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1. INIRODUCTION

The primary goal of this presentaticn is to develop and illustrate a philos-
ophy of nonlinear system stability analysis that recognizes the many great strides
that have been made in this field in the- last few detades, without dwelling um-
necessarily on the theoretical foundations and details of the fundamental results
that now exist. It is the author's hope that the practlging engineer, whether or
not he has a firm grounding in modern systeﬁs theory, will find this material to
be helpful in sclving concrete, "real-world" problems.

The application of rigorous theorems to determine conditions for stability
in nonlinear systems is an area in systems theory that ééems to have been some-
what neglected, This anomaly appears to have three major causes. The first is
a rather extreme case of the usual gap béfweén theorefiéians and practicing engil-
neers. The other two causes are more essentially philosophical in nature; we may
call them “conservatism" and "benign neglect

It is a2 fact that many rigorous stability-assessment.ﬁethods are conservative,
in the sense that the specific system under sfudy maynregliy be stable over a
broader set of conditions than the stability theoremsfﬁiii'alloww For example,
if an absolute stability criterion (as ocutlined in Sectiéﬁ 2 below, and developed
more fully in [1]) 1s applied to show that a sysﬁem confaining the nonlinearity
f(0) where ¢ is the nonlinearity input variable is absbiutély stable under the

gain sector comstraint
0‘55%li =1 1)

(we will discuss both absoclute stability and gain sectors more fully later in
this presentation), then it may be true, for the Earticplat nonlinearity under



consideration, that taking the upper bound ¥ = 2, or even 5, may still result in
a stable system., The word particular is stressed above, because it may also be
true that there is some strangely behaved nonlinearity f*(o) for which the condi-
tion in Eqw {1} is necesszyy and sufficient, in the sense that for T* « 1.1 the
nonlinear system is unstable; however, the practitioner is unconcerned with that
eventuality, and probably rightfully so.

Finally, the idea of benign neglect, best described as "building the system
and adjusting the gains to make it behave acceptably™ is obviously a dangerous
expedient when dealing with large, sophisticated and costly systems. It may
well be that adjusting the gains won't help, and eﬁpensive design modifications'
will have to be made. It also may be true that the nonlinear effect will only
rarely destabilize the system, so its importance will only be recognized after
several mysterious failures. The fact is, the possible destabilizing nature of
nonlinear effects can and should be considered so that costly mistakes can be
avoided,

The first problem (the gap) is historical, and cam best be overcome by fo-
éusing on the most down-to-earth stability criteria available. This shall be done
in the outline in Section 2, Ihe other barriers are perhaps best dealt with by
providing scome worthwhile examples, as in Sections 3 and 4, and by discussing how
absolute stability theorems can be used during the systems design phase, Section
5. The remainder of this paper deals with time-varying systems (Section 6), sys-
tems with multiple nonlinearities {Section 7), and a final summary of the useful-
néss of absolute stability criteria (Section 8).

2, STABILIIY THEOREMS AND SYSTEM MODELS

Stability theorems can conveniently be divided into two categories: direct
and indirect: The best—known direct stability theorem for nonlinear systems is

due to Lyapunov; the following statement is from [1].
lhecrem 1 (Lyapunov): Consider the continuous-time free dynamic system

X = £(x,0)
where j(gjt) =0 for all t. 1f a scalar function V(x,t) is defined for all
x and t such that V(0,t) = 0 and it satisfies

(i) Vv(x,t) is positive definite, i.e., there exists a continucus non—

decreasing function ¢ such that a(0) = 0 and
0 <all|xlD < vix,e), L) _
(11) Vv(x,t) is decrescent, i.e., V{x,t) < B(||x||) where 8 is a continuous
scalar nondecreasing function and R(0) = O,
(iii) V(x,t) is radially umbounded, i.e., a(||x]|) + « with ||x]]| » =

(1v) v $8 4 wieeo < - v(l|xlD) <0, x# 0
where v 1s a continuous scalar function such that y(0) = 0

then the equilibyium state x = 0 is uniformly asymptotically stable in the large

and V(x,t) is called a Iyapunov function for the system" ®
We consciously avoid defining "uniform asymptotic stability in the large"

(UASIL) since it is dealt with in sufficient detail in [11; it is enough to



observe that systems that enjoy this property are not subject to pathological be-
havior, such as unbounded response to bounded inputs (see [1]), which may be en-
countered if less stringent stability definitions are used {and thus the condi-
tions of Theorem 1 are relaxed correspondingly).

