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Abstract

The classical model predictive control (MPC) approach is
extended to handle uncertainty in the variable delay time
problem by developing a Smart Delay-time Predictor ap-
proach. This new approach builds on the variable delay time
estimator technique applied to time-variable flow processes.
The present work has improved the approach proposed
by Sayda and Taylor [1] in one important respect: the
time delay prediction method presented here eliminates the
adverse transient spikes that occurred due to uncertainty in
the variable time delay, i.e., it removes unwanted transients
caused by miscalculation of the forced response inside the
controller. The efficacy and robustness of this technique is
demonstrated by controlling a pulp bleaching process using
a model predictive control algorithm with a variable delay-
time estimator embedded in that controller.

1 Introduction
Chemical process control systems have to operate over a

large envelope and for a variety of recipes. As a result, the
controller has to attempt to overcome process nonlinearities,
varying time delays and saturation constraints. Time delay
is the time it takes from the moment a change is made
in the control input until a response is seen in the output
variable. Some possible sources of time delays are: (1)
transportation of material over long distances, (2) retention
of material in large vessels, (3) measurement delays, and (4)
actuation signal delays. The presence of time delay may
cause the following difficulties in process control: (1) a
disturbance entering the process will not be detected until
after a significant period of time, (2) the control action will
be inadequate since its effects on a current error will affect
the process variable only after a long delay, (3) long time
delays may cause instability in the system.

A traditional modeling technique for a process is to
describe the process as a combination of basic idealized
models such as perfect mixers and plug flow vessels. The
dynamics of a continuous flow process depend on the mass
flow rate. The time constant of the process is determined by
the flow rate through the vessel, the liquid volume in it, and
the degree of mixing. In traditional design, the process is
usually assumed to be at a nominal operating point so that
the flow rates and volumes are constant, but this assumption

is often not valid. Because of disturbances and intentional
changes in the pulp production and utilization rates, the flow
rate through the process is continually varying [5], [6].

One may model a plug flow vessel, through which the
process material is assumed to flow without mixing, as a
pure time delay. The concentration of the constituents at the
outlet of the vessel is the same as at the inlet a certain time
ago [5]. Under steady flow conditions, the delay time can
be calculated by dividing the volume in the vessel by the
flow rate. We define the residence time of the feed material
as the time between entering at the input of the flow system
to exiting at the output. The bleaching tower, which is the
main contributing element in the continuous flow system of
the bleaching process, can be represented by a plug flow
reactor followed by a continuous stirred tank reactor. The
division of the residence time into two parts is motivated
by a simple model of a flow system. The plug flow of a
system is modeled as a transportation part,e−sTd , and the
part where the material is mixed is modeled as a first-order
lag 1 / (1 + sτ) [4].

The paper is organized in eight sections. Section 2 deals
with the dynamics of the pulp bleaching process and its
challenges. Sections 3 and 4 are devoted to the calculation
of estimates and predictions of time delay in a system. Sec-
tion 5 presents a model predictive control scheme suitable
for time delay processes. Section 6 addresses problems due
to the uncertainty in the variable time delay. In Section
7 we present the solution to this problem and results
from a typical industrial application. This is followed by
conclusions in Section 8.

2 The Pulp Bleaching Process
The main objective of pulp bleaching is to remove the

coloring compounds still present in the fibers and thereby
increase the brightness of the pulp, and to produce a pulp
of satisfactory physical and chemical properties for the
manufacture of printing or tissue papers [8]. Modern kraft
pulp bleaching is achieved in a multistage plant, using
expensive chemicals such as hydrogen peroxide, caustic
soda, and alkaline extraction agents. When the unbleached
pulp enters the bleach plant, it still includes a significant
amount of lignin (bonds that hold fibers together) and
chromophores (color constituents of the pulp). Hydrogen
peroxide is employed to extract as much of the residual



lignin as possible without damaging the pulp. After that,
caustic soda extraction is used to remove the alkali-soluble
portion of the lignin from the woodpulp. The bleaching
of mechanical pulp with hydrogen peroxide is usually
carried out by treating the pulp usingDPTA or pentasodium
diethylenetriaminepentaacetic, which is added to remove
transitional metal ions in the pulp; processing conditions
include agitation and at least 15 minutes retention time at
temperature, ranging from at least 105 to130 oF (40 to
54 oC). Bleach liquor is generally made up in a cascade
mixing system and applied to the pulp. Pulp is held in
a tower for at least two hours, though retention in ex-
cess of this time is also common. In general, a peroxide
residual of 5 to 10 % of the amount applied is desired.
Most systems include sulfur dioxide injection to prevent
reversion and for pH adjustment. In summary, three stages
are generally required in preparing the bleached pulp: (a)
washing the pulp, (b) heating to the desired temperature, and
(c) retention to complete the reaction. This modification in
refiner mechanical pulp process has the name of Thermo-
Mechanical Pulping (TMP) [3].

