MEAD II - AN IMPROVED CAD ENVIRONMENT FOR CONTROLS ENGINEERING

James H. Taylor, Magnus Rimvall, and Hunt A, Sutherland

Control Systems Laboratory
GE Corporate R & D
PO Box 8, Schenectady, NY 12301

ABSTRACT

Recent and future efforts at GE to develop modern
environments for Computer-Aided Control Engineering
(CACE) are discussed. The basic elements of these sys-
tems are;

» a User Interface which combines a “point-and-
click” menu- and forms-driven interface with other
access modes for the more experienced user,

¢ a Data-Base Manager organized in terms of projects,
models and corresponding results and other related
data elements and including version control,

o an Expert System Shell, which performs routine
higher-level CACE tasks, and

» a data-driven Supervisor that integrates the above
elements with existing CACE packages for linear and
nonlinear simulation, analysis and design.

As is usually the case, it has been learned that much
more can be done to provide a fully su%portive environ-
ment for controls engineering, and it has also become
clear that certain things might better be done differently,
This presentation will focus on such areas.

1. INTRODUCTION

Control system performance requirements are continu-
ally becoming more stringent. This trend fuels the
demand for the use of advanced controls technology,
which in turn translates into the current growing need
for advanced computer-aided control engineering
(CACE) software. This has given impetus to rapid
strides made world-wide in CACE software development
and usage, and has strongly motivated the GE MEAD
Project.

The GE MEAD Controls Environment [1,2] has been
designed to take maximum advantage of existing
software modules. This software is the successor to a
mature “production” environment prepared for the US
Air Force, also called MEAD (USAF MEAD; [3,4]). The
basic elements of MEAD systems are:

» a point-and-click menu- and forms-driven User
Interface [5] that supports all basic CACE activity
plus other access modes for the more experienced
user (command-driven modes and a macro facility),

» a Data-Base Manager [6] which organizes the user’s
work into Projects which are populated with models,
results, and other related data elements,

» an Expert System Shell, which is programmed to
g:rform routine higher-level CACE tasks that are
yond the capabilities of standard packages and

require a level of heuristic decision-making or itera-
tion [7] (this is only working in USAF MEAD), and

» a data-driven Supervisor [8] that provides a shell for
existing CACE packages for linear and nonlinear
simulation, analysis and design, and interfaces with
the Data-Base Manager and Expert System,

The resulting software architecture is depicted in Fig. 1.
The CACE toglls (“core packages™) now include the
PRO-MATLAB ' package for linear analysis and design,
and the SIMNON ~ package for nonlinear simulation,
equilibrium determination, and linearization, Other
modules are also based on existing software: the user
interface was built using the GE Computer / Human
Interface Developmegt Environment (CHIDE [9]) which
rests on the ROSE™ data-base manager; the MEAD
data-base manager (DBM) uses ROSE and the DEC™
Code Management System (CMS) for version control;
and the expert system uses the GE Delphi"‘ shell which
rests on VAX' Lisp. The supervisor and the front-end
of the DBM are coded in the Ada™ language.

Substantial progress has been made in supporting the
controls engineer in a number of areas previously given
little or no attention. In particular, the higher-level user
interface, data-base management scheme, and expert-
aiding are noteworthy new contributions, The MEAD
User Interface is much more “user-friendly” compared
with those of the underlying %a.\‘gkages which have rigid
command-driven interfaces. data-base management
capabilities solve important problems associated with
version control of the user’s models and tracking related
files such as results - in essence, every element in the
user’s MEAD data base is fully documented as to how it
was obtained. The MEAD expert system adds yet
another area of support, which at this point has not been
used to full advantage.

The focus of this presentation will be on those areas
where the MEAD concept and implementations can be
modified, extended and improved. These refinements
are primarily aimed at broadening the scope of MEAD
and increasing the support and effectiveness of this
environment,

™ MATLAB is a registeced trademark of The MathWorks, South

Natick, Massachusetts; SIMNON is a trademark of Lund University,

llign?, chdce::p VAN)[(, DEC ;3[a registered trademarks of Digital

uvipment ., Ma , Massachusetts; ROSE is a trademark

of hﬁmrtin Hardwick, l{;i@!‘roy, New York; Delphi is a trademark

of GE; and Ada is a registered trademark of the U, S. Government,
Ada Joint Program Office.