The Lyapunov theorem is the most general nonlinear system stability result
available, It is somewhat tantalizing, however, because it is often an heroic
task to apply it to specific systems of order greater than three {or even two, in
some instances), because one must search Ffor V so that the conditions of Theorem
1 are satisfied. Occasionally (rarely!) a Lyapunov function suggests itself nat-
urally (e.g. V = potential energy + kinetic energy); otherwise a great deal of
work and intuition or prior experience will be required to find V. However, it
is important to appreclate the generality and rigor of Lyapunov's contributiom
to nonlinear system theory -- directly or indirectly, Iheorem 1 has served as the
cornerstone for a great deal of development. For a good summary of the direct
application of Theorem A, refer to Kalman and Bertram [2] and LaSalle and Lef~
schetz [3]. '

Mention must alsc be made of the functional analytic approach to nonlinear
systems stability theory. Since this approach is even more abstract than the
Iyapunov method, it may not be considered to be an applications-oriented tech-
nique; the interested reader may refer to Holtzman [4] and Vidyasagar [5]. TIhe
main use of functional analysis has been the derivation of stability criteria
which are very nearly equivalent to those stated below except for some details
of the system model and definition of stability. Io¢ discuss these differences
violates the spirit of this presentation.

The direct stability analysis methods outlined above have been used to de-

velop very effective stability criteria for nonlinear and time-varying systems.

The major contribution, from the view point of the practicing engineer, is that
the direct process defined in Theorem I can be completely avoided. The conditions
for UASIL given by the criteria can be checked; if they are satisfied, then the
proofs detailed in Narendra and Faylor [6] provide an assurance that the provi-
sions of Theorem 1 can be met, without the need for amy further analysis.

Before the stability criteria can be stated, a specific system model must
be established. Ihe simplest formulation is given in the feedback control éystem
configuration shown in Fig. 1, where the usual manipulations have been performed
to place the linear plant dynamics in the foyward path, as represented by the
transfer function W(s), and the nonlinear time-varying relation, g(o,t), is
in the feedback path. Tor the modern control theorist, the equivalent state

space model is given by the vector differemtial equation

= Ax+br

g = P_I.)..K.. + pT . (2)
T = —p(0,t)}

where ¢ and T correspond to the variables shown in Fig. 1. The first two parts



of Eq. (2) describe the linear part of the system; in fact, by direct Laplace

transformation

O e p+n' I+ (3)

W(s) g

a{-,t) f=

Fig. 1 Basic System Configuration
Finally, for engineers and applied mathematicians without familiarity with
the above control systems models, let us illustrate the relation between scalar.

differential equatioﬁ models and Fig. 1: Consider
¥+ ay + a;y+gllhyy +hyy),t) =0 €Y

First, we can directly define a state vector x and re-write Eq. (4) in the form
of Eq. (3):
*1W ¥y Xy = %, (by definition of xz)

e

—A Xy = @K, - g(o,t);
h,x, + h,.x (from Eq. (4))

&
~
Q
]

171 272
In matrix form, we have
B I
. 0 1 0 o=1[h Bylx=hx
X = XZ + T B
-8 -4, 1 T = -g{o,t)
Then, by applying Eq. (3), 4
8 -1 0 hl + hzs
W(s} = [h. h,] -
L 2 s2 + a,s + a
ay s+a2 1 2 1

-

provides the desired relarion between Eq. (4) and Fig. 1.

The above systems models are consistent with [1-3], which was written from
the Lyapunov point of view where the main concern is: "If the system is perturbed
from its equilibrium x = 0, will the solutions return to that equilibrium?"; thus

therve are no external inputs (v = 0, Fig. 1). The functional analytic approach

deals with questions such as "if v is bounded, then is © bounded?" This property

is called bounded input /bounded output stability (BIBOS). The essential point



for our purposes is that the criteria that follow guarantee stability In both

senses, so there is no need to be concerned with this distinction, or with the
presence of inputs,

Before considering the stability of a nonlinear time—varying system, it is
important to know the range of linear feedback relations — i.e. the range of k
in the relation

T = ~ko (5)
which leads to an asymptotically stable system in Fig, 1 or Eq. (2). The impor-
tance of such a range (e.g., assume that K<ke X guarantees asymptotic stabil-
ity) is that the nonlinear and/or time-varying characteristic g{o,t) will have to
be confined to this range, in the sense that

KepE@D Tox ©
wvhere G and G are the actual bounds on g/v. The significance of thils concept of
the range of a nonlinearity is illustrated in Fig. 2; geﬁerally, we speak of con-
fining g(o,t) to the sector defined by ¢ and G, or Eq, (6) is referred to as a
sector constraint. Determining K, X for linear systems is accomplished by using
Nyquist's Criterion, the Routh-Hurwitz Conditions, or the root—locus method (all
of which are outlined in [11).

Fig. 2 Gain Sector for a Nonlinear Time-Varying Element
All of the stability criteria discussed below involve frequency domain
constraints on W(jw), Eq. (3). The conditions are graphical in nature, and are

based on one of the following plots:

Nyquist plot: The graph of V{w) 4 Im W(jw) versus U{w) 4 Re W{(ju)
Popov plot: The graph of V{(w) 4 w Im W(jw) versus Ulw) 4 Re W{jw)

These plots are illustrated in the examples that follow (cf. Figs. 3 and 4).