3 Zenger’s Delay-time Estimation Method
In chemical reaction engineering, the concept of res-

idence time distribution (RTD) is fundamental to reactor
design. TheRTD is the exit age distribution of material
leaving a reactor. The classical residence time distribution
covers only the case of stationary operating conditions, i.e.,
the flow rate through the system and the liquid volume in
the system are constant. However, there is a strong practical
need to consider processes under unsteady operating condi-
tions also, because of disturbances and intentional changes
in the process operation. Consideration of systems with
time-varying behavior is beyond the scope of the classical
RTD theory, so extensions to the theory are needed.

The volume and the flow through vessels and tanks
are time varying, and this causes difficulties in identifi-
cation and control procedures. For example, the flow in
an industrial process may change randomly (e.g., due to
disturbances) or intentionally (when the production and/or
utilization is increased or decreased). Similarly, the volume
changes in buffer vessel, whose purpose is to control the
flow variations [6].

Zenger introduced the concept of variable delay time and
presented an approach which can be used to estimate the
delay time even though the flows and volume are varying
[2], [7]. Models with varying liquid volumes are more
complex than those with varying flow rates only, and it is
often impossible to find a transformation that will change
the representation into one with constant coefficients.

Consider the case of a plug flow vessel, in which both the
input and output flow rates and the liquid volume change.
The model equations are:

V̇ (t) = Qi(t) − Qo(t) (1)

V (t) =

∫ t

t−Td(t)

Qi(τ)dτ (2)

where Qi(t) and Qo(t) are the in- and out-flow rates in
liters per minute,V (t) is the liquid volume in the plug flow

vessel, andTd in equation (2) can be understood as the past
time when the material exiting the vessel entered, i.e., the
present delay time. We justify equation (2) by observing that
the present volumeV (t) of “new liquid” must have entered
in the time interval since the exiting material entered. An
illustration of this explanation is shown in figure 1 where
to stands for the initial time the particle entered the vessel,
whereastf is the time the particle leaves the vessel.
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Fig. 1. Estimation of the delay time based on the inflow

By differentiating equation (2) we derive:

d

dt

[

∫ t

t−Td(t)
Qi(τ)dτ

]

=
d

dt
V (t)

or
Qi(t) − Qi(t − Td(t)) ∗ (1 − Ṫd(t)) = V̇ (t)

Substituting forV̇ (t) using equation (1) we obtain

Ṫd(t) = 1 −
Qo(t)

Qi(t − Td(t))
(3)

Zenger [2] proposed solving equation (3) to determine the
delay time numerically. This approach has one deficiency:
we cannot predict the delay time initial condition exactly
to solve this differential equation. That yields inaccurate
results in the calculation of the delay time.

4 A New Delay-time Prediction Method
As shown in equation (2), we canestimateTd(t) by

integrating the pulp inflow backward in time until that
integral equals the present volume. Alternatively, we could
predict the variable delay timeTdp(t) if we know the
future outflow by integrating it forward in time until the
integral equals the present volume. The latter is expressed
as follows:

∫ t+Tdp(t)

t

Qo(τ)dτ = V (t) (4)

where V (t) and t + Tdp(t) are respectively the present
volume and the predicted time delay at the instantt.
Equation (4) can be understood as the definition of the
“predicted delay time” as follows: If anew particleenters



at time t and V (t) is the corresponding volume in the
vessel, thenTdp(t) corresponds to that future time when
that volume of liquidV (t) has exited the vessel. However,
predicting the pulp outflowQo(t) is generally not practical
because the operators would have to specify their future
need for pulp, which is usually not feasible.

An algorithm can be realized to determine the delay time
either backward as in equation (2) or forward as in equation
(4) as follows:

1) Store the pulp inflow and bleaching tower level mea-
surements over a time interval equal to the maximum
retention time of the tower, with a suitable sampling
time h.