2. USER INTERFACE IMPROVEMENTS AND EXTENSIONS

The MEAD User Interface (UI) combines the simplicity
of modern graphical interfaces, using drop-down menus,
forms, and “point-and-click” techniques, with the flexi-
bility of command- and macro-interfaces, This provides
both the novice and the expert user a powerful and yet
fully manageable access to the packages. This is a par-
ticularly critical issue for CACE applications, since
many users are quite computer-literate and demanding,

The MEAD UI supports four modes of interaction:

¢ The primary UI mode, which is a menu- and forms-
based point-and-click style interface, is the most
suitable for beginning or once-in-awhile users,
Moreover, the expert user is also well served by its
efficient operation, as many individuval point-and-
click action buttons launch more powerful com-
mands than the ones available in the underlying
packages. For example, a ‘connect’ action in the
MEAD model-building environment may translate
into more than a dozen commands which are sent to
the underlying linear analysis package. However,
the functionality is definitely prescribed in this
mode, so the expert user may not be able to achieve
all desired results.

e The MEAD command mode allows the user to
directly enter supervisor-level commands (see Sec-
tion 4). This mode is primarily intended for the
expert user wishing to use the full power of the
Supervisor’s command language (which includes
conditional statements, loops, etc.). Although most
commands on this level are available via the more
friendly menu/forms mode as well, the ability to
combine and structure commands freely can
expedite tasks for the expert,

» “Package Mode” gives the user the option of enter-
ing arbitrary commands directly to the underlying
packages, using their native command syntax, This
requires the user to know how to operate the under-
lying package in stand-alone fashion; it is intended
to be used when the exact desired functionality is
not available through the use of MEAD commands.
Commands are entered via the supervisor, so full
data-base management capabilities are available on
this level [1,2].

Macro Mode facilitates defining sequences of com-
mands for repeated execution. ese commands
may be captured in script form during normal opera-
tion of MEAD, or they may be entered using a regu-
lar text editor. Macros may contain both MEAD and
package commands, they may be edited for custom-
1zing, and they are automatically loaded into a selec-
tion form for easy access in menu mode.

The MEAD graphical operating environment allows the
user to perform all controls-related operations in a very
consistent manner over mouse-operated menus and
forms. A menu hierarchy is used to group related
operations together into domains familiar to control
engineers [2]. The menu tree hierarchy is limited to two
or three levels for quick access to all domains. At the
bottom of the menu tree, selection and action forms are
used to give a highly interactive execution of most
operations. An example of a selection form, used to

browse and operate upon models in the data base, is
portrayed in Fig. 2 (see Section 3 for more information
on data-base browsing).

The look and feel of a Ul is improved by adopting style
guidelines. The following principles evolved in the
development of the MEAD UI:

o Present options in menus or forms so that their
applicability is understood before selection,

» Provide easy access from all menus and forms to
status displays and auxiliary operations (e.g.,data-
base browsing).

» Provide constant feedback to the user as lengthy
operations are performed.

o Automatically manage the setup and initialization of
auxiliary programs, such as plot utilities, text edi-
tors, or block diagram editors.

» Provide context-directed helps which key upon the
currently active form or menu.

Stagdards are now avgjlable under the X Window Sys-
tem , e.g. the Motif and Open Look toolkits and
style guidelines, which offer strong support for con-
sistency among all applications found on the user’s
workstation, as well as within the CACE tool. The
MEAD UI was implemented before these standards were
available, but we plan to adopt Motif when converting
to X Windows,

Extensions can also be made to increase the functional
capabilities of the UI, These include:

* a smart editor for entry and execution of commands
and macros,

e user customization of the menus and forms,
» tools for adding new rule bases, and
o interactive manipulation and viewing of data,

Smart Editor: A smart editor would provide a facility
for the interactive entry of MEAD and package com-
mands, and assist with the construction and execution of
macros. This would combine a language-sensitive edi-
tor with an interactive mode for immediate command
execution,. The commands could be built from scratch,
or taken from a buffer which contains the sequence of
commands previously executed. (The present version of
the MEAD UI already provides access to the previously
executed commands, via a standard text editor.) The
smart editor would contain knowledge about the com-
mand syntax, providing either menus of available com-
mands to select from, or command completion with
prompting for parameters associated with a command.
It would be loaded from the same command-definition
files used by the data-driven supervisor, thus ensuring
consistency,

User Customization: A toolbox of standard “dialog-
boxes” and forms would enable the user to customize

™ X Windows System is a trademark of MIT; Motif is a trademark of
the %en Software Foundation; and Open Look is a trademark of
AT&T Company.

the functionality provided in the menus and forms, by
installing custom macros, thus achieving the seamless
integration of user-developed macros as additional
functions appearing in the menu tree. (The present
MEAD UI automatically provides a selection form for
user-developed macros, but this form is not integrated
with the main menus.)

