American Control Conference, Session WP-10, 15 June 1988, Atlaata, GA © AACC

AN INTERFACE FOR COMPUTER- AIDED CONTROL ENGINEERING
BASED ON AN ENGINEERING DATA-BASE MANAGER

James H. Taylor

Peter A. Mroz Phil McKeehen
Jackson Lab Flight Dynamics Labs Control Systems Lab
DuPont Chambers Works Air Force Wright Aeronautical Labs GE Corporate R & D

Deepwater NJ 08023

Abstract

A companion paper [1] describes an engineering data-
base manager (EDBM) for computer-aided control
engineering (CACE). The need for an EDBM to support
the complete control system design cycle is also
discussed. The obvious benefit of integrating an EDBM
into a CACE environment, as demonstrated in [1,2], is
knowing how all system models and analysis and design
result data are interrelated, This results in a data base that
is documentable and reproducible. If the user interface of
the system is designed correctly, there can be several
major secondary pay-offs as well: information hiding
(eliminating the need to recall commands and file names,
for example) and direct integration of CACE activity and
EDBM functionality, Conversely, if the CACE
- environment and EDBM are not integrated well, many
users will not be motivated to use the EDBM to track
models and results,

The features of an EDBM-based user interface to a
CACE software environment are described in detail
below. This includes demonstrating the execution of all
data base operations, including browse, display, edit,
purge, delete, and replicate, as well as executing certain
CACE activity directly from the EDBM displays. Some
of these features have been implemented in a rapid
prototype software environment [3,4]; more of them are
currently being incorporated in version 1.0 of our CACE
environment [5]; a few will remain to be realized in
future stages of this work, The primary goal of this user
interface design is to make EDBM an integral part of the
environment, not merely an appendage.

1. INTRODUCTION

Considerable recent effort in the development of software
environments for computer-aided control engineering
(CACE) has been focussed on the introduction of
ancillary design aids such as expert systems (see [1] for
references) and, more recently, engineering data-base
managers (EDBMs) [1 - 4], These efforts have been
motivated by the realization that the CACE analysis and
design cycle is complicated and difficult to manage
without secondary software support [6]. As CACE
softwate becomes broader in.scope and more powerful,

Wright-Patterson AFB, OH 45433

Schenectady, NY 12345

the need for keeping track of the models, analysis results,
control system designs, and validation study results
becomes more pressing, especially in situations where the
models evolve with time (e.g., are refined as new
experimental results are obtained). In a real industrial
controls project, the large number of files generated in a
complete control system design cycle and the relations
among these files can be very difficult to comprehend and
manage without EDBM. The most critical aspect of this
issue is data-base integrity, i.e., knowing which model
instance was used to generate each result. This problem
can be solved via the coordinated use of a suitable EDBM
[1,2].

Several secondary, less gerious, problems can also be
addressed via the introduction. of an EDBM, In gystems
without EDBM, the user usually must recall what models
are available and know where they are located in storage
(e.g., disk, sub-directory, and.file name). Results also
need to be tracked, both in terms of physical location as
well as the conditions under which they were generated,
‘This information is vital in the absence of an EDBM, so
that these data elements can be used or displayed by
explicit command. A CACE system with EDBM can
alleviate this situation as well,

One scheme for an EDBM for CACE has been described
in [1, 2]. Very briefly, this system defines a data-base
hierarchy having the levels Project, Sub-project, Model,
Attribute, and Element, as shown in Fig. 1. Models are
catalogued in a Model_Table. They typically change
with time as the control engineer iterates to validate them
against empirical results / observations that accumulate
over the life of the project and. as modeling deficiencies
are uncovered and rectified, and therefore have several or
many instances, Each model has two attributes: a
Description and a Result_set. Elements of a Description
are the primary characteristics, e.g., linear or nonlinear,

" continuous-. or discrete-time, etc., plus the sub-system or

component models, e.g., a plant, compensator, sensor, etc.
Elements of a Result_get include any data generated with
a particular model instance, such as equilibria,
linearizations, and simulation results (time-histories) for
the nonlinear case or eigenvalues, frequency responses,
etc. for linear systems, There are three data elements

corresponding to each entry in the Result_set: the
Condition_spec, which contains all information required
to define how the result was obtained (off-nominal
parameters set by the user, choice of algorithm if
available, etc.), the result itself, and notes entered by the
user. Elements at the bottom of this hierarchy (model
components, results) are all tracked by the EDBM via
reference to their storage location (e.g., disk, sub-
directory, and file_name); this information is hidden from
the user unless it is requested. Each Model in this
- hierarchy is maintained using a standard version control
scheme, so that system models can evolve and the results
obtained with each instance of the model can be linked
unambiguously with that instance, thus maintaining the
integrity of the data base [1, 2].