With the above preiiminaries as a background, we restate the absolute sta—
bility criteria that will be applied to nonlinear systems in thisg presentation [1]:
Theorem 2 (Circle Criterion): A system of the form portrayed im Fig. 1 is UASIL
(BIBOS) if for any g(o,t) obeying Eq. (6) the Nyguist plot of W(jw) does not touch
or intersect the circle whose diameter is -1/k, G <k < C. »

Theorem 3 {(Parabola Criterion): A system of the form portrayed in Fig. 1 is

UASIL (BIBQS) if for any £(o) obeying



f{o)
a

K<F< <F<K N

the Popov plot of W{(jw) does not touch or intersect the parabola

(FU + L)(F + 1) = (F - DV/o ®
for some value of ¢. @
Theorem 4 (Off-axis Circle Criterion): A system of the form portrayed in Fig. 1
is UASII (BIBOS) if for any monotonic* £{0} obeying

df (o)
do

tall

K<M< <M< (9

the Nyquist plot of W(jw) for w > 0 does not touch or intersect a circle having
-1/k, M <k <M as a chord. s
3. PRELIMINARY TLLUSTRATIIONS AND COMMENIS

The Circle Criterion (CC) is discussed in an introductory fashion in [1]. It

is mentioned that for a given W(s), an infinite number of circles can be drawn
that avoid W(jwj on the Nyquist plot, resulting im an infinite number of sector

bounds G and G. TIhe five principal cases are illustrated in Fig. 3; these are

g(o,t) . = 8(0,8) . &
(@) 0= 2-<G and 0 <G, <26,

g(o,t) . &
(B) 0>G, <E222< Gy >0

glu,t) glo,t) _ =
(e} G, 255 20 and G £ = 26, <0

The two cases where one bound is zero result in degenerate circles (vertical
straight lines), as shown, Also, it should Ee obsexrved that the circle must
enclose the Nyquist plot of W(jw) if G is negative and G is positive (Pig. 3b).
Note that the "diameter", -1/k for G <k 5_6; is outside the circle in this case.

The Parabola Criterion (PC) is a bit more difficult to apply, since parabolas
are not easy to draw exactly, and you have one degree of free&om in the choice of
o. Thus, let us first consider the special case ¥ = 0, which is the celebrated

Popov Criteria [1]. Egquation (8) then reduces to

V= a(u+ 1/T) (10)

so the condition for DASIL (BIBOS) is simply that the Popov plot of W(jw) must
not touch or intersect a2 straight line passing through -1/F with arbitrary slope
o, as illustrated in Fig. &4, Ihe slope of the Popov line may be positive or meg-
ative but not zero.

For the general case, the estimation of F and F such that a suitable para-
bola can be drawn is simplified by noting that the parabola specified in Eg. (8)
has several useful properties:

(i) Real axis crossing (G = 0) are at U = -1/F and U = -1/F,

(ii) The parabela is tangent to straight linmes drawn through these

% The term monotonic [1] in this context is a standard generalization of the
concept of monotonic increasing functions i.e., £(0) such that dffdc > 0. It
might be clearer to call functions satisfying Eq. (9) "slope constrained."



{a) 6=0,G=G, AND (c) 6=G,<0, G=0 AND
C)<:§2‘:Gz G
1

b
1
n

o
j
a

Fig. 3. Illustrations of the Circle Critexion for UASIL (BIBOS)
crossing points, of slope —t and o respectively.

-1
)

(1ii) At U = - % EFL+F Y, av/du = 0 and v = alF - )/ (4FD).

(iv) The intersection of the two straight lines of tangency occurs at
(v=- %(3‘1 +F Y, V= -alf - )/QFP), which is just twice the
~
value of V on the parabola at the same ordimate.

These relations are shown in Fig. 5 in one example of the application of the

parabola criterion. For a given choice of F and f, it is usually advantageous

- <>

POPOV PLOT

1

Fig. 4. " The Popov Criterion for UASIL (BIBOS)



to choose |a[ to be as small as possible, as estimated by drawing the pair of

tangency lines. Taking o < {} merely reverses the sense of the parabola.
”~
Vv
4
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2+ U
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popov Taf
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STRAIGHT-LINE
ASYMPTOTE, SLOPE=-a

Fig., 5. An Application of the Parabola Criterion
The Off-Axis Circle Criterion (QACC) is also somewhat harder to apply than
the CC, because there is one degree of freedom inherent in the choice of the cen—
ter of the cirele. Since the center can usually be located quite quickly by trial-
and-error placement of a compass point, there is no need for "rules of thumb" as
in the PC above. The special cases M = 0 or M = 0 are much simpler, because the

