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Abstract!

We describe a second-generation toolset for computer-aided
nonlinear conirol system analysis and design based on
sinusoidal-input describing function (SIDF) methods. There
are two main elements in our CAD software: a simulation-
based program for genérating amplitude-dependent SIDF in-
put/ouiput models for nonlinear plants, and a frequency-
domain nonlinear compensator design package. Both of
these are described in detail. This software can treai very
general nonlinear systems, with no restrictions as to system
order, namber of nonlinearities, configuration, or nonlinear-
ity type. An overview of the application of this software
to the ATB1000 Army test facility (comprising an electro-
mechanical pointing system with flexible modes) will be pro-
vided, to illustrate the use and efficacy of these tools.

1 Introduction

The basis of this work has been established in earlier publi-
cations. An overview of SIDF meodels for nonlinear systems
and the overall approach to controller design is provided
in [3], and the methodology for multi-model nonlinear con-
trofler design by SIDF inversion is outlined and illustrated in
[4). A first generation toolset for computer-aided nonlinear
control system design based on sinusoidal-input describing
function (SIDF) method is described in [5].

This toolset implements the functions required to carry out
the multi-model nonlinear coniroller design approach [4],
based on SIDF modeling and SIDF inversion. This approach
is based on the behavior of the nonlinear system for signals
having various amplitudes that correspond to the actunal an-
ticipated operation (e.g., for “small”, “medium” and “large”
signals, as determined by the application). The amplitude
dependence of a nonlinear system is a key characteristic that
often must be considered in the analysis and design of ro-
bust nonlinear systems. This issue is distinct from the de-
pendence of nonlinear system behavior on operating point,
which can often be characterized by a family of stardard
linearized models about various operating points.

18upport for the research described herein has been provided
by the Defense Advanced Research Project Agency through the
U.S. Army AMCCOM at Picatinny Arsenal, NJ by Contract
Number DA A A21-92-C-0013.
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2 SIDF Modeling Tools

Software for generating amplitude-dependent frequency-do-
main models describing the input/output (I/0) behavior of
nonlinear systems excited by sinusoidal inputs has been de-
veloped based on MATRIXx [6] and dstool [1].

2.1 A MATRIXx-based SIDF Modeler

MATRIXx is a CAD software environment developed by IST
for system simulation and (linear) control design. We based
the SIDF modeling on MATRIXy because we can use Sys-
temBuild to easily madel a nonlinear system using block
diagram notation. The SIDF modeling program built on
MATRIXy is called SIDFGEN; it has iwo components:

(1) Integration. To get the SIDF, a sinusoidal function
asin({wt) is used as input to the nonlinear system, where
a € [ar,a,], w € [wi,wa). Here the range [a, au] covers the
input amplitude of interest, and [w),w.] covers the input
frequency of interest. The output of the nenlinear system is

integrated over the period of the sinusoidal function to get
the SIDF: :

toH(KC+1)T
Re(Gr(jwia)) = - y(t) sin(wt)dt (1)
tob KT -
o [T
Im(Gr(jw;a)) = - : y(t) cos(wt)dt (2)
to+KT

where Re(-) and Im(-) are real and imaginary parts of the
SIDF G(jw;e), T = %rfw, and y(t) is the output of the
nonlinear system. A SystemBuild model for doing the in-
tegration {1) and (2) is shown in Fig. 1. Ii contains both
the nonlinear dynamics whose SIDF is to be found and the
integrators for calculating (1) and (2).

Convergence testing. Convergence lesting of the integrals
(1} and (2) is a major concern in any attempt to awtomate
TI/O transfer function model generation, because transients
generally occur in the simulation, and the integrals (1) and
(2) are not meaningful until the contributions of these tran-
sients have decayed to become small compared to the steady-
state response.

First, we have introduced error control parameters in order
to provide the user with the required control over conver-
gence. These are €m, €4, and Neye., The first two of these
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Fig. 1: A SystemBuild Model

{(input: 1 - f=w/2m, 2—a
output: 1 — Im(Gx), 2 — Re(Gk))

are error bounds for the magnitude and phase. respectively;
and Ny provides one mechanism to limit the number of
cycles of the input sinusoid that will be used.