Rigorous knowledge about how all model and result data
elements are interrelated is clearly essential to the control
system design cycle. Having this information maintained
with integrity guarantees that any analysis and design
result can be documented, and results can be reproduced
or extended if necessary. To be truly useful, however,
considerable care must be taken to design the CACE
environment user interface to be compatible with the
EDBM, and thus make both the tracking of models and
results as well as access to models and CACE operations
as simple as possible. This problem - the integration of
EDBM into a CACE environment to create a more
effective user interface - is the thrust of the presentation
that follows.

QOutline: Section 2 presents the design approach and
principles used to design the user interface to our
integrated CACE system; Section 3 illustrates the:use of
our interface and demonstrates how it integrates EDBM
and CACE functionality, and Section 4 provides a
summary, comments, and plans for future work in this
area.

2. EDBM-BASED USER INTERFACE DESIGN

The EDBM organization and functionality [1, 2] has been
based on a conceptual model of the control system design
process that sees projects and models as being the
primary focus for CACE activity. Beyond the basic
hierarchical organization outlined above, the data base is
quite open and amorphous: There is no closure with
respect to the number and types of data elements that may
be found in a CACE data base, and the elements
themselves are difficult to define and highly variable from
type to type. At the simplest level, even linear time-
invariant systems may be modeled in a variety of ways
(ratio of polynomials vs state-space “A, B, C, D”; as
separate arrays vs packed form [A, B ; C, D], etc.);
nonlinear system model representations are completely
arbitrary depending on the basic formulation (e.g.,
X = f(x,u)) and the simulation language employed by

2

the CACE environment. In the area of results, data
elements vary from lists of eigenvalues to arbitrarily large
arrays of numbers representing time histories, These
features of our CACE data base design (a high-level
organization of arbitrary data elements) formed the basis
for the decision to access the data base via a “browsing”
approach [3, 4] rather than a query language.

The decision to implement a browsing facility to access
the data base caused us to see the power of viewing data
elements as “objects” to be manipulated in an object-
oriented framework instead of a command-driven style of
interface. An element is designated by moving a pointer
to its location in a listing and hitting a ‘pick’ button or

. key, then an operation is selected by a second move of

the pointer and ‘pick’ operation. Thus, for example, a
model in a Model_Table can be designated and then
listed, edited, annotated, purged, deleted, or- configured
for study (loaded into a simulation or analysis package);
any data element in a Result_set_Table (time history,
frequency response, eigenvalue set, etc.) listed by the
EDBM system may be selected and displayed,
hardcopied, annotated, or deleted, These examples show
that, in effect, the EDBM relation display becomes an
object-oriented representation of its data elements,
allowing the user to make direct connection with each
element on the basis of the appropriate context. Such an
approach exploits the obvious interrelations between the .
EDBM functionalities and standard CACE activities, as
the above examples demonstrate, and thus simultaneously
achieves direct, inmediate access to data-base operations
and CACE functionality, In addition, this approach has
the corollary benefit of allowing the EDBM to “hide”
unnecessary detail from the user - for example, the user
does not need to know file names or location, and does
not have to learn a set of commands to execute
operations.

These ideas served as the basis' for defining many
elements of our CACE environment user interface, These
concepts and the benefits of such an approach are
illustrated in the extended examples of this style of user
interface provided in Section 3. The features of this
EDBM-based object-oriented user interface for CACE are
exemplified by showing the execution of all operations on
the data base, including display, edit, delete, purge, and
replicate, as well as access to CACE operations using
such an interface. Many of these illustrations are based
on features incorporated in a rapid prototype version of
our CACE environment [3, 4].

3. ILLUSTRATIVE EXAMPLES

All access to the CACE data base is implemented in the
CACE Browse Facility. The two top-level options in our
system are Browse Models and Browse_Results. The
sections that follow illustrate the user interface

characteristics pertaining to these functions.
3.1 EDBM Access to Models (Browse_Models)

Entry to the Browse_Models Facility is made via a listing
of the project Model Table. An example of the user’s
display at the top level is provided in Screen 1.