Adding New Rule Bases: To support this, the Ul must
provide a more general framework for queries and
responses, to facilitate the interaction of the user with
the expert system. (USAF MEAD supports some simple
communication protocols; however more dgenerality is
needed.) The required Ul extensions should prove to be
minor in addition to those outlined in the item above,

Dynamic Access to Data-base Objects: An example of
the concept is shown in Fig. 3, and is based on the
notion of attaching various windows with configurable

views to objects in the data-base. The windows would

then provide either “direct manipulation” or a
continuously updated view of the object. As shown in
this example, the user has developed a system model
containing a compensator with some design parameters
to be tuned, and chooses to view both a root-locus
diagram and the step response of the system as the
design parameters are varied. Starting from the block
diagram of the system, three additional windows are
opened. One window contains a list of desi
parameters to be vared, perhaps taken from
compensator block contained in the model data-base.
The other two windows display time-history and root-
locus results. Then, as the user types in new values in
the design parameter window, the plot windows would
automatically update.

Such windows must have dynamic access to data-base
objects rather than the static access now provided by the
MEAD Ul. As shown in this example, data-base objects
must be simultaneously changed and viewed; the
present MEAD UI does not permit this. This concept
has great potential to improve the productivity of the
controls designer and is currently an active research
interest [10].

3. DBM IMPROVEMENTS AND EXTENSIONS

Little has been done to support engineering data-base-
management for CACE prior to MEAD. A user’s models
and results simply accumulated in the workspace (e.g.,
in a subdirectory under VAX VMS), and it was up to
the engineer to perform version control, to relate results
to specific model instances and conditions, to relate
linearized models to the “parent” nonlinear model and
operating point, and so on. To rectify this situation,
data-base-management uvirements from the user's
i)ers]ctive were developed under the USAF MEAD pro-
ect

The CACE user’s data base is traditionally but infor-
mally organized in the hierarchy Projects, Models,
Components, and Results. The user often sets up a
workspace for each project (e.g., Project = GE_654),
develops models (e.g.,, Model = Turbine) which are
comprised of components (e.g., Component 1 = Stator,
Component 2 = Rotor, Component 3 = Fuel_injector,
...), and which are used to generate various results
(e.g., simulation time-histories, linearizations). This has

been accommodated directly in the MEAD data-base
tree, as illustrated in Fig. 4,

Within this framework, the MEAD Data-Base Manager
(QBM) was designed to address the problems of main-
taining the integrity and documentability of the user’s
models and analysis and design results, It achieves this
as follows:

* Rigorous version control exists at the Component
level, and classes are used at the Model level to
define specific instances. For example, class=7 of
Turbine includes Stator;2, Rotor;7, Fuel_injector;3,
... where the notation “;k" refers to version k of a
component. Any class of Turbine that has not been
purged can be fetched from the data base and used;
any results generated with a given class will be
stored with other results obtained with the same
class, so there is never any question about how a
result was created.

» Traceability between derivative models (e.g., lineari-
zations and reduced-order linear models) and their
parents (the original nonlinear or high-order model)
is maintained. For example, Lin_Turbine is a linear-
ization of Turbine class=7 at the operating point
Power = 10 000 HP; this information is stored in
the data base as a Reference and Condition_Spec.

« Single-point storage of components is provided for
those that may be used in building any number of
models. For example, Turbine is the “home” of the
component Rotor; model TurbCtrl uses this same
component by Linking to it,

+ An on-line Note Facility permits the user to store
information/on-line documentation for any given
project, model, component, or result in the data
base. Headers are automatically generated to
uniquely identify the element to which a note refers,
and time-stamps are included whenever a note is
added or modified.

Elements of the user’s MEAD data base are accessed by
a Browsing Facility that allows the user to display,
annotate, purge and delete them via a point-and-click
“selection form”, as portrayed in Fig. 2.

