Amesican Control Conference, Session WP-10, 15 June 1988, Atlanta, GA © AACC

A DATA-BASE MANAGEMENT SCHEME FOR COMPUTER-AIDED CONTROL ENGINEERING

v

James H, Taylor Ko-Haw Nieh Peter A. Mroz
Control Systems Lab Information Systems Operation Jackson Lab
GE Corporate R & D GE Corporate R & D DuPont Chambers Works
Schenectady, New York 12345 Schenectady, New York 12345 Deepwater NJ 08023

Abstract

There has been substantial progress made in the past
decade in the development of analysis and design
software for computer-aided control engineering (CACE).
Engineering data-base management (EDBM) for support
of CACE has not received much attention until recently,
however., As CACE environments become more
comprehensive and more powerful, the need for keeping
track of the models, simulations, analysis results, control
system designs, and validation study results over the
control system design cycle becomes more pressing and
the lack of EDBM support becomes more of an
impediment to effective controls engineering.

We have defined and implemented a CACE environment
with EDBM as an integral part. The data base is
organized in a hierarchical framework having the levels
Project, Sub-project, Model, Attribute, and Element. The
levels Project and Sub-project accommodate several
control engineers working on a single project, with a
project lead engineer having responsibility and conttol of
the entire data base., Within a project, Models (plant
models, control system models, etc.) are the main focus.
Each model has two attributes, a Description and a
Result_set. Fundamental properties plus component
models (representations of a plant, compensator, sensor,
etc.) comprise the elements of a Description; elements of
* a Result_set include any data generated with the model,
such as a time-history, frequency response, etc. .

One factor that complicates the CACE DBM problem is
that system models used for simulation, analysis, and
design activity usually evolve as a project progresses. It
takes a great deal of discipline to keep track of which
results have been obtained using various instances of the
model without some automatic support in the CACE
environment., In our EDBM system (EDBMS), each
model in the hierarchy is maintained using a version
control scheme so that results obtained with each instance
of the model can be unambiguously associated with that
instance, thus maintaining data-base integrity, Two
additional complicating features of this CACE data base
framework preclude the use of a simple tree structure for
the hierarchy outlined above:

1. Linearization of a nonlinear system produces both a
Result and a Component that can be analyzed and
have a Result set of its own; this relation is
maintained by use of a Reference.

2. Maintaining a component that may be used in a
number of models (e.g., the sub-system Plant may
be used in the models Plant_Alone and
NL_Fdbk_Syst) without a proliferation of copies
requires a second mechanism we call a Link.

All of these situations are managed in the CACE data-
base schema presented below.

1. INTRODUCTION

Software environments for computer-aided control
engineering (CACE) have been in a stage of rapid
development over the past decade. Primary emphasis has
been placed on the following aspects:

» improving or extending core CACE capabilities, i.e.,
nonlinear simulation, identification, and linear
analysis and design in the frequency and time
domains; '

« integrating core CACE functionality (e.g., nonlinear
simulation with linear analysis and design);

« improved interactive user interfaces;
o addition of artificial intelligence support; and

o migration to engineering workstations and personal
computers for hosting part or all of a CACE
environment.

Given these developments, it is surprising that support for
engineering data-base management has lagged so far
behind. As CACE environmerits became more powerful
in terms of systems analysis and design capabilities and
broader in terms of the variety of CACE activity
supported, the need for keeping track of .the models,
analysis results, control system designs, and validation
study results has become more important. In a real
industrial control system design project, the large number
of files generated in the complete design cycle and the
relations among these files can be very difficult to
comprehend and manage by manual means. Controls

engineers who have been successful at managing their
engineering data base should be congratulated, for the
discipline required to manually maintain and document
the files, listings, hard-copy plots, etc. that arise over the
design cycle can be prodigious. It is often the case that,
after the passage of a few months, the engineer cannot
really say exactly how a given result was obtained and
thus caonot reproduce it, to the consternation of all
concerned.

"These considerations have motivated us to define and
implement a CACE environment with EDBM as an
integral part. Preliminary requirements and concepts
were outlined in [1] and an effective user interface for
such a system is described in [2]; the complete system is
described below.