- The first row in this display summarizes the primary
nonlinear model for this project, showing that there have
been two instances (class = 2, 3) created since the model

,was first entered, that there is (by definition) no reference
associated with this model (a “reference” only pertains to
a linear model that was obtained by linearizing a
nonlinear model [1], as F-14-Lin001), and that the user
has entered notes documenting the two model
refinements. The next three rows describe linearized
models; presumably they were obtained from the first
model, but one would have to check the Reference to
determine this for certain and to see which nonlinear
system instance was used and which element in the
model’s Result_set corresponds to the linear model. F-
14-Cul001 is apparently (judging from the type and user-
supplied name) a linear control system; one would have
to check the Description to see the details (e.g., which
linear F-14 model was used), The last row corresponds to
a nonlinear flight control system; again, one would have
to check the Description and/or Notes to get all available
information (e.g., which instance of the F-14 nonlinear
model is used in the control system model).

At this level, several actions available via the ‘Action
Buttons’ portrayed in Screen 1: Display Description,
Display_Reference, Display_Note; Add/Edit_Note,
Configure_Model (meaning load the model into a
simulation or linear analysis and design package for use),
Purge_Model, Delete_Model, and Quit. The user first
designates a model by a ‘move’ and ‘pick’ key-stroke,
then selects the action with a second ‘move’ and ‘pick’.
The designation could be based on moving the pointer to
the name, in which case the highest class (most recent
instance) of the model is designated, or by moving to a
specific class number. Most of the corresponding actions
listed above are self-explanatory, and thus are not
illustrated. Observe, however, that the Configure_Model
option represents a major entry point into CACE activity,

One can browse down into a model’s data base by
designating it and selecting Display_Description; for the
last model listed in Screen 1, this results in a component-
level display as portrayed in Screen 2. We note’ that the
most important general characteristics are specified at the
top, e.g., that the system is nonlinear and mixed
continuous- and discrete-time, and that the form is a
known special configuration comprised of a plant (the
component F-14-Compt, which is presumably also the
basic component of the model F-14-Airframe listed in the
Model Browsing Screen), linear sensors and actuators,

and discrete-time linear (DABCD) compensator. There
are the same basic features in the Component_Table as
there are in the Model_Table; the main difference is that
instances of each component are specified in terms of
‘version’ rather than ‘class’; a given model class
corresponds to a specific version of each component
which is tracked in the EDBM via the Class_Table
provided below the Component_Table. This version
control scheme ensures that all results are associated with
a given model instance that can be recreated and verified
[I]. The linear components listed here do not have
references, since they were not generated by linearization,
We can edit any component, and thereby create new
versions that may be used later to build a pew

model_class. Note in both browsing tables above that -

there is an annotation facility (Display_Note,

Add/Edit_Note) that allows the user to document the data

base as the model evolves, at both the Model and
Component level. Again, most of the operations are clear
enough without illustration.

3.2 EDBM Access to Result_sets (Browse_Results)

The entry to the Browse_Results Facility is also a display
based on the project Model_Table. The user’s display at
the top level, Screen 3, is similar to the Browse_Models
initial screen. This display overviews the entire project,
and only indicates which instances of each model (e.g.,
instances 1 and 3 of model F-14-Airframe) have been
used to generate results. The user can now designate a
particular model (name + class, by ‘picking’ on the
appropriate class number) and determine specifically
what results are available; the second-level
Browse_Results display is illustrated in Screen 4.

The elements catalogued in Screen 4 include all results
generated using the designated model, These include
nonlinear simulations (time-histories), linearizations, trim
conditions, etc. Associated with each result one finds a
condition_spec identifier (CS_001 etc.) and a note
indicator (if there is a ‘Y’ in the fourth column, then a
note has been entered by the user to annotate the data
base). As before, there are a variety of obvious
operations that the user can apply to each object in the list

. of results: Display_Result, which will cause the data

element to be listed or plotted on the screen, as
appropriate; Hardcopy_Result, which captures a result
already displayed on the . screen;
Display_Condition_Spec, which details every off-
nominal condition used to generate the result (e.g., setting
of a state initial value which will determine the trim
condition and corresponding linearized model,
perturbation method and size used for linearization,
numerical integration algorithm, etc.), the annotation

facility commands, and Delete_Result. The ‘Quit’ button,
also shown in previous screens, allows the user to move

back up the data bage hierarchy, in this case retutning to

the Model_Table. In addition, there are several options
that provide access to the CACE procedures in the
environment; the Edit_Condition_Spec button allows one
to modify an existing condition_Spec (e.g., CS_002 —
CS_003 by changing parameters or adding commands),
and the Generate_Result button can be used to execute a
procedure to generate a new result of a specified type
with a specified Condition_Spec.

