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Abstract !

This paper describes the design of a robust control system
for a gun turret testbed called the ATB1000. The control
system incorporates a control scheme based on sinusoidal-
input describing function (SIDF) models of the testbed’s
drive subsystem to reduce the effects of backlash and non-
linear friction, and a dissipative control scheme to make the
control system insensitive to the nnmodeled dynamics and
parameter imprecision associated with the flexible modes of
the wheel /barrel subsystem.

1 Introduction

This paper describes the design of a robust control system
for a gun turret testbed called the ATB1000 (see Fig. 1).
This testbed is used to simulate the dynamics of a gun-firing
platform and to test schemes for controlling and stabilizing
the gun-firing process in the presence of uncertainties such
as friction, backlash, flexible modes and gun recoil.

Our control objective is to obtain good transient response
as the gun is slewed towards a specified reference angle and
to maintain accurate pointing during gun firing. To achieve
this, the controller must overcome the effects of gun recoil,
nonlinear friction, and backlash. Furthermore, the control
system is required to be robust to modeling uncertainties,
such as parameter imprecision and unmodeled dynamics.

The testbed system can be decomposed into two subsystems
which pose different control problems. The drive subsystem
has limitations due to Coulomb friction and backlash, and
the wheel /barrel subsystem has the “spill-over” problem as-
sociated with unmodeled high-frequency modes that occur
in characterizing the motion of the flexible gun barrel. The
control system described below incorporates a SIDF-based
control scheme to reduce the effects of backlash and nonlin-
ear friction, and a dissipative control scheme to make the
control system insensitive to the nnmodeled dynamics and
parameter imprecision of the wheel/barrel subsystem.

This paper is organized as follows: In Section 2, we describe
the testbed model and highlight some of the features of the
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system that make its control difficult; in Section 3, we for-
mulate the control problem; in Sections 4 and 5 we detail
the design of a robust control system for the testbed; finally,
in Section 6, we verify the control system by simulating it
on the testbed model.

2 Model Description

As shown in Fig. 1, the testbed consists of two subsystems:

e a drive subsystem, including a DC motor (with non-
linear friction), a gear chain (with backlash), and an
elastic shaft;

e a wheel/barrel subsystem, including an inertia wheel
(with nonlinear friction) and a flexible gun barrel.

In the work outlined below, we have neglected the effect of
platform motion on the testbed.

2.1 The Drive Subsystem

The drive subsystem dynamics are governed by two sets of
differential equations, depending on whether the gears are
engaged on not. When the two gears are not engaged, there
is no interaction between the DC motor and the elastic shaft:

Ll = "Ta—="Tp (1)
by = -T, (2)
where 6, and 6 are the angles of driving gear and driven
gear, respectively. Jm, Jp are the inertia constants of the
motor and elastic shaft assemblies, T}, is the torque of the
motor, T3, 7 is the Coulomb friction torque on the motor
Tong = by Sgn(ém)
where by, is the magnitude of the friction torque and 7% is
the reactive torque of the elastic shaft,
Te = ks(8s — 6;) + be (6 — 65), (3)
where ks, bs are spring and viscous friction constants respec-
tively, and 0; is the inertia wheel yaw angle.

When the two gears are engaged, the subsystem can be
treated as if there were no gears. In this case, 6, = 5 and
0m = 6y + 35 (positive engagement) or 8, = 8, (negative
engagement), where z,, is the backlash gap. The differential
equalion governing the dynamics of 8y is

(Jm -+ Jb)éb = Tm — T —= Tmf (4)




We note that there is a “jump” in the states ém and éb at the
moment the two gears become engaged. Let the moment of
engagement be t., 8., (t2) and éh(t;) the gear speeds before
collision, 6,,(tF) and 6,(t}) the gear speeds after collision.
If we neglect the elasticity of the gear material, then by
conservation of momentum we have:

_Im
Jm+Jb

Ty

O (1) = 6u(¢1) = —

Im(ts) + 0u(t7) (5)

The conditions for the gears to become engaged are:

1. (positive engagement)

O — 6y =z and O — ) > 0; (6)
or
Om — O =z and G — 6, > 0; (7)

2. (negative engagement)

0 — 0, =0 and ém—éb<0; (8)
or
Om — 0, =0 and 8, — 6, < 0; (9)

We note that in the above conditions, the dynamics of 8,
and 8 are governed by differential equations (1) and (2).