OAC degenerates into a straight line that does not need to be vertical. The most

important point to be made is that the OAC need only avoid W(jw) for positive w;
if this is not kept in mind, then the advantage of the OACC is lost, because the
plot of W(jw) for w < 0 is symmetric about the real axis and avoiding that part
of the Nyquist plot as well will force the circlelcenter to be on the real axis.
One final caution repgarding both circle criteria: It is essential that the
vertical and horizontal axes have the same scales; otherwise you are actually
applying "ellipse" criteria and, by scaling the V axis appropriately, you could
fallaciously "prove" stability for the Hurwitz sector.
As final illustrations of these criteria, comsider the following examples,
taken diréctly from [6, Chapter 71. _
Example 1: Given a feedback system described by Fig. 1 with the linear plant

having a transfer function

s + 1
s(s + 0.1)(s> + 0.5s + 9)
(a) The Nyquist plot of W(iw) shown in Fig. 6 indicates that the Hurwitz

W(s) =

range (K, K) for the stability of an LTI feedback system incorporating
this plant is (0, 4.28).

(b) Since the Nyquist plot is asymptotic to a vertical line through the
point (U = -10.06, V = 0) as @ + 0 [analytically, U(w) > U(D) =
—-815/81], the system is stable for all nonlinear time-varying gains
g{o,t) in the sector [g, 0.0993-¢] by the CCQ where € is arbitrarily



(c)

(d)

small.

The modified Nyquist plet is also indicated in Fig. 6. Ihe straight
line that is almost tangential to the modified Nyquist plot at two
points intersects the negative real axis at (-2.85, 0), ylelding a
Popov gain upper bound of F = 0.35. The system is thus stable for all
nonlinear time invariant functions f(o)} in the sector [g, 0.35] by the
PC.

A straight line nearly tangential to the Nyquist plot at two points
intersects the negative real axis at (-M _l, 0) where M = 3.13, The
system is consequently stable for all SIOpe_constfained nonlinearities

in the sector [e, 3.13] by the OACC.
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Fig. 6, Example 1: Comparison of Stability Criteria

Example 2: Consider W(s) = 3(s + l)lsz(s2 + s + 25)}, with the lower bound on

the nonlinearity being specified to be unity (M =F =G = 1).

(a)

[G))]

(c)

(D

The Nyquist criterion applied to the system indicates that the system
is stable for all linear gains in the range (0, 8) [Fig. 7).

A circle with its center on the negative real axis is drawn passing
through the point (-1, 0) to be nearly tangential to the Nyquist plot.
Since it intersects the negative real axis again at (—2”22-1, 0), by
the CC the system is stable for all nonlinear and time-varying gains
g(o,t) in the sector [1, 2.22].

A parabola satisfying the PC passing through (-1, 0) and nearly tam-
geﬁtial to the Popov plot intersects the negative real axis at U =
-0.37. Hence, by the parabola criterion, fhe system is stable for all
nonlinear time invariant gains £(¢) in the sector [1, 2.70].

A circle passing through (-1, 0) and nearly touching the Nyquist curve



at two points intersects the negatlve real axis at (_7“25—1, 0). By the QACC, the

system is stable for all slope-constrained gains in the range [1, 7.25].
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Fig. 7. Example 2: Further comparisons of stability criteria.

To be fair to the CC and PC, it should be observed that Examples 1 and 2 were

specifically created to achieve a significant "spread” in the results, i.e.,

to yield G << F << M. Io accomplish this, both transfer functions have a pair

of very lightly damped complex comjugate poles, which lead to sharp "kinks" in

the freQuency response plots.

General Comments. It would be very difficult to overemphasize the practical

utility of the geometrical stability criteria given in Section 2. The following

points bring out the pragmatic elegance of these results.

(a)

(b)

{c)

It _is not mecessary to know £(0) or g{(o,t) exactly., Ihe criteria

use only the gross "gain" of the nonlinearity, as defined in Eq. (6},
(7Y, or (9). This is important, because (i)} f(0) or g(o,t) is gener-

ally not available with any precision [you can't measure these func-

tions for -« < ¢ < ®» {(and possibly for all time)], (ii} because dif-

ferent elements of the same type (e.g. servo motors) differ from in-

dividual to individual, and (iii) because you are not required to make

analytic modeling judgments, such as "f{0) = k03" that leave your

analysis open to question.
it is not necessary to know W(s) exactly. Ihe criteria only use the

basic behavior of W(jy), which is important because (i} you could use
frequency response test data (e.g. w, 5 |W(jwi)| and iw(jwi), i=1;2,...)
directly without afly intervening modeling, and (ii) the results are
independent of system order.

They are easgy to apply. The application of the CC and OACC are triv-

ial, given the Nyquist plot of W(jw) which would be required to deter-

mine the stability of the linearized version of the system. The added



plot needed for the PC adds very little to the effort.