2. THE CACE DBM PROBLEM

We indicated above that EDBM is important. The
magnitude of the control engineer’s EDBM problem can
best be appreciated by looking at CACE in a larger
context than linear analysis and design. In many cases,
the user starts with a nonlinear model of the process to be
controlled, and progresses through the following range of
CACE activity: nonlinear simulation (e.g., model
validation and behavioral analysis), trim or equilibrium
determination (defining operating points), linearization,
linearized system analysis and design, nonlinear control
system design, and control system validation using both
linear and nonlinear models of high fidelity [3, 4], Much
of this activity is exploratory and iterative in nature.
Several systems have been developed that cover most or
all of this gamut - Cul-C + ACSL, PRO-MATLAB +
ACSL, and MATRIX + SYSTEM_BUILD ar¢ well-
known commercial examples’, and the GE Federated
System [5] represents our efforts in this area; however,
none of these manage the resulting DB beyond
implementing rudimentary file-naming conventions.
Even systems with ancillary expert systems to “expert
aid” the CACE process (e.g., [6 - 11]) do not provide
such support at the present time,

In many applications, control engineering activity
develops a substantial DB. In flight control, for example,
a typical DB may contain one nonlinear airframe model,
20 linearized models (corresponding to 20 points in the
flight envelope), 20 linear control system designs, one or
several candidate nonlinear (“full-envelope”) control

t Cul-C, ACSL, PRO-MATLAB, and MATRIX +
SYSTEM_BUILD are trademarks of Systems Control Technology
Inc., Palo Alto CA; Mitchell & Gauthier Assoc. Inc., Concord MA;
and Integrated Systems Inc,, Santa Clara CA respectively.

a

systems, and innumerable time-histories and analysis
results (step responses, equilibria, eigenvalues, frequency
responses, root-locus data, singular values, . . .).

The above DB picture may be multiplied many times over
by two additional factors: First, in multi-disciplinary
applications such as integrated flight and propulsion
control, one can produce an enormous DB by combining
20 flight regimes with 9 engine operating conditions, for
example. Second, it is not unusual for the primary
nonlinear model of the controlled object to be modified
several times over the complete analysis and design cycle.
We can thus ‘size’ the EDBM problem by assuming three
instances of each model and perhaps six results per

.nonlinear or linear model on the average, giving us the

final product 3X6X(1+20+20+2+1+9+9+1)
= 1134 files to manage.

As the above cases make clear, CACE project activity can
generate hundreds of results and model files, of which the
user may wish to retain and manage a substantial
percentage. This may not be a “large” DB in terms of
commercial DBM systems, but it is neither small nor
simple, and is thus difficult for most human users to
manage effectively without support,

3. CACE DATA BASE DEFINITION

As mentioned previously, the CACE data base is
organized in a hierarchical framework having the levels
Project, Sub-project, Model, Attribute, and Element, as
depicted in Fig. 1. This architecture represents a
refinement of the scheme outlined in [1], and was
developed from a careful analysis of ' the informal
organization that is traditional in the field plus knowledge
of CACE work-patterns and data element interrelations.

The top levels Project and Sub-project accommodate
several control engineers working on a single project,
with a project lead engineer having responsibility and
control of the entire data base, particularly the primary
shared models and results (e.g., plants and controller
designs). Other engineers work in their own subset of the
data base, using both shared and private DB elements.

All CACE activity within a project or sub-project is
carried out in the context of Models (plant models, control
system models, etc.). Each model has two attributes, a
Description, 1e., a catalog of the fundamental
characteristics of the model (linear or nonlinear,
continuous- or discrete-time or mixed, etc.) plus a list of
the sub-systems or components that comprise the model
and a definition of the sub-system interconnections, and a
Result set, i.e., the set of simulation, analysis, and design
results obtained using the model. Elements of a
Description characterize the system in terms of
component models, e.g., representations of a - plant,
compensator, sensor, etc,; elements of a Result_set

include any data item generated with the model, such as a
time-history, frequency response, etc. Note that we have
not defined the data structures at the element level; in
light of recent activity directed at establishing standards
in CACE data structures [12 - 14], we have decided to
accept the data structures and formatting produced by
existing CACE packages and incorporate data element
“filters” to transform from one format to another where
required.