2.2 The Wheel/Barrel Subsystem

The gun barrel is a distributed parameter system which
can be approximated by a lumped parameter system using
the finite element method. After this approximation, the
wheel/barrel subsystem is described by a state-space model
of the following form:

t4+Di+ Kz = B(Ts—Ty+Ty +Ty,) (10)
y = Cxz (11)

where & € R™ is the subsystem state vector (vector of modal
coordinates) and y” = [6; 8:ip] is the output vector; 6; is
the inertia wheel angle, and 6+, is the gun barrel tip angle;
matrices D), K,C and B are of appropriate dimensions. The
arrays D) and K are diagonal matrices with non-negative
elements. Ty is the disturbance torque introduced by gun
firing (recoil), and Ty, and T}, are torques introduced by
viscous and Coulomb friction between the inertia wheel and
the supporting platform under it,

Ty, = bib; (12)
Iy, b2 sgn(6:) (13)

where b; and by are the friction coefficients.

The dimension of a flexible structure model are usually very
high. From a numerical standpoint, we usually base the
design of a controller for a flexible structure on a reduced-
order model that contains the critical modes of the structure.
In our case, we only consider four low-frequency modes of
the wheel/barrel structure (n = 4 in (10)). One important
issue is how to design a control based on the reduced-order
model that does not destabilize the unmodeled modes when
applied to the actual system.

3 Control Problem Statement

The objective of the control system is to smoothly slew and
accurately point the gun barrel tip angle 8,;, with respect
to a reference angle in the presence of gun firing, backlash,
friction and unmodeled dynamics. To be specific, we want to
find a control law 15, = T, (t) such that 8, will gracefully
slew to f.; within some acceptable tolerance in reasonable
time. To achieve this control objective, the control system
must overcome the effect of backlash (the DC motor has no
control over the wheel/barrel subsystem during disengage-
ment) and Coulomb friction. In addition, the control system
is required to be insensitive to modeling uncertainty, such as
unmodeled high-frequency modes and system parameter im-
precision of the flexible gun barrel.

Substituting (3) and (12) into (10) we can write the model
of the wheel/barrel subsystem as

&+ (D + (bs+b1)BCy)é + (K + k. BCy )z = Bu+ Bw (14)

where 8; = Ci1z, u = bséh + ks8p and w =T, + T%,.

The variable u = bséb + k<8 can be considered as the input
to system (14) and an output of the drive subsystem. Our
approach to control design consists of two step: (1) find a
control law u” for the input w to system (14) such that the
resulting 04 has the desired properties outlined above; (2)
find a control law for 755, so that u as an output of the drive
tracks the desired control law «* found in step (1). This de-
sign approach is illustrated in Iig. 2, where controller C(s)
is designed in step (1) and controller Cy; is designed in step
(2). In step (1), we will use a robust control scheme that
does not destabilize unmodeled high-frequency modes and
is insensitive to parameter uncertainty. In step (2), we will
use a control scheme based on sinusoidal-input describing
function (SIDF) models of the testbed’s drive subsystem to
deal with backlash and frictions. The SIDF models are used
because we believe they provide the best characterization
of the major nonlinear effects of the drive subsystem with
which we are concerned: the sensitivity of the drive subsys-
tem’s input/output (I/O) behavior to the amplitude of the
input signal due to backlash and friction,

4 Robust Control of the Wheel/Barrel
Subsystem

Consider a constant feedback control law for system (14)
w=—Fz— Fyx (15)

where F; and F; are two feedback gains.

Substituting (15) into (14) gives

.‘L‘+(D+(b3+leBcl +BF1)31+(I{+IL:;BC;| +BF2)SL = Bw

16
We note that C7 = [en cii] (6: = Ciz) and é =)
by - b,]% in model (16) has the relation cy;b; > 0,7 =
1,---,n. In fact, the viscous bearing torque T}, = b16;
brCiz. If we assume that the wheel/barrel subsystem is
only subject to the viscous bearing torque and has natural
damping ) = 0, then we have from (10),

&+ Kz = —BTj, = —BCii (17)




We know that a system with only viscous bearing force
(torque) is always energy dissipative. For system (17), this
is true if and only if ¢1;b; > 0,1 =1, ,n.

The following results give sufficient conditions for system
(16) to be stable; refer to [1] for proofs:

Proposition 1: Assume diagonal matrices D) and K satisfy
dim(D) > n — 1 and dim(XK) > (» — 1). Then system (14)
with control law (15) is asymptotically stable if Fy = f1Cy
and F» = foCy with fi > 0 and f; > 0 (namely, v =
f18: + f20; ) L]

In the following result, we neglect the damping in system
(14), since a control law that stabilizes system (14) with
zero natural damping is likely to stabilize the system with
added non-zero natural damping.