The main deficiencies of the present version of this
DBM are that it is somewhat limited in terms of data
manipulation, it is not easy to search for data elements,
and it is restricted to access by a single user. In addi-
tion, there are some aspects of support that are only par-
tbially addressed. These shortcomings can be alleviated

y:

» making the DBM more open and flexible - e.g.,
allow the user to rename, move, compare, and
search for specific data elements, and permit the
interactive display of notes;

+ complementing the point-and-click interface by
adding other access modes;

» extending the Notes Facility so the on-line docu-
mentation of the user’s design activity can be better
supported, including automatic document genera-
tion; and

o adding functionality to permit safe and flexible
multi-user access.

Flexible Data Element Manipulation: Renaming and
moving data elements are elementary functionalities that
are easy to implement. (This is necessitated by the fact
that users typically become dissatisfied with the original
name they gave an element or with where it was placed,
and are then very frustrated if such a change cannot be
done.) Any element can be renamed (as long as name
conflicts are avoided), and moves can be permitted with
the following limits; Results cannot be moved from one
Model to another, Components cannot be moved to a
Model where they are not used (in other words, a
Component could only be moved from its “home” to
another model that uses it via the Link mechanism
mentioned above). Models (and associated components
and results) can be moved arbitrarily among the user’s
Projects.

Comparing data elements can be done in several senses,
At the simplest level, one would like to compare various
time-histories obtained with a model or several models
by cross-plotting the results; this is trivial. For higher-
level comparisons, it would be helpful to have an
object-oriented system, so each element has a method
associated with the operation of comparison; for
example:

» Component Compt! can be compared with Compt2
to see how they differ (these elements could be
different versions of the same component or merely
similar components); this could be done on the data
level (A,; might have different values) or attribute
level (e.g., by comparing their Bode plots),

e Result]l can be compared with Result2 to see how
they differ (again, either at the data level by using
an ASCII differs utility or at the attribute level by
cross-plotting the results or determining mean
square error), and

e Result] can be compared with Resuli2 to see how
they differ in their definition (e.g., Resultl might
differ from Result2 because Resultl was obtained
with gain K,; = 1.5 and Result2 corresponds to gain
K3 =2.33).

Improved Data Base Access: Adding other modes of
access to the point-and-click interface would do much to
open up the MEAD user’s data base. At present, the
user has a limited “window” into the DB, é.g., a
Browsing Facility Screen may display all the models in
a given Ftoject (Fig. 2), or all the results for a given
model class, and that is all. One way to facilitate
finding data elements by name would be to incorporate
a way to portray the entire user’s data-base tree in a
graphical form that conforms to Fig. 4. Such a display
would allow one to determine which project contains
Turbine much faster than by searching the project
i*)creeencsl in the DB Browser one after another until it is
ocated.

There are many cases where a command-mode interface
would be still more effective. For example, a simple
query language could be used to find all simulation
result(s) for all classes of model Turbine with a step
input of amplitude WF = 2.33 much more expeditiously
than browsing. Perhaps a limited subset of SQL
(Standard Query Language) would be a good choice for
this use.

Improved On-Line Documentation; The Note Facility
can be made much more accessible if the notes can be
displayed or modified from the current screen rather
than from the Browser (Fig. 2). For example, if a
‘Note’ button is always available, then the user can:

o click ‘Note’ immediately after configuring a model
to annotate it,

o click ‘Note’ immediately after saving a result to
document it, and

o click ‘Note’ immediately after “modelizing” a result
(installing a result as a model in the data base) to
annotate the new model.

Further extensions could be made to create an auto-
documenting environment. For example, MEAD
presently does not prompt for notes as the user works
and produces new data elements. In addition, the Notes
Facility makes no attempt to relate individual note files
to an overall document for a project or model. If an
auto-documenting environment were implemented and
AUTODOC were tumed on, then a document
framework could be created from templates and every
user action that results in saving a data element could be
recorded in that report and the user could be prompted
for comments /text blocks to narrate the course of the
effort. Organizations that require standard report
formats and design approaches could thereby capture
much of the required documentation material on-line,