Returning to Screen 3, we find the highest-level access to
'CACE functionality that is available in the system; this is
‘accessed via the Replicate_Results button, This
capability must be used with great care, and only in the
appropriate circumstances. Suppose the user creates a
new instance of a model (e.g., by editing F-14-Airframe
to refine the component model); it may then be desirable
to regenerate some or all of the results that were produced
for the previous instance. In such cases, the user may
execute this capability by hitting the Replicate_Results
button. This will bring up the earlier list of results as a
menu in which the user can designate the results to be
created with the new model instance. Note that this can
only be done automatically in cases where the model
changes do not invalidate the Condition_Specs used in
pievious studies.

The illustrations of the Browsing Facility operations are
completed by depicting the bottom-level data elements in
the Result_set. In Fig. 2 (a) we see a sample
Condition_spec, in (b) a Note, and in (c) a Result; these
elements correspond to item 5 of the Result_set depicted
in Screen 4, Note that this data organization leads to a
distinction between CACE operations that influence the
generation of results and those that produce results. An
example of the former is specifying the initial value of a
state variable before running a simulation; these
operations are tracked in the Condition_Spec. Once the
user has set up the conditions appropriately, one or more
result can be generated.

4. SUMMARY AND CONCLUSION

The objectives of the EDBM-based CACE environment
design are: ;

¢ (0 pemmit the user to organize the data base in a
natural framework that reflects the standard CACE
design cycle,

o to maintain the integrity of the CACE data base in the
face of model evolution via version control,

» to reduce the need to memorize or manually track
unnecessary detail via “information hiding”, and

« to integrate data-base operations with the rest of
CACE activity to the greatest extent possible,

The examples in Section 3 show how these objectives can

be met.

Many features of this design were first implemented and
refined in a rapid prototype -CACE environment [3, 4].
The design presented here is similar but better integrated
(accesses greater functionality through fewer screens). A
comprehensive version of the CACE system outlined in
Section 2 and illustrated in Section 3 is nearing
completion [5]. It will include all features described in
this paper except Result_set Replication and
Condition_Spec Editing; these features will have to be
deferred until a later implementation.

Acknowledgement: Development of the EDBM scheme

and user-interface concept described in this paper was

sponsored in part by:

Flight Dynamics Laboratories

Air Force Wright Aeronautical Laboratories
Aeronautical Systems Division (AFSC)
United States Air Force

Wright-Patterson AFB, Ohio 45433-6553

This work is a part of the MEAD (Multi-disciplinary
Expert-aided Analysis and Design) Project {5].

REFERENCES

[1] Taylor, J. H., Nieh, K-H, and Mroz, P. A., “A
Data-Base Management Scheme for Computer-
Aided Control Engineering”, Submitted to Proc.
American Control Conference, Atlanta, GA, June
1988, ‘

[2] Taylor, J. H., “Conventional and Expert-Aided
Data-Base Management for Computer-Aided
Control Engineering”, Proc. American Control
Conference, Minneapolis, MN, June 1987.

[3] Mroz, P. A, “Rapid Prototype Software for
Computer-Aided Control Engineering”, Master of
Science Thesis, submitted to the Graduate Faculty
of Rensselaer Polytechnic Institute, November,
1987.

[4] Nieh, K-H,, and Mroz, P. A., “GNU-Emacs: An
Excellent Environment for Software Prototyping”,
9th GE Software Engineering Conference,
Daytona Beach, FL, May 1988 {(Contact: K-H.
Nieh).