(d) They are completely rigorous. Unlike small-gignal linearization or

describing function methods, UASIL (BIBOS) is guaranteed.
The formulations of the geometrical criteria given in Section 2 have been made
as simple as possible, by leaving out numerous special cases that arise when the
circles, lines or parabolas touch the fregquency response plets at varlous points.
This results in a very slight "loss of generality" {(e.g. in Ex. 1 part {(c), the

PC cou}d be used to obtain 0 < E%gl < 0.35 as in [6], instead of 0< ¢ s-fif) <

0.35) but no loss of rigor.
4. A REAL-WORLD APPLICATION

The examples outlined in Section 3 are of the "academic type", i.e., spe-

cifically designed to illustrate the applications of, and differences between,
various stability criteria. In this section, we will comsider a case that might
gcecur in an actual control system design problem. The system to be considered is
a rotational position control system as depicted in Fig. 8.

The basic plant is mode%ed simply by a double integration, representing the
ideal frictionless equation 8 = I'/I where © is the angular acceleration of the

object being positioned, I is its moment of inertia and T is the applied torque,

0‘=-1£— o'=-7=6

O + 15 1 0R 1 | e
y Gels) 1025 —— ) - 2 .
L. ./

—~
'PLANT

Fig. 8. Rotational Position Control System Model

and a transfer function 1.5/(1 + 0.2s), which we assume models fhe torque ampli-
fier gain divided by I and the dominant lag in the torque source. The output
of this block is © 4 T/I; if the torquer is linear, then the variable o' in Fig.
8§ is o' = 0, otherwise o' = £(0) or o' = g(o,t). A standard problem in classic-
al linear control theory is to design a compensator, characterized by Gc(s), S50
that the closed loop system in Fig. 8 with ¢' = 0 will meet a given set of design
specifications.

The compensator must be of the standard '"lead" type, or perhaps of the lead-
lag type, because the closed-loop system without compensation 1s unstable for
any positive value of constant gain (Gc = K} due to the negative phase margin,
as shown in Fig. 9. Following the design specifications M =1.,3, W = 0.8
used in D'Azzo and Houpls [7] for this problem (see footnote*, nmext page), the

compensator they obtain leads to a total forward path transfer function of



G (s) = c, (s) 6_(s) = -5 0.153 (1 + 5.558)
' s {1+ 0.2s)(1 + 0.58)
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Fig. 9. Nyquist Plot of the Plant Gp(jm); Nyguist and Fopow
Plots of the Compensated Plant Gt(jw)n

If the torque source is nonlinear and/or time-varying. i.e., if o' = g(o,t)
in Fig. 8, it is important to check the design to see how much nonlinearity or
time variation can be tolerated. Thus, we construct both the Nyguist plot and
Popov plot of Gt (s}, as shown in Fig. 9. Before considering the nonlinear case,
note that the Hurwitz range (or maximum value by which the gain can be increased)
is K = 7.2, as the Nyquist plot shows. As a first investigation, let us seek
G, E'by the circle criterion and T, ﬁ-by the parabola criterion such that -1/G
and -1/C are symeetric about 1, and similarly for F, F - i.e., let us find the
largest circle centered on U = -1 so that the Nyquist plot of Gt(jw) is not in-
tersected, and the largest parabola with U = -1 as its axis so that the Popov
rlot of Gt(jm) is not touched. TFrom Fig. 9 we obtain the following bounds:

CC: G =0.61, G = 2.70

PC: F = 0.537, F = 7.20-¢ (3 X)

% These parameters are the classical '"M—peak" or maximum value of M =
]G G (Jm)lfil + GG (jw)|, and the frequency at which My occurs, which is a
measure of the closgd—loop system bandwidth.



These constraints are depicted in Fig. 10, for several hypothetical symmetric non—
iinearities. If gl(o,tl) is typical of the nonlinear characteristic, then there
is no problem with respect to stability, even if gl(c,t) is rapidly time-varying
as long as it always lies in the sector for all ¢,t. If, however, fz(o) is typ-
ical, then time variation is potentially a problem (i.e., we have no guarantee

of stability) while we are assured of stability if fz is time invariant.

f,q

TIME-INVARIANT GAINS
ALLLOWED IN THIS SECTOR

TIME-VARYING GAINS
ALLOWED IN THIS
SECTOR (CC)

qy

Fig. 10. ¢Cain Sector Constraints from the GC and PC.

The above results (Fig. 10) are not unique -- they were obtained on the
basis of the general desire to find stability fegions that are geometrically
centered about the ideal characteristic’o' = J., Suppose the torque source is
basically saturating, in the sense that g(U,t)/U or £(0)/o < 17 Then we have the
condition F = G = 1.0 and we seek the minimum g_and_g permitted by the CC and
PBC, respectively.