Multi-User Data Base Access: Multi-user access to a
single MEAD data base is the most important and
substantial extension of the MEAD DBM., This would
allow several engineers to work on the same project
without the duplication of data (models etc.) and the
corollary problems of maintenance and coordination.
The main 1ssues involved in developing multi-user data
bases relate to safety: How can users share models and
still be confident that they know precisely what they are
using (version and class control provide some support
here), and how can users update models safely (e.g.,
modify and create new classes without using stale
versions of components); software engineering tools
exist to solve this problem,

Preliminary thinking regarding opening the DBM to
multi-user access was presented in [6]). The layer Sub-
project was proposed in addition to those shown in Fig,
4, to accommodate a project leader (working at the
project level) and other controls engineers working in
individual workspaces corresponding to each sub-
project. With this extended hierarchy, standard software
development tools could be used to allow the leader to
maintain the integrity of the overall data base and to
control access to the various data elements. For
example, DEC CMS (which the USAF MEAD DBM uses
for model version control) supports fetching elements
for modification in the user’s workspace, controlling
concurrent changes to the same element, and merging
such concurrent changes. It also tracks which users are
working on various elements from a library, and
maintains a historical record of such transactions. In
addition, other softwage engineering tools under either
VAX VMS or UNIX " automate and simplify building
software systems based on source code, object libraries,
include files, compilers, and compilation and link
options, which would further discipline and rigorize the

building of complicated models,

In summary, much can be done to extend and improve
the MEAD DBM. The features that might be considered
by other CACE tool developers include flexible and con-
venient DBM access modes; full version and class con-
trol and tracking of results, references and links in the
context of multi-user data bases; and provision for
auto-documentation, These can be implemented using
existing software enl%‘ineering tools or by selectively
duplicating the capabilities of such tools, as required.

4, SUPERVISOR IMPROVEMENTS AND EXTENSIONS

All CACE packages, whether command-driven or
graphics-oriented, have some central controlling kernel,
or supervisor, governing the execution of commands,
storage and retrieval of data, error handling, external
file handling, and so on. In command-driven packages
this kernel primarily consists of a command-language
parser accepting and decoding user commands, a com-
mand interpreter mapping these commands onto action
routines, and a data handler for storing and retrieving
the results of the commands. More modern, graphics-
oriented packages such as MEAD relieve the user from
having to enter detailed and often ideosyncratic com-
mands, yet these packages also bave a similar kemel
performing the above operations (where the command
parser may be replaced with a module interpreting the
user’s interactive menu or form operations),

The MEAD Supervisor plays such a central role in the
MEAD architecture (Fig. 1). In this position, it serves as
coordinator and package integrator. The various bumer-
ical core packatges run as separate processes under the
direct control of the Supervisor, which is responsible for
combining and controlling these packages as well as
reformatting or converting data, when necessary, to
ensure compatibility. The Supervisor is also responsible
for facilitating communication among the Ul /user, the
DBM, and the expert system,

In GE MEAD, the data-driven Supervisor [8] allows all
MEAD commands to be defined in external definition
files, which include all information needed to call the
different core packages. Actions to be performed are
input in the MEAD command language, which is then
automatically translated into the correct syntax for the
target package. The GE MEAD interpretive program-
ming language is capable of data-base expert-
system interactions as well as mapping MEAD com-
mands into different core packages.

The open architecture of MEAD allows the system to be
extended in several ways:

o allowing the creation of new commands (e.g., new
aggregations of core package commands),

o accessing added functionality/commands in
upgrades to already supported packages, and

» supporting new core packages.

™ UNIX is a trademark of AT&T Company.

Creation of New Commands: Individual users should be
able to create new functionality by aggregating existing
primitives into more powerful commands. In GE
MEAD, this can be done by writing command-language
macros. The Supervisor command language includes
command flow statements such as conditional state-
ments and loops, as well as some 75 control-theoretic
and data-base related commands, These can be com-
bined and structured freely to expedite tasks for the
user. A detailed example of this is included in [8].

Accessing New Core Package Functionality: As we
have seen, one advantage of a general-purpose com-
mand language is that new commands can be added in
the form of macros and procedures at any time. In
MEAD, this capability may also be used to accommo-
date any upgrades (especially, new operations) made to
the core packages.