Somewhai loosely speaking, the iniegrals (1) and (2) are
said to have converged when the magnitude and phase of
Gx have converged in the sense that My — {Gx(jw;a)]
and @x = LGk (jw; e) evaluated over the previous ((K-1)st)
period of the simulation and the latest (Kth) period satisfy
the following conditions:

erre = MT;{_;JIK-_II < €m (3)
errg = |®x — B 1| < € (1)

The SIDF Modeling Tool then works as follows: For a €
[8:, @u], w € [wr,w,], do the following;

1. Imitialization: let X = 0, pick an initial time to;

2. Calculate Re(Gk(jw;a)) and Im(Gr(jw;a)) according
to (1) and (2);

3. Calculate errX and err,*;" according to (3) and (4);

4 IferrX < e and err:;{ < €g or & = Ney, then stop;
otherwise let £ = £ 41 and goto 2.

2.2 A dstool-Based SIDF Modeler

dstool is a tool for simulating and analyzing dynamic sys-
tems. One of its unique features is that it can determine
limit cycles or other sieady-state periodic solutions of a dy-
namic system. As a result, we can use dstool to generate the
steady-state response of a nonlinear dynamic system driven
by a sinusoidal function, then process (intcgrate over) that
response to obtain the SIDF. We do not have to worry about
the transient behavior of the system Iesponse Or CORVErgence
testing.

Another feature of dstool is its capability of precisely sim-
ulating nonlinear systems involving discontinuities (e.g., a
"piece-wise-linear systems with relays, backlash etc.). Many
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existing simulation algorithms assume smooth nonlinear dy-
Namics, 5o errors occur when simulating a discontinuous non-
linear system because an integration step may involve errat-
ically calculating derivatives on either side of the disconti-
nuity [1]. dstoolincorporates an event-handling mechanism
in its simulation algerithms to detect the moment when a
trajectory crosses a discontinuity. Omnce a discontinuity is
detected, the simulation algorithm can adjust its step size
to avoid using different vector fields in one integration step.

The above features of dstool make it singularly appropriate
for generating SIDF models of nonlinear systems. A dstool
based SIDF Modeling Tool is currently under development.

3 Nonlinear Controller Synthesis Tools

- The basic idea [4] is to process a set of frequency-domain

models for the nonlinear plant and synthesize a nonlinear
controller so that the open-loop response of the resulting
control system will be as insensitive to input (error signal)
amplitude e as possible, where e takes on appropriate values
5,7 = 1,2, ... selected by the user, based on the study of the
performance of the linear controller that lead to the decision
to seek a nonlinear controller and on anticipated operating
conditions. : ‘

This procedure involves seven steps:

1. select a set of plant operating regimes defined by in-
put amplitudes ax, & = 1,2, ... and generate the
Gx(jw; ar) models using SIDFGEN, Section 2;

2. select one plant operating regime from this set, denoted
by a” and characterized by G*(jw,a*);

3. design a linear PID controller denoted C*(jw) based
on G*(jw; a") using some classical frequency-domain
method (e.g., design to achieve good bandwidth and
gain-margin);

4. use C"(jw) and G*(juw; a") to define an achievable
open-loop objective function denoted ¢ G*(jw);

5. take the set of models Gy and error-signal amplitude
set e;,7 = 1,2, ... and for each j determine the compen-
sator static gains Kp;, K7 ;, Kp ; required to force the
frequency response of the PID followed by Gi{jw; ax)
to fit the open-loop objective function & G*(jw) with
minimum mean-square error;

6. pass the three gain sets Kr{e,), Ky,i(es), Kp,i(e;) to
the SIDF 'inversion routine for controller nonlinearity
synthesis; and .

7. validate the nonlinear controller design by evalnating its
frequency response (via SIDFGEN) and by transient-
response simulation.