2) Calculate the pulp volume in the tower.
Backward delay time estimation

3) Measure the volume at timet and set a counterk =
t − h.

4) Integrate the inflow fromk to t; if the integral equals
the volume at timet then stop andTd(t) = t−k, else
setk = k − h and repeat this step.

Forward delay time prediction
5) Measure the volume at timet and set a counterk =

t + h.
6) Assume the future outflow and integrate it fromt to

k; if the integral equals the volume at timet then stop
andTdp(t) = k− t, else setk = k+h and repeat this
step.

Either algorithm can be used to identify the bleaching
process delay time using offline data, but the forward
method is problematical for the real-time control, since
Tdp(t) and thus the future outflow is required but difficult
to predict. Those problems will be discussed in section 6.
Figures 2 and 3 exhibit the volume and the pulp inflow for
one data set, and the pulp inflow and both the estimated
and the predicted delay time, respectively.
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Fig. 2. Volume and inflow of the first data set

5 Model Predictive Control
Model predictive control (MPC) is the class of advanced

control techniques most widely applied in the process
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Fig. 3. Outflow, estimated and predicted delay time, first data set

industries. A primary advantage is its explicit handling of
constraints. In addition, the formulation for multivariable
systems with time-delays is straightforward.MPC was de-
veloped in the process industries in the 1960’s and 70’s,
based primarily on heuristic ideas and input-output step and
impulse response models [9].

The basic idea is to solve an open-loop optimal control
problem at each time step. The decision variables are a set
of future manipulated variable moves and the objective is to
minimize deviation from a desired trajectory; constraintson
manipulated, state and output variables are naturally han-
dled in this formulation. Feedback is handled by providing
a model update at each time step (often called “additive
disturbance correction”), and performing the optimization
again. Dynamic matrix control (DMC) is the most popular
MPC algorithm used in the chemical process industry today
due to its simplicity and efficiency [10]. The basic strategy
may be developed as follows [11]:

The process model utilized inDMC is the step response
of the plant, while disturbances are regarded as constant
over the prediction horizon. The discrete-time response of
the plant model is thus:

y(t) =

∞
∑

i=1

gi∆u(t − i) (5)

wheregi are the sampled output values for the step response
and∆u(t) = u(t)−u(t−1). The predicted values over the
horizon are:

ŷ(t + k|t) =

∞
∑

i=1

gi∆u(t + k − i) + n̂(t + k|t) (6)

where disturbances are assumed to be constant over the
horizon, i.e., to be equal to the measured value of the output
(ym) minus that estimated by the model (ŷ(t|t)), as follows:

n̂(t + k|t) = n̂(t|t) = ym(t) − ŷ(t|t) (7)



Then equation (6) can be rewritten as:

ŷ(t + k|t) =

k
∑

i=1

gi∆u(t + k − i) + f(t + k)

wheref(t + k) is the free response of the system, that is,
the part of the response that does not depend on the future
actions:

f(t + k) =

∞
∑

i=k+1

gi∆u(t + k − i) + ym(t) − ŷ(t|t) (8)

For a stable process, the coefficientsgi of the step response
tend to a constant value afterNp sampling periods, which
yields:

f(t + k) = ym(t) +

Np
∑

i=1

(gk+i − gi)∆u(t − i) (9)

Computingŷ over the horizon(k = 1, . . . , Np), with Nu

control actions, yields:

ŷ(t+Np|t) =

Nu
∑

i=1

gi∆u(t+Np − i)+ f(t+Np)
∆
=GU +F

(10)
where G as defined to be the system’sdynamic matrix,
which is made upNu columns of the system’s step response
compatibly shifted down in order,U denotes theNu-
dimensional vector of control increments, andF is the free
response vector.

