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Abstract

We report on a new, systematic approach to the synthesis
of linear multivariable controllers for use with multiple-
input/multiple-output (MIMO) nonlinear systems. The
approach is based on describing function models of the
system followed by numerical optimization in the
frequency domain. The end result is a closed-loop
feedback system which is insensitive to the amplitude
level of the excitation signal, and which approximates a
set of user-defined performance criteria with minimum
mean square error. We demonstrate the procedure by
solving an example problem.

1. Introduction

The objective in designing a multivariable closed-loop
feedback system is to devise a controller that causes the
system to behave in a desired way., In some cases, the
plant may be described adequately by a linear model. In
other cases, a nonlinear model may be required to
achieve adequate realism. Frequency-domain methods
are well established for the design of controllers for
linear multivariable plants (e.g.,, [1-4]); however,
controller design methods for use with nonlinear
multivariable systems in the general setting considered
herein is at its early stages of development [5].

Controller design techniques for use with special classes
of nonlinear multi-input/multi-output (MIMO) nonlinear
systems have received considerable attention. Global
transformation methods [6] require that system
differential equations have differentiable right-hand
sides, and therefore they may not be applied to systems
with discontinuous nonlinearities or nonlinearities with
discontinuous derivatives (e.g., backlash and saturation).
Control design techniques based on the theory of
variable structure systems (VSS) are only applicable to
systems wherein the nonlinearities of the plant are within
the image space of the input distribution matrix [7-10].
It should also be noted that application of the VSS theory
to discontinuous systems becomes difficult, and the
existence and uniqueness of the sliding mode solutions
may not formally be satisfied [7]. There also exist
computer-based methods for the design of compensators
for nonlinear feedback systems [11, 12] wherein the user
designs a preliminary linear compensator using classical
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linear frequency-domain compensation procedures which
then serves as the basis on which the final compensator
is designed to meet additional performance functionals
using the method of inequalities. The application of
these techniques are limited to nonlinear feedback
systems characterized by separable nonlinear elements.
Finally, optimal [13] or adaptive [14, 15] control laws
are difficult or impossible to design for nonlinear plants,
and when they can be obtained, usually require a
dedicated digital computer for implementation. Such
control systems are thus rarely practical,

In this research, controller design is based on the finite-
signal input/output behavior of the nonlinear plant. We
consider the class of nonlinear multivariable systems
whose mathematical model is in the following state-
variable differential equation form:

X(t)=fx(t),u)) n
Y)Y=g@ ) u(t) 2)

where x is the state vector of dimension n, u is the input
vector of dimension m, and y is the system output of
dimension /. There are no restrictions regarding the type
or location of the nonlinearities in the system. The
finite-signal input/output behavior of the system is
characterized wusing a non-parametric identification
technique which is applicable to any system that can be
simulated with sinusoidal inputs. This approach allows
one to describe the system motion “in the large”; this is
of prime importance when analyzing or designing a

‘controller for amplitude-sensitive nonlinear systems. In

addition, the controllers designed using the proposed
design technique may either be implemented using
simple RLC networks or they may easily be implemented
on a microprocessor.

Our primary objective is to present a systematic
procedure for synthesis of multi-range PID controllers
for use with multivariable systems that have amplitude-
sensitive plants. The term multi-range arises from the
fact that the controller design is based on several plant
characterizations that correspond to different operating
regimes. These regimes are characterized not by
differing operating points, but rather by the expected
amplitudes or ranges of the input signals. The objective
of the controller design is to arrive at a closed-loop
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system that (i) is insensitive to the amplitude level of the
excitation signal, (ii) approximates a set of user-defined
performance measures with minimum mean square error,
and (iii) is approximately decoupled. By “decoupled”
we mean that each control input variable affects only one
output.

The controller synthesis procedure is composed of seven
steps that are defined in detail in the next section, It
identifies a minimum-sensitivity linear multivariable
controller that achieves a set of user-defined design
objectives as closely as possible. If the simulation
results in the last step reveal that the design objectives
are not met, then the designer may have to synthesize a
nonlinear multivariable controller. The design procedure
is based on a modeling approach described in [16] and
was obtained while attempting to extend the previous
work done by Taylor and Strobel [17, 18] for single-
input / single-output systems to the multivariable case.