- The most difficult aspect of CACE DBM is maintaining
the integrity of the DB in situations where system models
evolve over the term of the project as more accurate
model information is obtained [1]. It is almost always
true that models created early in a project have to be
modified, either to reflect additional information (e.g.,
experimental results), changes in the design of the plant
itself, or the discovery that the original model is not valid
over the range of operation occurring in the validation
and acceptance part of the design cycle. The loss of
integrity in the sense of not knowing which analysis and
design results were obtained with which instance of the
model is the most common fault encountered in
documenting the control system design cycle, and the
outcome is irreproducible results, unsupportable design
decisions, and unproductive re-iteration. The solution to
this problem is to be found in the software engineering
discipline of version control. In our system, each model
in the hierarchy is maintained using a version control
scheme such as found in the DEC product
DECVAX/CMS' [15], so that system models can evolve
and results obtained with each instance of the model can
be correctly related with that instance. Specifically, each
instance of the model is identified by a name and class
number: <model_id> = <model_pame>- +
<class_number>. The Description of each model instance
is maintained in relational (tabular) form in terms of the
Version for each Component model; this is illustrated in
Fig. 2. Components are maintained in the form of file
pames pointing to the actual data elements that are
maintained in CMS libraties. Any version of a
component can be obtained using a CMS Fetch
command; therefore, any model instance can be
assembled for documentation or further analysis.
Observe the existence of a Noftes field to permit the
association of engineering comments with each
<model_id>; there may also be notes related to each
component model, which are tabulated in the next level of
the hierarchy.

t DEC VAX/CMS is a trademark of Digital Equipment Corp.,
Maynard MA.,

Two additional complicating features of this CACE data
base framework [1] have made it impossible to use a
simple tree structure for the hierarchy outlined above:

1. Linearization of a nonlinear system produces botha

Result and a Component that can be incorporated
into a model, analyzed, and thus have a Result_set
of its own; this relation is maintained by use of a
Reference. Note that if the linear sub-system model
is subsequently altered to produce a new version,
then the Reference applies only to the original
version.

2. Maintaining a component that may be used in a
number of models (e.g., the sub-system Plant may
be wused in the models Plant_Alone and
NL_Fdbk_Syst) without a proliferation of copies
requires a second mechanism we call a Link. The
idea of a data-base link is adopted from UNIX';
here, we mean that the same CMS Library file
location of the component Plant is used in any
Description of a model containing it. The Link
mechanism ensures that sub-system models can be
maintained with integrity.

Both of these situations are portrayed in the CACE data-
base schema in Fig, 3.

The importance of the Reference feature can be illustrated
by considering the flight control systems design scenario
outlined in Section 2: Assume that Plant in Fig. 3
represents a nonlinear model of an aircraft’s aerodynamic
behavior, In order to achieve a “full-envelope” control
system design, the standard practice is to define several
dozen flight regimes for different altitudes and Mach
numbers, linearize at each flight condition, perform a
linear analysis and design at each point, and combine the
set of linear designs via gain scheduling, In this scenario,
there exist perhaps 20 linear models that are used to
generate substantial Result_sets of their own; if it is not
possible to trace each linear model back to its Parent
Result (Result_set entry for a particular instance of the
nonlinear plant model and comesponding to a particular
set of conditions such as operating point), then
documenting the design and even performing the gain
scheduling part of the design may be impossible. In the
general case, the reference mechanism is the key to
relating linearized models and their associated resuits
with their origin (<model_id> and operating regime) with
integrity, i

The Link concept is used to solve another integrity
problem: model proliferation. It is difficult enough to

1+ UNIXis a trademark of AT&T.

maintain and track one model of a particular component
as it is refined and edited; if several copies of the model
exist and have to be maintained as separate entities by
manual means, then the problem is seriously
compounded. - Our EDBMS solves this problem by
maintaining only one copy of each sub-system model.
Bvery time it is modified, a new version is created, as
mentioned above; each model’s <model_id> is tied to a
specific version of each component. Note that each
model using a linked component may or may not have an
instance corresponding to each sub-system version, as
illustrated in Fig. 4, While the component is associated
with one model, the fact that there can be sub-system
model versions that are unique to any other model
provides no loss of generality. The main care that must
be taken in treating linked component models relates to
purging model classes and deleting entire ‘models; for

example, if the model “owning” a linked sub-system is -

deleted, that component must be transferred to another
“owner” model.