The set of future control values is obtained by optimizing
a performance criterionJ in order to keep the process as
close as possible to the reference trajectoryω(t+ k) which
for step set-point changes is approximated by means of the
following first order system:

ω(t+k) = α ω(t+k−1)+(1−α) r(t+k) k = 1, . . . Np

(11)
where α is a parameter between0 and 1 (the closer
to 1 the smoother the approximation) that constitutes an
adjustable value that will influence the dynamic response
of the system, andr(t+k) is the constant future reference.
The specific criterion usually takes the form of a quadratic
function (cost function) of errors between the prediction
output signal and the prediction reference trajectory plusa
weighted quadratic input term as follows:

J =

Np
∑

i=1

[ŷ(t + j|t) − ω(t + j)]2 +

Nu
∑

i=1

λ[∆u(t + j − 1)]2

∆
= eT e + λUT U (12)

wheree = GU + F − ω is the vector of future errors over
the prediction horizon andU is the vector composed of
the future control increments∆u, . . . , ∆u(t + Nu). The
parameterλ is a positive constant that can be used to tune
the DMC controller to achieve the required performance. If
there are no constraints, the solution to the minimization of
the cost functionJ can be obtained analytically by setting
the derivative ofJ equal to0, which provides the general
result:

U = (GT G + λI)
−1

GT (ω − F ) (13)

The control moveu(t|t) is sent to the process, while the
subsequent control moves calculated are ignored, because
at the next sampling instanty(t + 1) is already known and
the output prediction is repeated with this new value and
all sequences are updated.

6 Problems Due to Variable Delay Time
Figure 4 from [1] portrays the peroxide dosage (top

plot) and the pulp brightness output (bottom plot) due
to controlling the pulp bleaching process using aDMC

controller with ±5 % errors in delay time (nominally
550 minutes). The brightness response exhibits “blips” at
approximately500 minute intervals. To explain those blips,
let us consider the−5% case, in which the brightness
response occurs “earlier than expected”. This early response
of the brightness will cause an error in the estimation of
the free response in theDMC control algorithm as given in
equation (9). Consequently, the future error between the
predicted free response and the set point profile is not
zero, which causes an immediate downward blip in the
control action. This in turn causes a blip in the brightness
response after the delay time which will result in another
error, and the story is repeated every delay time, resulting
in the series of blips portrayed in figure 4. In other words,

Fig. 4. The system response for∓5 delay time uncertainty [1]

the early brightness response is considered to be a positive
disturbance which means thatDMC controller will order the
peroxide dosage to decrease starting from the current time
until the time the final estimated brightness is reached. This
explains the downward blip about 500 minutes later.

7 MPC with a Smart Delay-time Predictor
We propose a new approach to solve the problem dis-

cussed in the previous section, namely aSmart Delay-
time Predictor which corrects the delay time uncertainty



in the final pulp brightness as follows: Assume a brightness
setpoint change is required at timet0 and a recommended
control action (hydrogen peroxide dosage) is then activated
to achieve that required pulp brightness. At this time the
backward delay time is known to bêT 0

d , i.e., the DMC

algorithm “expects” that the brightness will respond att0
+ T̂ 0

d . As time advances we continue to back-estimate the
exact delay time after which the output brightness should
begin to track the new set point, based on the variable
inlet pulp flow and level data, and we advance the delay
time inside theMPC controller, step by step from̂T 1

d to
T̂ 2

d to . . .T̂ k
d , wherek is the number of steps after the set

point change, and we continue to integrate the inlet flow
backwards to a point wherêT k

d equals the time back to
the application of the step change. The difference between
this algorithm and the one employed in [1] is that the
delay time used by Sayda and Taylor was calculated outside
the DMC controller, then stored and used by the controller
without updating. In our method, we calculate the delay
time continually and update the controller inside the loop;
once the backward integration of the variable time delay
reaches the past setpoint change, the delay time calculation
stops until the next time a set-point change is requested. In
this way theDMC controller has a more accurate idea of the
time to anticipate the brightness to respond, thus eliminating
the “blips”.

Figure 5 shows the result of applying this indirect adap-
tive / predictive controller using the embedded smart delay-
time predictor to the pulp bleaching process. For more
details about this controller and these results, the reader
can refer to [12].
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Fig. 5. SISO process with variable delay-time predictor

8 Conclusion
The pulp bleaching process exhibits long time constants

and time delays, which tend to degrade controller perfor-
mance. Variable delay time has been thoroughly defined
and illustrated, and its importance in chemical process con-
trol applications explained. A model predictive controller
designed to cope with such challenging systems has been
presented. The performance of the controller achieved good
tracking of the final pulp brightness which yields, as a con-
sequence, a significant suppression of undesirable transients
in the hydrogen peroxide dosage and immediate reductions
in cost. The contributions of the method presented here
include a delay time predictor that:

• is straightforward to implement and use,

• corrects uncertainty in delay time estimation, and

• is reliable for a broad class of chemical process appli-
cations.
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