2. Controller Synthesis Procedure

The controller synthesis procedure requires the following
a priori information;

a. The mathematical model of the nonlinear plant in
state-variable differential equation form (Eqns. (1)
and (2)).

b. A number of operating regimes of the nonlinear
plant. These operating regimes are defined by: (i)
a set of expected amplitudes of the plant excitation
signal, and (ii) a set of excitation frequencies of
interest,

c¢. Closed-loop system specifications in the frequency
and/or time domain.

Technical details of the seven-step controller synthesis
procedure are given below.

2.1. Input/output Characterization. One approach to
input/output characterization is to obtain the small-signal
linear (SSL) model of the plant by replacing each
nonlinear term with a linear term whose gain is the slope
of the nonlinearity at the operating point. However, such
models are not defined for systems which have
discontinuous or multi-valued nonlinearities or nonlinear
elements with discontinuous slopes. Furthermore, SSL
I/0 models fail to capture the amplitude sensitivity of the
original nonlinear system. Therefore, we use an
alternative . approach to 1/O characterization which does
not have the disadvantages of the small-signal
linearization technique.

We characterize the I/O behavior of a nonlinear MIMO
plant by obtaining sinusoidal-input describing function
(SIDF) models of it [16]. The advantages of using SIDF
models for nonlinear systems design have been discussed

in detail elsewhere (e.g., [17-21]), so we do not elaborate
on this issue here. Suffice it to say that representing the
nonlinear plant with its sinusoidal-input describing
function model has proved to be a powerful tool for
analysis and design of nonlinear control systems [17-22].

In order to obtain an SIDF model at the operating point
uo with input amplitude g = [a,,4d,,...4a,,], we excite all
channels at one time with different but nearly equal
frequencies, i.e.,

u, (t) = uq, +a,cos(,t), p=12,...m ©))

where ug, is the "DC component" of the input signal or
operating point, a,, is the amplitude of the p™ excitation
signal, @, is the frequency of the p™ sinusoidal input,
and p is the input channel index. Then, the dynamic
equations of motion are numerically integrated to obtain
the outputs as a function of time, y, (¢). The matrix
Fourier integrals, I;'{, for period k, are integrated
simultaneously, and accepted as valid when all signals
¥4(t), g =1,2,...1 have achieved steady-state:
kT
gi= [ y@e"™ a @)
*-1T
where k£ =1,2,..., m=0,12,..., T =2n/|mp -—O)ql,
and p and ¢ are the input channel index and output
channel index, respectively. The constant or DC
component of the response is given by /4#, and the
pseudo-transfer function at discrete frequency o, is
given by
W, -

Gpvq(jwq;uop’ap)zl—l;ta—ql-lq’)? (5)

P
In order to analyze the importance of the higher

harmonic effects, one may also evaluate

|(‘°p - mq’

GE(jogsug,.a,) = By, m=23.. (6

nap

where in Eqns. (5, 6) it is assumed that k is sufficiently
large that the output signals y,(¢), ¢ =1,2,...1 have
achieved steady-state, It should be emphasized that the
validity of the Fourier analysis defined above requires
that the various input frequencies must be related
rationally, e.g.,, ®/®,=3/4 for the two-input case.
Finally, for each given excitation amplitude vector g;,
Eqn. (5) is evaluated at the discrete frequencies in the
user-defined frequency set to obtain a quasilinear model
G(joiuga) = [GP(jw,;ug,,a,,)] of the nonlinear
plant. This procedure for various user-defined excitation
amplitudes is repeated to obtain a number of quasilinear
models of the nonlinear plant.

