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Abstract: An efficient method for minimization of
energy loss over time is presented. The proposed
method uses different loading conditions during
a given future time interval instead of one single
snapshot of the network. The method finds the
optimal conditions during the given interval.

The given interval is divided into several shorter
periods. By increasing the number of periods or
load profiles, the dimension of problem will rise
substantially. This problem is handled by us-
ing the Generalized Bender Decomposition (GBD)
technique. With this technique, the loading con-
dition for each period will be solved in a separate
NLP subproblem. The results of the NLP sub-
problems will be coordinated in a master prob-
lem. As shown in simulation results, the proposed
method not only improves the voltage profile, but
it also decrease the total energy loss over the given
interval.
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1 Introduction

Optimal power flow (OPF) problem is one of the major
issues in operation of power systems. This problem can be
divided into two subproblems, MVar dispatch or optimal
reactive power flow (ORPF) and MW dispatch. The main
objectives of ORPF address three important aspects: a)
keeping the voltage profiles in an acceptable range [1], b)
minimizing the total transmission energy loss [2], and c)
avoiding excessive adjustment of transformer tap settings
and discrete var sources switching [2, 3].

The control variables for this study include the vars/ volt-
ages of generators, the tap ratios of transformers, reactive
power generation of var sources, etc. The constraints in-
clude the var/voltage limits of generators, the voltage lim-
its of load buses, tap ratio limits, var source limits, power
flow balance at buses, security constraints, etc.

ORPF is frequently executed on-line by getting a snap-
shot from the real-time condition of the network. For
tracking on-line load changes, and keeping the network
in optimal condition over time, the ORPF should be exe-
cuted continuously, or at least very often. However, due to
application and implementation difficulties, ORPF is run

less frequently. Reasons for this include keeping operator
workload within acceptable limits and avoiding excessive
equipment switching (transformer taps, capacitor banks,
etc.). Between runs, the system can move far from the op-
timal condition. The deviation from optimality depends
on the rate and magnitude of load changes.

In most energy management systems (EMS), a static var
dispatch problem is solved [4, 5]. However, dynamic dis-
patch approaches have been applied to optimal active
power flow by several researchers [6, 7]. In this paper,
a new dynamic ORPF problem is proposed and solved.
In this scheme, the total energy loss based on the on-line
load conditions and the load forecast during an upcoming
interval is minimized. The proposed method keeps the
tap ratios and discrete var sources constant during the
given interval, at settings that are optimal over the entire
time. However, voltage constraint violations are elimi-
nated at the beginning of shorter periods, and power loss
is minimized to the extent possible by adjusting continu-
ous controls such as generator vars/voltages.

In Section 2 of this paper, the static and dynamic dispatch
methods are compared. In Section 3, the formulation of
the problem, and in Section 4, the solution method are
given. In Section b, the application of the new method to
the TEEE 30-bus system is addressed. A short summary
of results and significant issues are given in Section 6.

2 Static Versus Dynamic OPF

Two methods of static ORPF are selected for discussion.
In [4], the power loss is minimized on the basis of pre-
dicted load. An on-line program, which runs each 0.5 sec,
makes the necessary adjustments for any difference be-
tween real-time and forecast load profiles. The method
described in [5] divides the control variables into two sets,
discrete control variables (capacitors, reactors, and tap
ratios) and continuous control variables (vars/voltages of
the generators). The ORPF program is run with two dif-
ferent objectives: 1) power loss minimization, and 2) re-
moving voltage constraint violations. The first run has a
cycle of half to one hour, and uses all the control variables.
The second run has a cycle of 15 minutes; in removing
voltage constraint violations only the continuous control
variables are employed.

Several approaches for dynamic OPF also exist. In [6], the



optimal MW dispatch is simultaneously solved for on-line
and twelve other predicted load profiles in the upcoming
hour. A parallel processing neural network is used to solve
the problem. In [7], a dynamic dispatch for generation
scheduling has been used. A time interval consisting of
several one-hour subintervals has been selected. The load
level during each hour is assumed to be constant, although
it differs from one hour to the next. The method comes
up to an optimal generation scheduling for the whole time
interval. The method which is proposed in this paper
is an on-line dynamic var dispatch that has three main
advantages:

1. Reduced energy loss- The proposed method mini-
mizes the total energy loss during a given time in-
terval as the main objective.