The lowest level of the EDB hierarchy under Description
is directly evident from Fig. 2. The components of a
model exist and are managed in files that contain code
appropriate to the modeling language(s) supported in the
CACE software for simulation, analysis, and design.
Therefore, we have not provided examples of these data
elements. The elements under Results set are less
traditional in their organization, as shown in the result
tabulation in Fig. 5. The result itself (whose name and
type are indicated in columns 1 and 2) is clear enough; it
may correspond to a file containing time-history data,
eigenvalues, etc. The presence of notes associated with
each result (indicated in the last column) is also
straightforward. The item not described so far is the
Condition_Spec entry in column 3 of the table. This is
required to track the one remaining factor that govemns the
integrity (reproducibility, etc.) of the CACE DB, i.e., the
conditions under which the result was obtained. This is
especially important for nonlinear aspects of CACE, such
as simulation, equilibrium determination, linearization,
etc. where the user may specify arbitrary initial
conditions, input amplitudes, and parameter values, and
use various algorithms and specifications (e.g., tolerances
and iteration limits), This information is maintained in a
separate file that the EDBMS tracks and associates with
one or more item in the Result_set, as illustrated. '

More detail concemning the contents, structure, and
interface of the CACE DB managed by the scheme
presented here may be found in [2]. The interface to the
EDBMS has not been discussed so far, since most of the
motivation and design of the EDBMS is based on other
considerations, It is important to note, however, that a
well-designed interface can further enhance the
effectiveness of the CACE environment by making

4

unnecessary detail - transparent to the user. Several
examples of “information hiding” are included in Figs. 2
and 5, where it may be observed that names are assumed
to be supplied by the user wherever possible (e.g.,
NL_Fdbk_Syst, Cruise_20k_Mp6), while information
such as file physical location (disk, subdirectory, name) is
not displayed unless requested. The file names would
generally be based on file-naming conventions that create
unique designations that may encode project, model_id,
component_id, result_type etc. and thus (as is often true
with user-supplied file names as welll) difficult to recall
accurately. Also, the user only needs to know whether or
not a note exists (Yes/No in the last column of Figs, 2, 5);
the EDBM can locate it for display if the user requests
this action.

4. SUMMARY AND CONCLUSIONS

We have demonstrated that rigorous engineering data-
base management for computer-aided control engineering
is both important and achievable. A hierarchical
organization of CACE data base elements has been
presented, and additional mechanisms for maintaining
data-base integrity have been described. Many of these
concepts were implemented and proven to be feasible in a
rapid prototype of the final CACE environment; this
effort is described in [16, 17]. Version 1.0 of the final
environment will be tested in May 1988, and a fully
operational system will be completed this summer.

A second aspect of this work has not been treated here:
the integration of EDBM with the rest of the CACE
environment, This is a critical consideration, because a
poor interface will result in little or no user acceptance.
This topic is considered in a companion paper [2]. It is.
hoped that these contributions will serve as the basis for
more supportive CACE environments in the future.

Acknowledgement: The definition and development of
the EDBM scheme described in this paper was sponsored
in part by:

Flight Dynamics Laboratories

Air Force Wright Aeronautical Laboratories
Aeronautical Systems Division (AFSC)
United States Air Force

Wright-Patterson AFB, Ohio 45433-6553

REFERENCES

[1] Taylor, J. H., “Conventional and Expert-Aided
Data-Base Management for Computer-Aided
Control Engineering”, Proc. American Control
Conference, Minneapolis, MN, June 1987.

[2] - Mroz, P. A., McKeehen, P., and Taylor, J. H,,
“An Interface for Computer-Aided Control
Engiveering Based on an Engineering Data-Base

(3]

(4]

(5]

)

(7]

(8]

(9]

[10]

(11]

[12]

[13]

_Control and Engineering Systems,

Manager,” Proc. American Control Conference,
Atlanta, GA, June 1988.

Taylor, J. H., “Environment and Methods for
Robust Computer-Aided Control Systems Design
for Nonlinear Plants”, Proc. Second IFAC Symp.
CAD of Multivariable Technological Systems,
West Lafayette, Indiana, September 1982,

Taylor, J. H.,, “Computer-Aided Control
Engineering Environment for Nonlinear
Systems”, Proc. Third IFAC Symp. CAD in
Lyngby,
Demmark, August 1983,

Spang, H. A., III, “The Federated Computer-
Aided Control Design System”, [EEE
Proceedings, Vol. 72, 1724-1731, December 1984,

Taylor, J, H. and Frederick, D. K., “An Expert
System Atrchitecture for Computer-Aided Control
Bogineering”, IEEE Proceedings, Vol. 72, 1795-
1805, December 1984,

Birdwell, J. D., I. R, B. Cockett, R. Heller, R. W.
Rochelle, A. J. Laub, M. Athans, L. Hatfield,
“Expert systems techniques in a computer-based
analysis and design environment”, Proc. Third
IFAC Symp. on CAD in Control and Engineering
Systems, Lyngby, Denmark, August, 1985,

L. S. Su, O. Ahrif, G. L. Blankenship, “An Expert
System Using Computer Algebra for the Analysis

of Nonlinear Control Systems”, Proc. American

Control Conference, Seattle, WA June 1986.