Determining € is very simple, as shown in Fig. 11. A cizele is drawn through

-1/G = -1 that just avoids the Nyquist plot of Gt(jw); the other intersection

with the real axis is at -1/G, so

_ . -1/ =-T>¢ 7—%—=0..14 A
To find the lower bound ¥ by the PG, we first observe in Fig. 11 that V
asymptotically approaches -0.74 as W approaches 0. We then draw a straight line
through —1/F = :l which just misses the Popov plot for w = 5. Ihis straight line
passes through V = -0.74 at U = -6.6, as shown, so by extrapolation it will reach
V= -1,48 at U= -12,2, The parabola for which this line is one asymptote (see
the discussigﬁ on applying the PC in Section 3) thus can have its minimum at
Uy = -12.,2, VO = —0.74 as required; furthemmore, by symmetry, this parabola will
intersect the negative real axis again at -1-2(11.2) = -23.4 which gives us F:

1

335 = 0.043

_1/§_= -23.4 > F =



To interpret these results, the saturation curve gl(c,tl) shown in Fig. 12 is no
problem even if there is rapid time variation within the sector (G, E}, while
fz(c) is acceptable only if the torque characteristic is time invarlant.
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Fig. 11, Obtaining Gain Sectors for a Saturating
Torquer by the PC and CC.

f,g

t c(F=G =1)
10 ) :
TIME-INVARIANT
GAIN SECTOR(PC)

TIME-VARYING
GAIN SECTOR(CC)

‘--gl(o.l t| )
——0l40
~==fa (o)

Fig. 12, Nonlinearity Constraints for Saturating Iorquers.



The stability regions or sectors depicted in Figs. 10 and 12 show that there

is a substantial degree of nonlinearity that can be allowed with a complete assur-

ance of UASIL or BIBOS. In part, this is due to the conservatism of the classic—
al control theory design procedures; the specifications Mm = 1.3 led to a gain
margin of ¥ = 7,2 (Fig. 9) which from the linear system standpoint is indeed

prudent. The fact that the PC can give us an absolute guarantee of stability for

0.54 5;£%?2:i702—€ where € 1s arbitrarily small is, in the author's opinion, quite
remarkable. Furthermore, if the nonlinear torquer is monotonic (slope constrained),
then the OACC guarantees UASII for the entire Hurwitz range, O < df/do < 7.2-¢.

On the whole, the above example should provide considerable insight into the use
and power of the basic stability criteria of Sectiom 2.

5. USE OF ABSOLUTE STABILIIY CRITERTIA IN NONLINEAR SYSIEMS DESIGN

In the problem considered in Sectdom 4, it is assumed that the system design
was completed using the linear control theory approach, and then the possible
destabilizing effect of a nonlinear terquer characteristic was explored. A more
sophisticated approach would be to use absolute stability criteria during the
design phase, The basic ideas can be conveyed by a simple example: engineers
versed in the basics of classical control theory can readily extend the method-
ology to other, possibly more complicated, situations.

The closed-loop system to be designed is again the rotational position
control system shown in Fig, 8, with one difference: the dominant nonlinear
effect is a gainFchanging nonlinearity, used to null large angular position er-
rors rapidly without excessive overshoot (Fig. 13); for small errors, |g] < §,
the output is o, while for larger errors, the slope of the nonlinearity is K,
as shown. The system design will then involve choosing Gé(s), an appropriate
compensator, so that

(a) The control system meets the uzual system specifications (e.g. Mm = 1.3)

(b} The control system is UASIL (BIBOS) when the gain changing nonlinear-

ity is taken inte account.

. fa
v + T zéi( ’ 1.55 GB
> 5 ol (s ) n059)

Fig. 13. Rotational Position Control System
with Gain-Changing Nonlinearity

The simplest design problem is obtained when the system is assumed to be

nonlinear and time-varying, which necessitates using the CC. (The procedure is



most direct, because there is no freedom in drawing the circle through -1/G and
-1/G.) Then, determining Gé simply involves forcing GE = GéGp to avoid twe cir-
cles: The Mm = 1,3 circle (c¥. D'Azzo and Houpis [7] Chapter 11) and the CC cir-
cle, passing through -1 and -1/K for the nonlinearity shown in Fig. 13. TIaking
K to be 5, we see that the compensator design Gc of Section 4 will fail, in the
sense that Gpcc(jw) cuts the CC circle, as shown in Fig. l4. However, modifying
the compensator or adding a second one so that the total linear part frequency
response plot avoids the CC circle, as illustrated in Fig. 14, is a straight-

forward application of the classical frequency domain cascade compensator methods.
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G} = Gg Gp, BY
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CIRCLE

Fig. 14, System Design Using the CC

Of course, the above design procedure (avoiding both the CC and Mm cireles
by suitable compensator choice) will be valid if the system is time invariant as
well. However, a design that is often much less conservative will be obtained
by using the PC or OACC. For example, we saw in Section 4 that the compensated
system is stable for k as large as 7.2 as long as the system is not time-varying.
If X is greater than 7.2, then a suitable design can usually be found quickly by
drawing an off-axis circle through -1 and -1/K which matches the slope of the
first=-cut compensated Nyquist plot (Fig. 9) near the real axis crossing, and de-
sign a new compensator G; so that the Nyquist plot of GCG;(jm) avoids this OAC.
Ihis approach is ocutlined in Fig. 15, where the final GCG;(jw) curve is sketched

to satisfy the above constraints, for K = 10.
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Fig. 15. System Design Using the 0ACC

The design procedures outlined in this section are fairly informal, and
rely heavily on the older frequency domain appreach to control systems synthesis,
{Which, it might be added, is enjoying a modest revival, as the modern control
community comes to appreciate the value of such methods.) The main intent of the
examples sketched in Figs. 14 and 15 is to illustrate how control systems can
be designed safely and quite simply without neglecting dominant, possibly desta-
bilizing, nonlinear and/or time-varying effects.