2.2, Performance Specifications. Once the 1/O
behavior of the system is characterized for several
operating regimes of interest, the designer is in a position
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to identify a set of closed-loop performance criteria. For
example, the desired transient response of the control
system may be characterized by specifying an 1/0
channel pairing and a minimum degree of decoupling in
order to approximately “diagonalize” the system, and a
desired rise time or 2% settling time and a maximum
allowable percent overshoot might be specified for each
“diagonal” 1/O channel pair. The latter objective may be
stated in terms of each output following the
corresponding input signal with a response similar to that
of a second-order system. This information is used in
design of a preliminary PID controller for the nominal
case in the next step,

2.3. Preliminary PID Design. In this step, we design a
linear multivariable PID controller for one nominal
amplitude ¢* via time-domain optimization, We obtain
the parameters of a multivariable linear PID in the
following fashion: Based on the performance criteria
specified in the previous step, we determine the time
response of each output channel for a step change in
each input channel and compare that with the
specification, For example, for a two-input two-output
system, we use the following procedure and notation:
We first excite input channel 1 with a step input of
amplitude a; while the second input channel is excited
with a step of zero amplitude. The corresponding
responses of the first and the second output channels are
denoted by y,(¢) and y,(t), respectively. In this case, we
would ideally like to see y(f) =y, ,(¢) and y,(t) = 0.0,
where y,,(t) is the user-defined desired time response
consistent with the performance criteria of the previous
step. Similarly, the second input channel is excited with
a step input of amplitude a; while input channel 1 is
held at zero and the corresponding responses of the first
and the second output channels are denoted by ¥3(¢) and
Y4(t), respectively. Again, we would ideally like to see
Y3(£) = 0.0 and y(t) =y ,(t), where y ,(¢) is the user-
defined desired time response consistent with the
performance criteria of the previous step. Therefore, we
use time-domain optimization to search for the 12
parameters of the linear multivariable PID by minimizing
the following objective function:

F = [ydl(t) *)’1(’)} ? + [0.0 —yz(t)] 2 + [0.0—}’s(t)] :

+ [y -y0)]” @

It should be noted that the first and the fourth terms of
the  objective function attempt to achieve command
following, while the second and the third terms of the
objective function relate to decoupling.

' 2.4, Reference Open-Loop System Model. In this

step, we connect the preliminary PID controller C* of
the previous step to the nonlinear plant. Then the I/O

characterization approach of Step 2.1 is applied and the
matrix transfer characteristics of the desired open-loop
system C* - G* (jw;e”) is calculated, where e” is chosen
to be consistent with the excitation amplitude at the
nominal conditions and the PID gain near the cross-over
frequency, denoted [Cy,|, ie., ¢” =|C|" a*. At this
stage, the objective of the controller design problem is to
desensitize the dynamic behavior of the open-loop
system with respect to the variations in amplitude level
of the error vector. Hence the need for the reference
model, which is used in the next step to design a number
of linear multivariable PID controllers at different
operating regimes.

2.5. Amplitude-Dependent Controller Parameters. In
this step, a ser of linear multivariable controllers
{C;(jw)} is designed so that the error

E(o)=Ci(jo) G(jwa)-C" G (jo,e") (8)

is minimized over the desired set of frequencies, { o},
in the least-squares sense, where g; = ¢, ICi(jw)| This
yields a set of multivariable linear PID controller
parameters for each value of ¢;, denoted (K5 Ue; ),

(KF*(e;)}, and (KB¥e;)).

2.6. Final Linear Multi-Range PID Synthesis. In this
step, an average value of the PID parameters of the
previous step is calculated to synthesize a multi-range
linear PID controller. The simulation results of the next
step will reveal if the outlined scheme of controller
synthesis is acceptable, If the linear PID is not
acceptable, then the controller parameters obtained in the
previous step might be interpreted as describing
functions for controller nonlinearities; then, controller
nonlinear elements might be obtained by SIDF inversion;
the details of this approach have not yet been worked
out. As an altemnative approach, nonlinear gains may be
expressed as a nonlinear function of the two excitation
amplitudes; then the coefficients of this nonlinear
function may be identified via optimization.