This approach results in designing a nonlinear control sys-
tem whose frequency-domain response has as little ampli-
tude sensitivity as possible. This appears, on the basis of
a number of applications, to minimize transient response
sensitivity as well. Implementing this approach Yequires
frequency-domain design methods (for which we have not
designed tools), linear gain-sef evaluation (the first tool be-
low), and nonlinearity synthesis (second tool below).




3.1 Linear gain-set evaluation

This technique procéeds as follows: The input for this pro-
cedure is frequency response data for Gy and CG*(jw).
For each error signal amplitude e;, frequency wm and gain-
set Kp, K1, Kp the plant input amplitude is calculated,
¢; = |C(jw)| - e; and the corresponding plant frequency re-
sponse is obtained by interpolating over the G{jw, a;) data
(“G-surface”). An iterative minimization procedure is then
used (MINPACK [2]) to adjust the linear gain-set until the
objective G G*(jw) has been fitted as well as possible over
the frequency range [wi, wy] under a mean-square error cri-
terion. The details are omitted for the sake of brevity; for
further information see [4]. As mentioned previously, the
output of this procedure is a set of error amplitude-gain
pairs Kp;(e;), K1,(e;) Kp,(e;) from which the compen-
sator nonlinearities are synthesized.

3.2 Controller Nonlinearity Synthesis

For each value of e; there exists a linear compensator design
that differs only in the gain values Kpj, K1,j, Kp . This
information serves as the basis for nonlinear controller syn-
thesis on an element-by-element basts (P, I, D), as follows:
Given the gain versus amplitude relation of the form K(e;)
that is to be achieved by a single nonlinearity, adjust the
parameters of a specified piecewise-linear nonlinear function
Fpuwi(e) so that the SIDF of fpwi provides the best fit to
the gain/amplitude relation K;(e;) in the minimum-mean-
square-error sense. We defined fput in fairly general terms
as shown in Fig. 2; the parameters to be adjusted are the
slopes, 57, S, the breakpoint, 6, and the step discontinuity,
D.

The user is allowed to restrict the nonlinearity by fixing any
of the parameters of fpwi; only free parameters will be ad-
justed for mean square error minimization. For example,
fixing

51 =0.0, S =0.0

restricts fpwi to being a relay with deadzone, of arbitrary
output level D and deadzone width 26, The parameters
shown in Fig. 2 allow enough degrees of freedom that most
reasonable gain/amplitude relations can be fit with decent
accuracy; allowing the designer to restrict this freedom
should permit the user to arrive at a practical design.

In summary, denoting the parameters that define f..i(e) by

| Tow (€]

Fig. 2: Nonlinear Class for SIDF Inversion

the vector p,

PT = [Sll '821 6: -D] (5)
we developed a routine for evaluating the SIDF of fpui(e, p),
and the parameter adjustment is done using MINPACK [2].
The output of MINPACK is the parameter set p* for the
nonlinearity in the controller, which completes its defini-
tion. Tt should be observed that the gain set K;{e;) must
be well-conditioned, in the sense that the values of e; must
cover a reasonable range of ¢ (e.g. e; = 1.2, 3.6, 7.2, 10.8
rather than e¢; = 1.2, 1.35, 1.50, 1.65 ); the reason for
this is that the SIDF of the nonlinearity fpwi cannot change
abruptly with small amplitude changes, so a closely-spaced
gain set will usually be meaningless. Also, the user should
be aware that quite different nonlinearities may have very
similar SIDFs (e.g., the SIDF for a 3-level quantizer is al-
most identical to the SIDF of a limiter for all normalized
input amplitudes greater than 1.5). Therefore, the user may
have considerable latitude in choosing the nonlinearity to
implement. This also means that there are local minima —
the fitting process should be done interactively with careful
consideration of the results and alertness for spurious results
(e.g., & being adjusted to be beyond ithe maximum ej).