6. MORE SOPHISIICATED CRITERIA FOR IIME-VARYING SYSTEMS

The main thrust of this presentation is the rigorous analysis of nonlinear
systems., To this point, time variation has only been considered gratuitously,
as an added benefit of applying the circle criterion. In effect, the criteria
of Sections 2-5 represent an all-or-nothing situation, i.e., gains may either
vary as rapidly as you like (the CC), or not vary at all (the PC, QACC). As
mentioned in J1], systems in which the nonlinear and/or time-varying part is

described by
G

-k(t)o
or
(ii) 1 = -k(£)£()

can often be treated more effectively by using an extension of the PC, In

essence, this extension allows the analyst to state precisely how rapidly k(t)
can vary while guaranteeing VASIL (BIBOS).

In the linear case, (i), the stability conditions are most simply stated



for a lower zexro bound,
0 <k(t) <K
As always, the corresponding linear time-invariant system must be asymptotically
stable for 0 < k 5_?} then the stability conditions are that the Popov condition
is satisfied by W(jw), and g%—is restricted.
Iheorem 5: A system of the form portrayed im Fig. 1 is UASIL (BIBOS) if
T = =k(t)o, 0 < k(t) < K is within a Hurwitz range, and
(a) The Popov plot of H(jw) does not touch or intersect a straight line
through U = —IIE; V = 0 with slope o, where ¢ 1s any real non-zero
numnber;

®) 2 <20 k()11 - k()R] i a > 0,

or (11)

%% > 20 k(£)[1 - k()R] if <0 o

If a "phase-plane portrait"” or plot of dk/dr versus k is drawm, then the above

constraint on k can be visualized very simply, as shown in Fig. 16.
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Fig. 16. Geometrical Interpretation of Theorem 5



Comments

(1}

(&)

{4)

It is rare that k(t} actually occupies the entire range [0,K]. In general,

the shape of the phase plane portrait is not compatible with the parabolic
< K his i

1 < k(t) < K, where 0 < K, <K, <K, This is

particularly true when dealing with periodic functions: TIhe phase plane

constraint, so usually K

trajectory of a periodic function must cross the k-axis with infinite

slope, which is not permitted by the parabolic restriction on dk/dt at 0

and K. Thus in both examples indicated in Fig. 16 k{(t) occupies a range

that is smaller tham [0,K].

Ihe constraint on dk/dt can be applied in several ways. The shape of the
phase plane plot of k is der'crmined by the wave form in the time domain; for
example, sinuseidal gains correspond to ellipses in the phase plane, while
nonlinear oscillations are irregular (see Fig. 16}. Ihe horizontal width of
the trajectory corresponds to the range [Kl’KZ] of k(t), while the vertical
dimension is proportienal to the range and frequency. Ihus if the range is
given, we extend the trajectory only in the vertical direction until it touchw-
es the parabola to determine the maximum allowed frequency. If the frequency
is fixed, then the portrait is enlarged until it touches the parabola which
determines the maximum range permitted by the constraint.

If the Popov line is vertical (& = «), then constraint (11) is removed; the
gain can vary between 0 and Elarbitrarily rapidly. Ihe circle criterion ap-
plied to linear time-varying systems is thus a special case of Theorem 5.

The generalization of Theorem 5 to case (ii) above, T = -k(t)£(0), simply

invelves replacing the factor 2 in Eq. (11) with ¢ defined by

5 4 min {j.f@_)_]
o [SEErag

the factor ¢ is in some seunse a "measure' of the nonlinearity of f(o); if
£(0) = g then & = 2, if %g.i 0 then ¢ > 1, and if f(0) 1s a power law
relation we have

£0) =k lo|® sign (0 + $=8+1
where B > 1 (see Ref. [6}, p. 30). It is interesting to note that a cubic
nonlinearity, £(g) = 63, would permit k(t) to vary twice as rapidly since
b = 4, than in the linear case (d=2)!

The generalizations of the Popov criterion given in Theorem 5 and point (4)

above constrain dk/dt at every instant. There is another, generally substantially

less strict, time-averaged constraint (integral comstraint) on dk/dt that was

obtained using a generalization of the Lyapunov direct methed (Taylor and Naren-

dra [8]}) which is discussed in detail in Ref. [6].