Supporting New Core Packages: The GE MEAD Super-
visor allows new commands to be added without cod-
ing. However, to add a new package one must:

» extend the existing MEAD macros to define how
various MEAD commands are to be mapped into
package commands,

o create Ada-coded translation modules to accept
MEAD-language commands and translate them into
the new core package syntax, and

o create Ada-coded handshaking modules to interact
with the package at the lowest level (recognizing
prompts, error messages, etc).

The first step may be accomplished by editing non-
compiled MEAD command data-files; only the two last
tasks presently require any programming in the tradi-
tional sense.

To make the remaining steps data-driven, and thus per-
mit the addition of new packages without modifying the
Sx:f)ervisor source code, it would be necessary to pro-
vide a means for formalizing the command language of
the new package so that an automatic translation from
the MEAD command langua%a“to the package command
language can take place. is translation is in some
sense the reverse of the “compiler-compiler” problem,
and similar to the problem of generating a code-
generating back end for-a given compiler.

An even more challenging problem is formalizing the
hand-shaking mechanisms and error-detection /error-
recovery schemes of a generic command-driven pack-
age so that the supervisor knows what state the package
is in at all times. Pattern matching and dynamic state
transition tools might provide the necessary machinery.

In summary, our experiences with the MEAD supervisor
and with integrating kernel programs such as PRO-
MATLAB and SIMNON indicate that the openness of the
architecture is the key factor in both ease-of-design and
ease-of-use. This will become even more important in
the future as different groups experience the need to
connect or integrate different controls packages, or
integrate controls packages with non-controls software.

5. OTHER EXTENSIONS

Automatic Code Generation: The MEAD environments
are presently limited to control system analysis and
design; controller implementation is not a part of this
integrated environment. First-generation code genera-
tors are available; however, they are not without their
problems. Despite these shortcomings, they constitute a
first step in the right direction - an automatic code gen-
erator to translate block diagrams into real-time code is
eg(siential for gaining the engineering productivity sought
today.

Disciplinary Extensions; Many extensions can be made
to support specific disciplines more completely. Non-
linear system modeling is often time-consuming and
prohibitively expensive, so replacing or augmenting
general-purpose simulators (see section 1) with
domain-specific modeling environments would result in
substantial improvements in CACE efficacy. A variety
of other extensions could also be made to support ancil-
lary analysis or design functions peculiar to a given dis-
cipline, e.g., trimming an aircraft (which is not the same
as equilibriating [11]). The UI and Supervisor exten-
sions in previous discussions are essential for providing
the infrastructure to make this feasible in a fully
integrated fashion.

Expert _System__Improvements _and _Extensions: The
MEAD Expert System (ES) implementation was based
on on viewing the BS as a “control engineer’s assistant”
[7), i.e., the user invokes a rule base to carry out a task
as follows: The button for an expert-aided function is
clicked, the corresponding rule base is loaded into the
ES, and it proceeds to elicit set-up information (e.g.,
specifications for a design process) and carry out the
task (perhaps with intermediate interaction with the
user). The ES then prepares a report, which the user
can display and either initiate a new or modified task or
move on. Again, note that the ES is only operational in
USAF MEAD [3,4].

The present MEAD ES is very limited in scope and
behavior. While it takes advantage of its capability to
apply beuristic decision-making in the course of execut-
ing a clear-cut task, many other high-level benefits of
this technology are neglected. The following extensions
are applications of ES functionalities so far unused or
underused:

o smart helps - asking ‘why’ and ‘how’ can elicit use-
ful answers based on the underlying rule-base.

e tutoring - the ES could continuously display logical
and numerical steps to the user.

e progress reports - an intermediate level of user
information could be provided every time the ES
reached a milestone.

o user influence - at each “progress report” the experi-
enced user could be allowed to modify problem
solution if it is believed faster convergence will be
achieved.

A more detailed discussion of these extensions may be
found in [12]. Acknowledgement: the last two ideas
have been implemented elsewhere (personal communi-
cation of D. K. Frederick).

6, SUMMARY AND CONCLUSIONS

The above sections outline areas where the MEAD
environments can be improved. We hope that the les-
sons learned in developing MEAD will be helpful in
charting new courses in CADCS, and that the ideas and
extensions described in this paper will be of broad
applicability and benefit to many package developers.