2. Reduced physical plant changes- This method keeps
the tap ratios and discrete var sources constant dur-
ing the whole interval. This reduces the number of
physical plant changes and unnecessary equipment
wear and life-cycle costs. This benefit also results in
an implicit economic benefit.

3. A decrease in the number of control variables- In this
method, the number of controls in the beginning of
each period except the first is restricted to the con-
tinuous variables.

The main steps of the proposed method are shown in Fig.
1, and explained below:

e Step 1: selection of interval duration- The on-
line load profile and the load forecast for the upcom-
ing hours are inspected. Depending on the size of
load variations and the experience of the operator,
an interval varying from half an hour up to several
hours will be selected. By observing the same data,
the interval will be divided into “N” periods. The
number and duration of periods depend on the antic-
ipated load profile changes (see Fig. 2).

e Step 2: dynamic var dispatch- At the beginning
of each interval, a dynamic var dispatch to minimize
total energy loss for the interval will be executed.
The on-line load condition and load forecast for the
N periods are included. In this stage, all the con-
tinuous and discrete control variables are adjusted at
the beginning of interval.

e Step 3: static var dispatch- At the beginning of
each period, a static ORPF will be executed. At each
run, the constraint violations for the on-line load con-
ditions are removed. If no violations exist, the power
loss is minimized. In these runs, only continuous con-
trol variables are allowed to vary.

3 Problem Formulation

The formulation of this problem is explained in two stages.
In the first step, the minimization of power loss (or con-
straint violations) is addressed. In the second stage the
formulation for minimization of total energy loss is given.
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Figure 1: Flow chart of the energy loss minimization

method

3.1 Formulation for Constraint Violation
and Power Loss Minimization

It is assumed that the optimal MW dispatch is already
executed, and the active power generation of all the gen-
erators except at the slack bus are constant. With this
assumption, thd problem can be formulated as:

min f(z, y*)

subject to: 1
h(z,yx) =0, (1)
g9(z, yx) <0

where f is the transmission power loss or the amount of
constraint violations; z is the vector of continuous vari-
ables; y* are the discrete variables which are constant dur-
ing the period; the equality constraints, h(x), are related
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to power flow balance equations, and the inequality con-
straints, g(x), include functional and simple constraints
on contmuous variables. This formulation will be used in
the static var dispatch at the beginning of each period.

3.2 Formulation of Energy Loss Minimiza-
tion Method

The energy loss minimization problem will be executed at
the beginning of each interval. Each interval consists of
N periods. The continuous variables have different val-
ues for each period, while the discrete variables have the
same adjustment during the whole interval. This two-
tier strategy i1s imposed to reduce the number of physical
plant changes and thereby avoid unnecessary equipment
wear and life-cycle costs.

The ELM method can be formulated as:

mluE = P * 1"

subject to: (2)
A (2™ y) =0 .
g (2" y) <0 forn=1,2,--- N
ymingygymax

where Ej, is the total energy loss of interval; P7 is the
power loss of period n; " is the duration of period n;
and 2" (subvector of z) is the vector of continuous vari-
ables related to period n; A" and ¢" are the equality and
inequality constraints for period n, respectively. To em-
phasize that the discrete control variables, y, do not have
any n index, their inequality constraints are shown sepa-
rately. The formulation for Py, is given in [2].

4 Solution Method

The ELM problem as formulated in (2) can be solved by
using different decomposition techniques [8, 9]. In this
paper, the application of the GBD algorithm to the ELM
problem is proposed.

In GBD, the set of variables is divided into two subsets,
z and y. The y variables are termed as complicating vari-
ables. By fixing the y variables the solution of the problem
becomes much simpler. This algorithm is recommended
for three types of problems [9]. In the problem type dis-
cussed in this paper, by fixing the y variables, the problem
will be transformed into N independent subproblems.

In GBD, the optimization of z and y variables is decom-
posed into two separate subproblems, primal and master.
In the primal subproblem, the y variables are fixed at
their initial (first iteration) or optimal values found in the
previous master problem. The optimization is performed
by using the z variables. In the master subproblem, the
problem is optimized over the y variables. The master and
primal problems are solved alternatively until the conver-
gence criteria are met.