T. L. Trankle, P. Sheu, and U, H. Rabin, “Expert
Systems Architecture for Control System
Design”, Proc. American Control Conference,
Seattle, WA June 1986.

G. K. H, Pang, “An Expert Systerh for CAD of
Multivariable Control Systems Using a Systematic
Design Approach”, Proc. American Control
Conference, Minpeapolis, MN, June 1987,

J. H. Taylor, “Bxpert-Aided Environments for
CAE of Control Systems”, Plenary Lecture, Proc,
4th IFAC Symp. on CAD in Control Systems ‘88,
Beijing, PR China, August 1988.

Maciejowski, J. M., “Data Structures for Control
System Design”, Proc. EUROCON '84, Brighton,
UK, 1984,

Rimvall, M., “A Suuctural Approach to
CACSD”, in Computer-Aided Control Systems
Engineering, M. Jamshidi and C. J. Herget,
Editors, Elsevier Science Publishers, 1985,

[14]

[15]

[16]

[17]

< plant plant
class=] class=2

Maciejowski, J. M,, “Data Structures and Soft-
ware Tools for CAD of Control Systems: A
Survey”, Proc. 4th IFAC Symp. on CAD in
Contral Systems ‘88, Beijing, PR China, August
1988,

User's Introduction to VAX DEC/CMS, Digital

Equipment Corp., Maynard MA, November 1984.

Nieh, K-H., and Mroz, P. A., “GNU-Emacs: An
Excellent Environment for Software Prototyping”,
9th GE Software Engineering Conference,
Daytona Beach, FL, May 1988,

Mroz, P. A., “Rapid Prototype -Software for
Computer-Aided Control Engineering”, Master of
Science Thesis, Rensselaer Polytechnic Institute,
November, 1987,

Project

sub-project-1 sub-project-2) @ o @ (sub-project-3 Sub-project

Attribute

(Eseripion) (it se0

time inear-

pointers to physical locations (file names)

Figure 1, Hierarchical Data-Base Organization for CACE

nl_fdbk_sys
oo Model

‘ sub-project-2
i

Description_Relation: NL_Fdbk_Syst
Equation_Type: Nonlinear

Time_Type: Mixed Cont / Discr
Component_set: Airframe, Comp, Sensor
Connection_Def: NL_Fdbk_Conn
Component: | Airframe Comp Sensor

Class: ‘ Version Version Version Nole
‘001 001 001 0ot Yes
002 . 001 002 001 No
003" 002 ' 003 001 No
004 002 004 002 Yes
005 003 007 002 No

Figure 2. Model Description in a CACE Data-Base

7
/Plant A|one

Descrlptl
class = 1

Plant Alone

scrlptlon
class 3

////

plant lin_plant
class=2 class=

@

@rived

lln plaut

connection

nl_fdbk_sys
class=2

‘

@ived
@lan)

Reference

Link

Figure 3. CACE Data-Base with Reference and Link

NANNARNNN

Plant
Verslon =

‘ Plant /

Version =5
%

Figure 4. CACE Models with a Linked Component

Plant NL Fdbk Syst

class =1

Descnptlo NL Fdbk Syst
\ class 2

Descrlptl NL Fdbk Syst
class =3

Result_set_Relation:

Name Type
Cruise_20k_Mp6 Simulation
Cruise_20k_Mp7 Simulation
Cruise_20k_Mp7 Trim
Cruise_20k_Mp7 Linearization

Cruise_20k_Mp8 Trim

model_id = NI,_Fdbk_Syst + Class03
Condition_Spec Create_Date Note
CS001 27-Mar-1988 09:44 Yes
CS002 27-Mar-1988 11:17 No
CS002 27-Mar-1988 11:52 No
CS002 27-Mar-1988 11:57 Yes
CS003 27-Mar-1988 13:06 No

Figure 5, Result_set in a CACE Data-Base