[5] Taylor, J. H, et al - a definitive paper on the
MEAD Project, in preparation, 1988,

[6] Taylor, J. H. and Frederick, D. K., “An Expert
System Architecture for Computer-Aided Control
Engineering”, IEEE Proceedings, Vol. 72, 1795-
1803, December 1984,

@ Project
sub-project-1 sub-project-2) e e @ (sub-project-3) Sub-project
plant nl_fdbk_sys
° class=2 Model
@ : Attribute
mear- .
GorantD) Criver) Gmestind) - Gy Element
pointers to physical locations (file names)
Figure 1. Data-Base Hietarchy for CACE
" MODEL BROWSING SCREEN

Models existing in project E-14_PROJ are:
Name Type Classes Create_Date Last_Mod Ref Notes
F-l14-Airframe Nonlinear 1, 2, 3 16-Aug-1987 29-0ct~1987 - N, ¥, Y
F-14-Lin001 ABCD 1 19-Aug-1987 Y X
EF-14-Lin002 ABCD 1 19-Aug-1987 - Y X
F-14-Lin003 ABCD 1 19-Aug-1987 - Y Y
F-i4-Ctriool ABCD 1 23-Aug-1987 - N Y
E-14-NL-Ctrl Nonlinear 1, 2 29-Aug-1987 30-0ct-1987 - N, Y
Action Buttons:
Display Display Display Add/Edit Configure Purge Delete Quit

Description Reference Note Not Model

Screen 1, Model_Table Display for Model Browsing

Model Mo el

MODEL DESCRIPTION BROWSING SCREEN
Model_Type: nonlinear

‘Time_Type: mixed_cont/discrete

Model Form: ctril_system_with _precompensator)
Components in model F-14-NL-Ctrl in project E‘—1>4__PROJ are:

Name Type Versions Create_Date Ref Notes
F-14~Compt Nonlinear 1, 2, 3 16~Aug-1987 - N, ¥, Y
Sensor-Set ABCD 1 22-Aug-1987 N
Actuator-Set ABCD L, 2 22-Aug-1987 N Y
Compensator DABCD 1, 2 29-Aug-1987 N Y

Class_Table:

cliss E—l‘liCompt Sensor_Set Actuator_Set Compensator
1 1 1

2 2 1 1 2
3 3 1 2 2

Action Buttons:

Display Edit Display Display Add/Edit Quit
Component Component Reference Note Note

Screen 2. Model Description Display

- RESULTS BROWSING SCREEN (INDEX)
Results exist for the following Models in project F-14 PROJ:

Name Type Classes Results
F-14-Airframe Nonlinear 1, 2, 3 Y, N, Y
F-14-Lin001 ABCD 1 Y
F-14-Lin002 ABCD 1 Y
F-14-Lin003 ABCD 1 Y
F-14-Ctrl001 ABCD 1 N

Y

F-i4-NL~Ctrl Nonlinear 1, 2
Action Buttons:)

Display Replicate Quit
Results Results

Screen 3. Model_Table Display for Result Browsing

RESULTS BROWSING SCREEN
Results for Model F-14-Airframe Class = 3 in project F-14_PROJ:

Name Type Condition_Spec Create Date Notes
Cruise_20Kk_Mp6 simulatlon CsS_001 16-Nov-1987 Y
Cruise_20Kk_Mp7 simulation CS_002 19~Nov-1987 Y
Trim_20k_Mp6 trim CsS_oo1 19-Nov-1987 Y
Trim_20 7 €rim CS_002 19-Nov-1987 Y
ABCD_20K Mp6 linearization CS_001 23-Nov-1987 Y

ABCD_-20k_Mpb6 linearization CS_002 - 29-Nov-1987

Action Buttons:

Display HardCopy Display Edit Display
Result Result Cond_Spec Cond_Spec Note
Add/Edit Generate Delete Quit
Note Result Result

Screen 4. Result_set_Table Display

CS_002 0.
Model = F-l14-Airframe, Class = 3 ‘

Item ‘Nominal Actual A
x1init[F-14-Compt] 0.00 1.0 ' o
K1 [E - 14-Compt] 1.00 1.667
Algor Adams_4 Runge-Kutta_4 . 0.05
Uref [input_gen] 1.00 0.25
‘Reforence Input and Plant Output
(n) Condition_Spec °s: o4 5.8 FYE] Ts

(c) Result

Wind-tunnel data from 12-14 Sept 1987 processed to produce updated
aero-coefficlent tables used here

(b) Note

Figure 2. Elements of Result_set Relation Entry 5