Proposition 2: Let the damping matrix D in system (14)
be zero, and the diagonal matrix K satisfy dim(K) > (n—1).
System (14) with control law (15) is asymptotically stable
if F] = f101 +f3[1 0 ... U] and ,.Fz = fgcl with f] 2 0,
fo 2 0and fa > 0 (namely, v = fi16; + fag1 + f20i) o

Propositions 1 and 2 define control schemes that are robust
with respect to system modeling errors and structural per-
turbations, because the control schemes do not depend on
system parameters.

In the sequel, we will only consider the control scheme
u = f16; + fat1 + fab; (18)

where f; > 0,7 =1,2,3. The freedom in choosing f;’s in the
control scheme allows us to achieve other performance re-
quirements such as desirable pole assignment while ensuring
the stability of the system.

5 SIDF Control of the Drive Subsystem

Assume that we have found the control law for u = b8, +
k.8 for the wheel/barrel subsystem (14) which guarantees
the required behavior of 8¢;,. Now, we will design a nonlinear
control based on sinusoidal-input describing function (SIDF)
models of the drive subsystem such that u« = b,éb 4+ k58 as
an output of the drive subsystem matches this desired form
(see Fig. 2). To generate a SIDF between input 7y, and
output u = bsfy + ksbs, a sinusoidal function Ty = a sin(wt)
is used as input to the drive subsystem. The corresponding
output of the drive subsystem u = beby + kB is treated
via Fourier analysis [3] to obtain the SIDF model G(jw, a).
For linear systems, such a model is independent of input
amplitudes; in fact, it is the transfer function G(jw). For
nonlinear systems, however, SIDF models generally depend
on the amplitude of the system input.

The procedure for designing a nonlinear controller using
SIDF models for a number of input amplitudes is described
in some detail in our companion paper [4], or in more depth
in [3]. The end result of following that synthesis approach
is a nonlinear control law in the following form:

Lo =fr@)+ [ H@d+ S (19

where T}, (the motor input) is the output of the controller,
€ = 8o — u with 8,.; an external input (see Fig. 2), and
Jfe(:), fe(:) and fp(-) are nonlinear functions obtained by an
amplitude-desensitization process involving SIDF inversion.
Again, for a detailed description of the SIDF-based control
design method, see [3, 4].

6 Design and Simulation Study

The parameters of the testbed system are listed in Table 1.
The dynamic response of 8y of the open-loop testbed sys-
tem in the presence of initial non-zero condition (f:ip # 0),
friction, backlash and gun-firing disturbance is shown in
Fig. 3. From Fig. 3, we see that the modes of the barrel
are quite lightly damped. We found that the damping ratio
of the lowest-frequency mode is about 10%, and the damp-
ing ratios of other modes are less then 10%. Therefore, we
use the degrees of freedon in (18) to increase the damping
of the two lowest-frequency modes. Using any existing pole
assignment methods (for example, see [2]) we find that when
= —3.521 — 108;, the damping factors of the first and sec-
ond lowest-frequency modes are 40% and 20% respectively.
By Proposition 2, the control scheme guarantees the stability
of the system.

The SIDF-based control nonlinearities for the drive subsys-
tem (19) is shown in Fig. 4. Figure 5 shows the uniformly
fast response of u = bséb + k48p of the drive subsystem con-
trolled by the nonlinear control to a step input v with differ-
ent amplitudes. For comparison, Fig. 6 shows the response
of w = b.f, + k8, of the drive subsystem controlled by a
linear control system (designed based on a linearized model
of the testbed) to the step input v with different amplitudes.
Fig. 6 also includes the response of w = b_,éb + k.8, of the
linearized model controlled by the linear control system. As
mentioned earlier, the dynamic response of the SIDF-based
nonlinear control system is insensitive to the amplitudes of
input signal.

To summarize, the final composite nonlinear control law for
the motor torque Tr, is given by Eqn. (19) where e = u%—u =
—3.5&1 — 108; — (bsfy + k+0s) and fr(e), fi(e), fo(e) are the
nonlinear functions shown in Fig. 4. The dynamic responses
of #iip controlled by the nonlinear control law (19) is shown
in Fig. 7, along with analogous results for inner-loop linear
control. The closed-loop system is subject to several slew-
angle commands (8,.; values), as indicated; the responses
are normalized by dividing by ;.5 so the amplitude sensi-
tivity of the responses can be compared conveniently, The
same levels of friction, backlash and gun-firing disturbance
are used as in the open-loop case shown in Fig. 3. The
closed-loop behavior of 8¢, has been improved greatly over
the open-loop behavior.