In the formulation given in (2), the set of variables has al-
ready been divided into two subsets. In GBD, the discrete

var sources and transformer tap ratios are recognized as
the complicating variables, y. The continuous variables
(such as var/voltage of generators) are denoted as z vari-
ables. The formulation of master and primal subproblems
are explained in the following sections.

4.1 Primal Subproblem Formulation

The formulation of the primal subproblem is similar to (2)
except that the values of y should be substituted by the
initial or optimal values found in the last run of the master
problem. By fixing the y variables, the primal problem
will be decomposed into NV independent subproblems each
involving a different subvector of z as:

min E} = P; xt"
o

subject to: f —-19... N 3
hn( n ): 0 or n )<y ) ) ( )

g" (=", y") <0,
where y* is fixed y at initial values (first iteration) or

optimal values found in the previous master problem.

In the primal problem, the N subproblems (3) are solved
independently (in series or parallel). In subproblem n the
energy loss during that period is minimized by using z”.
Each subproblem may have a feasible or infeasible solu-
tion. In infeasible case, a feasibility problem is solved [9].
If all the subproblems come to feasible solutions, then the
value of total energy loss EL will be an upper bound of
original obJectlve function given in (2), UB. In each itera-
tion, UB is updated. In either case, the optimal values of
continuous variables, z*, and Lagrangian multipliers are
passed to the master subproblem.

4.2 Master Subproblem Formulation

In the master problem, the x variables are fixed at their
optimal values found in the previous primal problems, z*.
In this subproblem, the total energy loss for the interval
is optimized over the y variables. This problem can be
formulated as:

min Lpas

y, L
where:

L(zl,y, Ai, i) < L
subJect to:

L( ]ai‘/a}‘w/lj) <0

Ymin < Y < Ymax,

fori:1,2,~~~,f (4)

forj=1,2,---,J

where I and J are the iteration counts for feasible and
infeasible primal problems, respectively; and:

N
= Er(zf,y)+ YA A* (2} )+

n=1

L(x},y, A, i)

n=1
N

L(x5,y, 05 i) = YN R (@) y) + > g (2] y)
n=1



where A; and p; are the equality and inequality La-
grangian multiplier vectors respectively obtained from the
feasible primal problem; and A; and fi; are the equality
and inequality Lagrangian multiplier vectors respectively
obtained from the infeasible primal problem; in all cases
superscript n stands for period number.

The optimal value of Lys is a lower bound of the original
objective function given in (2), LB. By solving the master
problem, the optimal values of y variables, y*, will be ob-
tained. At each iteration, LB is updated and y* is passed
to the primal problem for the next iteration.

5 System Studies

For comparing the power and energy loss minimization
methods, several small and large size networks have been
studied. Due to limitations, only the results of the IEEE
30-bus system (Fig. 1) are given in this section. The
Ward and Hale 6-bus system is studied in [2]. The line
data and the bus data of the modified IEEE 30-bus system
are same as those given in [10]. The load profiles for a one-
hour interval with four equal periods are tested. The bus
loads are uniformly reduced from 100% to 50% of full load
during the hour.

The PLM and ELLM methods are applied to the IEEE 30-
bus system. In both methods, all the control variables
are set at the beginning of interval, and the continuous
variables are adjusted at the beginning of each subsequent
period. In PLM method the power loss at the beginning
of interval and in ELM method the energy loss for the
whole interval are minimized.

5.1 The PLM Method

The power loss of the modified IEEE 30-bus system under
full load conditions is minimized. The power loss found
from this method for the four Periods are given in Table
1. The optimal values of bus voltages and discrete control
variables are given in Tables 2 and 3, respectively. As
mentioned before, PLM does not consider forecast load
variations so the discrete control variable values in “Period
1”7 are assumed to pertain to the entire interval.

As mentioned in section 3.2, the only control variables
that can be varied during the interval are Qg1, Qg2, Qys,
Qg8, @g11, Qg13. Therefore, at the beginning of Periods 2-
4, the ORPF is run with only these control variables used
to remove any voltage constraint violation or to minimize
the power loss. Due to the load variation at each period,
the power loss as shown in Table 1 also changes. The total
energy loss achieved by PLM can be determined as:

Ep=(PL+P}+ PP+ P})/4A=2432 MWH.