2.7. Multi-Range PID Controller Validation. In this
step, time-history simulations are performed in much the
same manner as in Step 3, except all of the desired input
amplitudes g; are used instead of one nominal case a'.
Again, for a two-input two-output system, we excite
input channel 1 with step inputs of amplitude a; ; while
the second input channel has zero excitation, and the
resulting responses of the first and the second output-
channels are compared with y,,(¢) and 0.0, respectively
to see if the first I/O channel has a suitably
“diagonalized” response at every input amplitude. The

- same simulation procedure is carried out for the second

input_channel; again, we would ideally like to see that

the output of channel { is 0.0 and the output of channel 2
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is a good approximation to y;,(t) where y;,(t) is the
user-defined desired time response consistent with the
performance criteria of Step 2.

3. Demonstration Problem

Consider the schematic block diagram of the nonlinear

system shown in Fig. 1. The mathematical model of the
system is given as follows:

X.l = XZ+T1 (9)
Xp= —x{ =20x,+T, (10)

myuy if |u1|<51
1= Sign (uy) - (my 8y +mo(fur| =8 ) if |uy]> 8 (1

Higu, if |u2|<82
2= 12)

Sign (142) ’ (";1162“""72('142'—82 )) if |u2| > 82

It is desired to synthesize a PID controller for this system
that would form a closed-loop feedback system that is
insensitive to the amplitude level of the excitation signal
and approximates a set of user-defined performance
criteria with minimum mean square error. We proceeded
as in Section 2, and synthesized the following multi-
range controlier:

431.14 0.0696
20 = 100426 713.10 |’

187.86  3.05
K =1 0.0376 1441.66 | 14

13)

0.0567 0.143 15
We validate the design as indicated in Section 2.7. We
excite channel onme with step inputs of various
magnitudes while the second channel is excited by a zero
input signal. We then observe the first channel output,
¥1(¢), and the second channel output, y,(¢#). This set of
simulation results are shown in Figs. 2 and 3. We then
excite the second channel with step inputs of various
magnitudes while the first channel is unexcited, and
observe the first output, y,(¢), and the second output,
y4(t). This second simulation results are shown in Figs.
4 and 5. From examination of Figs. 2-5, it is apparent
that we have achieved a closed-loop feedback system
which is fairly decoupled, is relatively insensitive to the
amplitude level of the excitation signal, and
approximately satisfies the specified performance criteria.
Ideally we would like to see y,(t) and y,(t) to be
exactly zero for all time; this would indicate perfect
decoupling (see figures 3 and 4). We would also like to
see that y,(r) and y.(+) be completely amplitude
insensitive and satisfy the specified performance criteria;
this clearly cannot be achieved with linear compensation

0.0748 0.391
~_D —

(see Figs. 2 and 5).
4. Summary and Conclusions

The goal of this study was to develop a systematic
controller synthesis procedure for the design of feedback
systems with nonlinear, multi-input / multi-output, time
invariant, and continuous-time plants, The premise of
this research was that SIDF models of a nonlinear plant
can be used to design effective control systems for
nonlinear multivariable plants. The work presented
herein supports the conclusion that such a control design
procedure does indeed produce closed-loop systems that
are exhibit reduced amplitude sensitivity. Therefore, this
goal has been met,.

Three types of information are required for this
controller synthesis procedure: (a) a mathematical model
of the nonlinear multivariable plant in standard state-
variable differential equation form, (b) a definition of the
desired operating regimes (amplitudes and frequencies),
and (c) a set of performance criteria. The mathematical
model of the plant is used to generate the SIDF models
of the plant at the specified operating regimes of interest.
A minimum-sensitivity linear PID controller is then
identified using the controller synthesis procedure given
in Section 2. This procedure is systematic, and it may be
employed without a high level of subjectivity.

The method and associated software were applied to an
example problem, and satisfactory results were obtained.
There are several areas of future work that may prove to
be fruitful:

a. extension of the method to permit the solution of
the disturbance rejection problem, and

b. extension of the method to allow synthesis of
nonlinear multivariable PID controllers,
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Figure 1. Schematic block diagram of the example problem
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