A more detailed view of gun pointing accuracy is provided in
Fig. 8, where the responses with linear and nonlinear control
are shown for the smallest command 6,.; = 0.05; note that
the slowly decaying transients in the linear case completely
dominate the response while the (much smaller) effect of
gun-firing disturbance is seen in the nonlinear control case
as being the dominant source of pointing error.

To test the robustness of this control scheme, we randomly




change the values of the components of vectors D, K, B and
C1 in system (14) without changing their signs. The closed-
loop testbed system with control scheme (19) was always
stable with such parameter changes and in most cases the
dynamic response did not change noticeably.

7 Conclusion

We have developed a control system for the ATB1000
testbed model. The control system fulfilled our performance
specification — it worked well in the presence of backlash,
nonlinear friction, and gun-firing disturbances. The control
system is robust with respect to both input amplitude and
modeling uncertainties such as parameter imprecision and
unmodeled dynamics of the flexible element.

References

[1] Jin Lu, “Robust Control of Semi-Rigid/Flexible Struc-
tures,” Proc. American Conirol Conference, San Fran-
cisco, CA, 1993.

[2] G. Roppenecker and J. O’Reilly, “Parametric Output
Feedback Controller Design,” Automatica, Vol. 25, No.
2, pp. 259-265, 1989.

(3] Taylor, J. H., and K. L. Strobel, “Nonlinear Compen-
sator Synthesis via Sinusoidal-Input Describing Func-

tions,” Proc. American Control Conference, Boston
MA, pp. 1242-1247, 1985,

[4] Taylor, J. H., and J. Lu, “Computer-Aided Control En-
gineering Environment for the Synthesis of Nonlinear
Control Systems,” Proc. American Control Conference,
San Francisco, CA, 1993.

notation | description value unit
Ty backlash clearance 0-0.05 rad
by spring viscosity 0.1 Nm/rad sec™
ks spring constant 34.3 Nm/rad
bom motor friction magnitude 0.5 1
Jm motor and driving gear inertia 0.006 Kg m?
Jb driven gear and shaft inertia 0.01 Ky m?
by bearing viscosity 0.67 Nm/rad sec™’
bs inertia wheel friction magnitude | 0.1 1
D damping matrix diag([0 0.891 4.08 11.35]) Nm/rad sec™
K stiffness matrix diag([0 912.5 19124 148155]) Nm/rad
BT input gain vector [5.727.6 -17.1 -14.9]
. 1.28 0316 —0.063 —0.015
e output matrix 128 —0.798 —145  1.23
Table 1: Parameters of the ATB1000
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Fig. 1: A Schematic of a Tank Turret System

Fig. 2: Diagram of a Nonlinear Control System




A
o8 -
£
¥ Iy
L @
e
04 by ] :
i g
N
2 02 = 6 =
3 I - — Sl
= a
o
! £
’ g LS £ e u=0.5
3 4
o K
H Fe
E 3 e w01
-02 E
i 2
# u=0.05
T VY | — ; : e 7
: i : . I .
L : ; 8 : Wk | i ) L vt v
o _u_-‘_.-_l—l_LJ_:_-J_J-_:__!—Z 23 2 a3 s 0 3 & 9 12 15 1.8 21 24 27 k]
o > time (second) e
Fig. 6: Normalized Linear Control Responses to Step Inputs v
Fig. 3: Open-Loop Dynamic Response of 8:ip 14
| 12 F N
8 o
a o
] 1
a -
u o
& 8F
° o
= ‘g 6
a 8 LF
& o
8 E
= 2 £
_: 5 I
=] -
Z o0
-2 C
= 14
= 12 |
8 o
g 1
o e
a 8 I
@
: &P
5 8 arf
<! e I
= g L
2 2F
= E
0 s
-2 L. - - . . .
0 a 2 3 4 5 6 7 8
time (sec.)

Fig. 7: Normalized Closed-Loop Responses of 8y
—: 07 =1(rad.), ---: 0 = .5(rad.),

Fig. 4: Results of SIDF Inversion

tip tip
- -2 05 = 1(rad)), - 9'[‘-"; = .05(rad.),
12
§ YA'rS N

<
bl
Linear Control

HNormslired Nonlinsar Conlrol Responssa to Slep lnputa
1Y

1
T
Gun Firing Dislurbance

o 05 Bl 15 2 25 3 =t A 45 5

lime (sec.)

Fig. 5: Normalized Nonlinear Control
Inputs u

Responses to Step

T d
tima (sec.)

Fig. 8: Responses of 84ip to Gun Firing Disturbance