Table 1: Power loss for the four Periods from the PLM
method in MW

Time Period 1 2 3 4
Power loss 39.42 | 2840 | 1845 | 11.64
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Figure 3: Modified IEEE 30-bus System

5.2 Energy Loss Minimization

The TEEE 30-bus system with the same load profiles is
used for the minimization of energy loss. The energy
loss is minimized by employing (2). The total energy loss
found in this method is equal to 23.89 MWH. This value is
less than the energy loss found in the PLM method (24.32
MW). Some of the bus voltages and the discrete control
variables computed by this method for all the four Periods
are given in Tables 2 and 3, respectively. By comparing
the results of these Tables and other simulation studies,
the following observations can be made:

1. The voltage profiles from energy loss minimization
are smoother than those from the PLM method.

2. The energy loss in the ELM method for the above
example is 1.8% less than that from the PLM method.

3. The advantages of the ELM method are more ap-
parent when the load changes significantly. In cases
where the load profiles are almost flat during the
given time interval, ELM gives slightly better results.

4. In cases where the load changes during the next time
interval are large, coming to a feasible solution by the
PLM method is not always possible. In these cases
the ELM method is more likely to find a feasible solu-
tion. The reason is that the load conditions for all pe-
riods have been considered in the load flow equations
which are enforced as constraints in the ELM formu-
lation. Therefore, the optimal values of the discrete
control variables obtained using the ELM method can



Table 2: Several bus voltages from the ELM (PLM)
method
Periods
Variable 1 2 3 4
Va1 1.05 1.05 1.05 1.04
(1.05) | (1.05) | (1.05) | (0.99)
Vg2 1.04 1.04 1.03 1.02
(1.04) | (1.03) | (1.02) | (0.97)
Vs 0.99 1.00 1.00 0.98
(0.99) | (1.00) | (0.97) | (0.95)
Vs 1.01 1.01 1.00 0.99
(1.01) | (0.99) | (0.97) | (0.96)
Viio 1.05 1.05 1.05 1.02
(1.05) | (1.04) | (1.01) | (1.01)
Vita 1.03 1.03 1.03 1.01
(1.03) | (1.02) | (1.00) | (1.00)
Viis 1.02 1.03 1.03 1.02
(1.03) | (1.02) | (1.00) | (1.00)
Vias 1.00 1.01 1.00 0.99
(1.01) | (1.00) | (0.99) | (0.97)

usually handle the load changes predicted by the load
forecast.

Table 3: Discrete control settings for the interval from the
PLM and ELM methods

Variable | PLM | ELM [| Vanable | PLM | ELM
Qci7 54 57 Tsos | 1.0 | 1.04
Qcis 12 9 Ts.10 1.02 [ 1.00
Qcas 27 20 Tioiz | 1.04 | 1.04
Qcar 26 21 Tiois | 1.05 | 1.02
Tis 0.90 [ 0.90 || Tisio | 0.99 | 0.99
T4 0.98 | 1.00 || Tos2a | 0.94 | 095
Ts.7 0.98 | 0.98 || Thrae | 0.98 | 1.00

6 Conclusion

A new strategy for on-line optimal reactive power dispatch
is proposed. The method minimizes the total energy loss
during the upcoming interval, while keeping the voltage
profiles within an acceptable range. For actual energy
loss minimization the duration of periods should be very
short. By increasing the number of periods, the dimen-
sion of problem will increase substantially. By using the
GBD method the dimensionality problem has been solved.
With this technique, the loading condition of each period
will be solved in a separate NLP subproblem. The results
of NLP subproblems will be coordinated in the master
problem.

By comparing simulation results, it is found that ELM
gives a better voltage profiles than that from the PLM
method; in the simulation results, the method produced a
nearly constant voltage profiles during the given interval.
In addition, the energy loss was reduced at the same time,

Ut

with the same number of discrete control variable changes
as used by PLM.

The ELM method is based on the recognition that certain
control variables should not be adjusted too often, as this
may cause wear and shorten the life of the corresponding
equipment. In this study, there are two categories of con-
trol variables established; discrete and continuous control
variables are adjusted at the beginning of each time inter-
val, while during the interval, only the continuous control
variables are adjusted. The number of categories could be
increased, and the frequency of adjustment modified, to
fit differing circumstances.

The probability of finding an infeasible solution with the
ELM method is much lower than the PLM method. This
advantage of the ELM method is obtained by considering
the load forecast and making sure that anticipated load
changes during the upcoming interval can be accommo-

dated.
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