4 Nonlinear Control Synthesis for the
ATB1000

In this section, we will illustrate the use of the software by
designing a nonlinear control for the ATB1000, an Army test
facility. The ATB1000 is a nonlinear system that involves
hard nonlinearities {backlash, Coulomb friction) and flexi-
ble modes. This challenging system is a good benchmark
problem for testing the nonlinear control design methodol-
ogy discussed in this paper.

As shown in Fig. 3, the testbed consists of

e a drive sub-system, including a DC motor (with non-
linear friction}), a gear chain (with backlash), and an
elastic shaft;

¢ a wheel/barrel sub-system, including an inertia wheel
(with nonlinear friction) and a flexible gun barrel.

Readers are referred to paper[7} for a detailed description of
the testbed model. ‘

The objective is to control the inertia wheel angle 8; so that
it will have a satisfactory response to inpnt stgnals (see Fig. 4
for the control diagram).

DC Motor

Gear Chaoln {Buacklash)

Elastie Shaft

S
Gun Barrel
---- Inertin Wheel

Fig. 3: Schematic of a Tank Turret System
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1. Generating G(jw;a).

First we select the ranges for the amplitudes and frequencies
of the input sinusocidal functions. We found that when the
amplitude of the input is smaller than 0.55 (volt}, the system
response is virtaally zero; when the amplitude of the input
is large than.5.5 (volt), the system respomnse is close to a
linear response (G{(jw; a) does not depend on the amplitude).
Therefore, we choose the range for the input amplitude to
be A = [0.55,5.5]. We chose the frequency range as w €
W = {3.1416,94.25). The G(jw;e) for selected a’s € A are
plotted in Fig. 5.

2. Control Design.

We will give the results of designing a nonlinear control for
ATB1000 by following the nonlinear control synthesis pro-
cedure in Section 3,

a. We select one of the /0 models G*(jw;a*) (2* € A) as a
nominal model { see Fig. 6). This nominal model is chosen
because the associated input amplitude is an intermediate
value in A.

b. Then, we design a PID compensator C*(jw) for the nom-
inal model {o achieve desired “shape” of the CG*(jw;e*) in
terms of gain and phase margins, where CG*(jw; ¢*) is the
SIDF I/O relation between the input to the compensator
and the output of the plant that follows the compensator,
and e* is a value chosen to be consistent with ¢* and the
PID gain near the crossover frequency, denoted |C.o|, Le.,
e* = a"f|Ceol. Plots of CG*(jw; e*) are also shown in Fig, 6.

We next select a set of compensator input amplitudes
{e;). Then we design a set of linear compensators {C; (jw)}
so that the error

C.

E(jw) = 1 = G (jw)G(iw; e5|C; (5w))/CG* (jw, ") (6)

over the frequency set w € W is minimized in the mecan
square sense; this yields a set of PID parameters for each
values of e;, denoted {Kp(e;)}, {Kr(e;j)}, {Kbp(e;)} (see
Fig. 7).

d. Use the sets of PID parameters {Kp(e;)}, {K1(e;)},
{Hp(e;)} with SIDF inversion to synthesize the nonlineari-

ties {/r(e)}, {fr(e)}, {fo(e)} (see Fig. 8).

e. Validate the nonlinear controller design via simulation.
Fig. 9 shows the step responses of-the closed loop system
to step inputs with different amplitudes. To compare, the
step responses of the closed loop system with a linear PID
control to step inputs with the same amplitudes are shown
in Fig. 10.

fe

NONLINEAR
PLANT
(MOTOR
& LOAD)

Fig. 4: Nonlinear Control System

G{lw,a) MAGNITUDE {dB)
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5 Conclusion

We have described a second-generation toolset for computer-
aided nonlinear control system analysis and design based on
sinusoidal-input describing function (SIDF) methods. 'This
software can treat very general nonlincar systems, with no
restrictions as to system order, number of nonlinearities,
configuration, or nonlinearity type. An overview of the ap-
plication of this software to the ATB1000 Army test facility
illustrated the use and efficacy of these tools.
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