case except has an assumed {A, B, C, D}
or transfer function form.

e LINEARIZED_SYSTEM_PROPERTIES - contains or
points to results such as eigenvalues (poles), zeroes,
controllability and observability grammians, frequency
response, singular values, root loci, ete. for a particu-
lar linear system.

« LINEARIZED_SUBSYSTEM_PROPERTIES -  con-
tains or points to results such as those enumerated
above pertaining to a linear subsystem.

HEach entity in this hierarchy must be characterized by a
template or definition in-generic terms of the relation

content. Tables 1 to 3 portray examples based on Fig. 1

(these are still tentative, pending implementation of the

DBM system; also, note that they are influenced by our

CACE software package selection [11]). Observe that
any element in the model that is not listed in the relation

(e.g., a hypothetical parameter ‘K79’ in relation

‘PLANT’, Table 3) cannot be tracked by the DBM sys-

tem. This means, for example, that it would not be pos-

sible to distinguish between sets of results for different
values of K79, because the required information is not
available. ‘

3. CACE DBM FEATURES

The capabilities of the proposed CACE DBM system can
be divided into conventional and high-level. The former
are those features that are commonly standard in DBM
systems; the latter are functions that are specifically
related to CACE in their meaning and implementation.
Of course, the dividing line is not black-and-white: “con-
ventional” features can be elevated to “high-level” simply
by defining the capabilities more ambitiously.

3.1 Conventional Features

1. Integrity checking: the DBM should check file ver-
sion numbers-or time stamps at every data access;
the data integrity flag of an element and all of its
offspring should be toggled if this information is
changed from the previous data access. For exam-
ple, if a nonlinear model is modified, then the sys-
tem should check the validity of secondary models
derived from it, simulation and analysis results, ete.

2. Query: a simple query language is required to allow
user to access information in the relations. Simple
examples are;

e “What is the origin of T_H_0174?” — model
used, input definition, initial conditions, parame-
ter values, . . .




e “What time history corresponds to { ALTITUDE
= 14k + MACH = 0.7 } ?” — T_H_0091

3. Diary: a complete record of the user’s (sub-)project
should be maintained; the user can annotate it and
eliminate undesirable or unnecessary data elements
at will.

4. Recovery: a session journal file should allow an
inferrupted session to be resumed from the point of
interruption with as little repetition as possible.

5. Reconstitution: e.g., if a primary model is modified,
. an entire sub-project DB can be flushed and re-built.

6. Archive: a sub-project can be put on tape (diary,
relations, engineering data) for future reinstallation
and use. ‘

These features are well known in the DBM field and
thus do not require elaboration here. These more mun-
dane aspects of DBM (e.g.,, model, relation, and file
management) do not seem to require expert aiding - the
relations among the various data elements that are gen-
erated during a control system analysis and design exer-
cise are not so complicated as to justify or require the
addition of a rule-based system.

3.2 High-Level Features

Other functions of a DBM system for CACE are not so
readily available or achieved. Based on our requirements
analysis, we propose to implement these capabilities as
part of an Expert-aided data~-base management
(EADBM) system. As in our previous efforts in expert-
aided CACE (3,4], we propose to implement these func-
tions in individual rule bases that are managed by a top-
level supervisory rule base. We have tentatively
identified the potential usefulness of rule bases to per-
form DBM activities that can be summarized as follows:

1. Procedure-oriented user guidance and aufomation: cer-
tain generic tasks in CACE involve distinctive pat-
terns of activity that reflect a particular procedure
being carried out. Whether or not the user is
attempting to carry out such a task can be deter-
mined by monitoring the series of steps being exe-
cuted and using approximate pattern-matching to
seek correlations with pre-stored templates for such
generic activities. This can be mechanized as a
direct analog to the “command spy” and “scripts”
approach proposed and developed by Astrom, Lars-
son, and Persson [13,14]; here the required infor-
mation is contained in the Project relation (ecf. Table
1), thus eliminating the need for the command spy.
Once it has been established that the user is pursu-
ing such an activity, the EADBM system can sup-
port the user in several ways:

e prompt the user if there is a subsequent major
deviation from the procedure,

« automate the rest of the procedure if desired,

o automate the annotation and documentation of
the procedure (below), etc.

For example, in the case shown in Fig. 1 and Table
1, if the wuser has carried out the design,
configuration, and validation of the control system
NL_C_S_1 using a procedure that closely matched a
template for such activity, then the EADBM system
could annotate the project relation to this effect and
ask the user if it is desired to perform the same task
using the linearized systems l_s_2 and l_s_3 that are
present in the Project DB. The main new element
here is the integration of this feature with DBM-
specific activity such as Project relation manage-
ment, annotation, and documentation (see below).

2. Procedure-oriented dala-base annotation: it is likely
that a generic task as outlined above will have a
specific DB annotation requirement that parallels the
pattern of activity associated with the procedure
being carried out. Once it has been determined that
the user is involved in such activity, the EADBM
rule base can then organize the results in a higher-
level framework that reflects the task in-the-large
instead of on a piecemeal basis (step-by-step).
Examples of this include sensitivity studies (where a
cycle of functions is carried out repetitively with
minor perturbations such as parameter changes),
design validation studies (where a prescribed set of
simulations or analyses need to be performed),
design trade-off analysis, and any other analysis or
design cycle wherein higher-level relations are
formed by organizing and/or comparing the results.