REFERENCES

[1] Taylor, J. H., Prederick, D. K., Rimvall, C. M., and
Sutherland, H, A., "The GE MEAD CACE Environ-
ment", Proc. IEEE Workshop on CACSD, Tampa FL,
December 1989,

[2] Taylor, J. H,, Frederick, D. K., Rimvall, C. M., and
Sutherland, H. A., "CACE Environments: Architecture,
User Interface, Data-base Management, and Expert
Aiding" (invited tutorial), Proc. 1lth IFAC World
Congress, Tallinn, USSR, August 1990,

{3] Hummel, T. C. and Taylor, J. H., "Muiti-disciplinary
Expert-aided Analysis and Design (MEAD)", Proc.
Third Annual Conf. on Aerospace Computational
Control, Oxnard, CA, August 1989,

{41 Taylor, J. H. and McKeehen, P. D., "A CACE Environ-
ment for Multi-disciplinary Expert-aided Analysis and
Design (MEAD)", Proc. National Aerospace and
Electronics Conf. (NAECON}, Dayton, OH, May 1989.

{51 Rimvall, C. M., Suthedand, H. A., Taylor, J. H. and
Lohr, P. J., "GE’s MEAD User Interface - a Flexible
Menu- and Forms-driven Interface for Engineering
Applications”", Proc. IEEE Workshop on CACSD,
Tampa, FL, December 1989,

[6] Taylor, J. H., Nieh, K-H. and Mroz, P. A,, "A Data-
base Management Scheme for CACE", Proc. American
Control Conf., Atlanta, GA, June 1988.

[7]1 Taylor, J. H,, "Expert-aided Environments for CAE of
Control Systems" (plenary lecture), Proc. 4th IFAC
Symp. on CADCS ‘88, Beijing, PR China, August 1988.

[8] Rimvali, C. M. and Taylor, J. H., "Data-driven Super-
visor Design for CACE Package Integration", Proc. 5th
IFAC Symp. on CADCS, Swansea, UK., July 1991,

[9] Lohr, P. J, "CHIDE: A Usable UIMS for the
Engineering Environment”, Tech. Report, GE
Corporate R & D, Schenectady, NY 12301, 1989.

[10] Ravn, O., "On User-friendly Interface Construction for
CACSD Packages", Proc. IEEE Workshop on CACSD,
Tampa, FL, December 1989.

[11] Taylor, J. H., James, J. R. and Prederick, D. K,
"Bxpert-aided Control Engineering Environment for
Nonlinear Systems", Proc. 10th IF,EC World Congress,
Munich, FRG, July 1987,

[12] Taylor, J. H,, Rimvall, C. M. and Sutherland, H. A.,
"Puture Developments in Modem Environments for
CADCS" (invited tutorial), Proc. 5th IFAC Symp. on
CADCS, Swansea, UK., July 1991,

Aqorersry sseg-vreq AVAW b 24n31g Sumory oseg-ere(] ommeulg °¢ 3andiy

uieb 20 =~ ZON

uieb TG0 - 1A

uled - "OS ~ PN

@431vis

Bae10g Smsmorg [PPOW AVAN T d4n31g

AMOAIGIY AVIN FO °T 3By

I I $q ddiu uuj|Dy JoIU{ | 1y x3yuoy] \||||||I||J
!.oi poy c_c_; ss01) wieq] ejoq o.oam DXIRYEE] u::ncl «a_cuncn; SNOT Lo _ Sepu
soede uopIpuod
synseJ
A N T@:61 6861 -NON-LZ 6861-NON-9Z NONWIS | sqiddju g & d

wefoud NONMIS
‘e VR wy]
AATA A 9Z:81 68361-NON-9Z 6861 -NON-1Z NOWWIS €°Z°1 wdupy (‘«||\ / \

A A €9:91 6861 ~NON-ST 6861 -NON-ST awy i vgdduy 1O (swo) WMﬂto“
’ (3504}
HIOVNVW | ol yosiAM3dNS |eei FTearM u3sn
A N 11:ZZ 6861-030-1 6861 -330-1 a1 seiddus i 3sve-viva
A A ¥E:60 6861 ~-NOK-¥T 6861 -NON-HT adsy 1t wdvii
\d
SIINSIY SIyoN payopan PIYOIL) 3dh) sesso() _ _ [T .“mmﬂnm
oy [WALSAS
[UGI1 1B} = }99(0Jg - OuisAc.g 18PoW GUAN Luadxa
_ Y .xw~ ysod}l _ u_cz_ o..oo:_ v:vl-ou_