3. Custom design-procedure execution and documenta-
tion: many engineers and organizations have well-
defined systematic schema for carrying out design
exercises. These are usually governed by heuristic
decision-making procedures that involve carrying out
a task, scrutinizing the result, perhaps comparing the
result with earlier work, and deciding what to do
next. Such an approach can be captured by a rule-
based system which, in the context of DBM,
includes “expert knowledge” about how results of
tasks are to be organized and reported in an
engineering design document. This rule-based
EADBM system can be developed to work from an
Engineering Design Document template, and insert
the specific information created as a design is being
generated; the document would be ready for final
editing at the end of the session.

The preceding ideas are still “conceptual designs”, not
working rule bases, based on a detailed requirements
analysis and on identifying areas where the amount of
heuristic logic and decision-making is substantial. The
examples presented above include the following such
activities:

« approximate template matching, .




« applying “rules of thumb” to carry out high-level pro-
cedures such .as trade-off study, design validation,
ete.,

o automating a major task by extrapolating from one
exercise (e.g., from one control design and validation,
as mentioned above) to a set of exercises,

« organizing and annotating a DB based on an activity
pattern, and

» executing and documenting a high-level task defined
by a template.

This type of functionality calls for the use of an expert
system implementation approach such as the rule-based
system programming method; conventional programming
approaches would be difficult to apply, maintain, and
extend.

4. SUMMARY AND CONCLUSION

The need for a capable data-base management system as
an adjunct to modern computer-aided control engineer-
ing software is established in Section 1. The definition
of such a system in terms of the design assumptions and
functional requirements is set forth in Section 2. The
fact that control engineering has unique needs for high-
level functionality that are not readily available in stan-
dard commercial DBM software and that are not amen-
able to a straightforward solution using conventional pro-
gramming methods has motivated the use of an ancillary
expert system to achieve the desired results. The pri-
mary reason for the use of this approach is the extent to
which DBM for control engineering can be eflectively
supported by heuristic reasoning and decision aiding.

These factors have caused us to reject the approach of
simply coupling a commercial DBM system with our
CACE environment and accepting the resulting limita-
tions and deficiencies. A small conventional DBM sys-
tem integrated with an expert system for high-level func-
tionality appears to provide the best solution with respect
to capability, price, and performance.

The status of the work described in this paper is that the
high-level DBM requirements definition is complete, and
we are beginning to implement the conventional DBM
aspects. Implementation is being dorne under contract
F33615-85-C-3611 for the Air Force Wright Aeronauti-
cal Laboratories (Aeronautical Systems Division, Flight
Dynamics Laboratories, Wright-Patterson AFB, Ohio);
this contract effort w1ll be reported separately. The
development of expert-aided features as outlined above
will be pursued after the conventional system has been
completed and proven.
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¥(2) output_2 plant -
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Figure 1. Typical CACE D ata Base (Informal Schema) K78 param plant 81.0
Table 1. Project Relation
RELATION ‘PROJ_07’
name type ident id_type parent date status
plant_0 nl_sys_mdl (name) relation  user 02-18-87 ok
plant_O_pr  nl_sys_prop (name) relation  plant 02-18-87 ok
I_s_1 |_subsys_mdl linla.dat file plant+eq_1 02-18-87 ok
l_s_2 |_subsys_mdl  lin2a.dat file plant+eq 2 02-19-87 ok
I_s_3 I_subsys_mdl lin3a.dat file plant+ eq_3 02-19-87 ok
ls_1_pr |_subsys_prop  (name) relation 1_s_1 02-18-87 ok
ls_2_pr |_subsys_prop (name) relation 1_s_2 02-19-87 ok
l_s_3_pr |_subsys_prop  (name) relation 1.s_3 02-19-87 ok
c_s_spec |_sys_prop (name) relation . user 02-23-87 ok
lLs 1c |_subsys_mdl lela.dat file |_s_1+4c_spec 02-23-87 ok
lLes 1 |_sys_mdl (name) relation user+Il_s_l_c 02-24-87 ok
nlcs 1 nl_sys_mdl (name) relation  user+1.s_1 ¢ 02-24-87 ok
Table 2. System Relation (Configuration)
RELATION ‘NL_C S_1’
name type parent connect_from connect_to no_of_sigs
refin input_sig c_s_drv. refin[csdriver] ul[esummer] 3
sysout fdbk_sig plant viplant] -u2{esummer] 3
compin err_sig esummer y|esummer] u[compen] 3
compout comp_out sig s 1 c y[compen] ul[dsummer] 3
distin dist_sig © c_s_drv distin[csdriver]  u2[dsummer] 3
plantin input_sig plant y{dsummer] u|plant] 3
rollrate output_sig plant y(1)[plant] - 1
yawrate output_sig plant y(2)[plant] - 1
sideslip output_sig plant ¥(3)[plant] - 1