The applications of Theorems 2 and 5 and of the more powerful result men-

tioned above to simple second-order linear and nonlinear time-varying system

equations, viz.

v + 2C§ + [a =~ 2q cos (2t)]y =0 (12)



(the damped Mathieu equation) or
5+ 2y + 8%y + [a - 62 = 2q cos (20)] £(y) = 0
(a nonlinear form of Mathieu's equation) is considered in detail in Chapter VIII
of Ref. [6].
Finally, it should be pointed out that the appiication of stability criteria
for linear or nonlinear time-varying systems is even more important than in the
nonlinear time-invariant case. This is due to the fact that one can often "get
away with" using small signal linearization, describing function methods or
Aizerman's conjecture for nonlinear time invariant systems, but for time-varying
systems the assumption that "the system is UASIL for slowly-varying gains' is
fuzzier and more dangerous. The following examples illustrate this point vividly.
(i) ¥ + k(y)y = 0 is UASIL for k(y) > 0, vhile
§ + k(t)y = 0 may not be UASIL for k(t) > 0; e.g.,
if k(t) = e " then y = Y eXp (e”% -1) which approaches v fe.

(1) ¥ + 20y + k(y)y = 0 is UASIL for k(y) > 0, while for small § Eq. (12)
with a=1 is UASIL only if |q| < 2T ([6], p. 187} which is more restric-
tive than |q| < %Awhich makes k(t) > 0.

* Thus, although Theorem 5 and related results (see Ref. [6]) may be somewhat

more difficult to apply than Theorems 3 and 4, it may be appropriate to place
greater emphasis on the time-varying case. (Of couise, the circle criterion is
a very powerful result for time-varying systems; it is often too strict, however,
becausé dk/dt is unconstrained. For a comparison of Iheorems 2 and 5, see [6].)
7. MULTIPLE NONLINEARIIIES

An obvious area of extension is the case where more than one nonlinear or
time~varying effect is important. A great deal of generality can be achieved by
considering the basic system model of Fig. 1 to be vectorial - i.e., each
"ﬁ@ﬂ"thCh%dmWswmmﬁavmmrmkupﬁmvumM%,%st
in Fig. 17, Ihus the linear part of the system iz represented by an m X m matrix
of tramsfer functions, W(s) = [Wij(s)], and it is assumed that the nonlinear
time—varying gains are "decoupled," so each variable r; is a funection only of

¥4 and t.

m
LMy () 10500 - R(o)

=
e
Eann)
2]
—
[]

il

g(,t) r

g; (ri, ), i=1,2,. .,m

Fig., 17. A Generalized Model for Multiple Nonlinearities



Some stability results that exist for such systems are summarized in Ch. 9
of [6]. It is not surprising that the concepts generalize quite directly, e.g.,
there is a direct analytic analog to the CC, but the applications become much
more difficult, There are a few special cases where the stability conditions
can be formulated as geometric comnstraints on the elements of E(jm); in general,
however, the conditions must be dealt with analytically, which can be very te—
dious. For this reason, we restrict our attention to one example that is prob-
ably the most elegant application of this branch of stability theory. The de-
tails of this problem are given in Ch. 9 of {6] and in [9}.

In a classical problem of optimal control, it can be shown that an inte-
grated quadratic performance index is minimized by using linear state-variable
feedback, i.e., by feeding back a signal such as v in Fig. 17 which is a linear

combination of the states:

=t

e=su-¥, y=
where E:is ar {m x n) matrix of constant gains (generally m=n), and X is a state

B

vector made up of the variables that characterize the plant dynamic behavior, as
in Eq. (2)}. 1In other words, the solution to the optimal control problem can be
represented in the form shown in Fig. 17 with a unity gain in each feedback path,
=Y The gain matrix E is determined by the quadratic performance index (see
Ref. [6]) and governs W(s); the exact solution is not needed for this discussien.
The stability result is the following: If E(s) in Fig. 17 represents the
solution to the optimal control problem outlined above, then the nonlinear closed-
loop system with each nonlinear time-varying characteristic satisfying
gly;»t)

$—F<a
¥y

[T

in UASTE. This surprising result demonstrates that the optimal control system
is very robust, in the sense that the state-variable feedback can differ sub-
stantially from the ideal or exact solution g(yi,t) =5 without a loss of sta-
bility. TIhis result was first given in Ref. [6]; in the time-invariant case,
the condition above was obtained by Moore and Anderson [9].

8. SUMMARY AND CONCLUSIONS

Ihe main objective of this presentation is to feocus on the simplest rigorous

stability criteria that exist, to iilustrate and motivate their use. Since the
frequency domain representation of linear systems dynamics is quite prevalent,
especially among the practicing control engineering commmity, it should be read-
ily appreciated that stability analyses such as those outlined in Sections 3 and
4 can be performed quite simply —- certainly, with little added effort if Nyquist's
criterion has already been applied to a linearized version of the system.

The major philesophical reservation that seems to have discouraged the
wide—spread use of the criteria given in Section 2 —- that the stahility condi-
tions obtained are often conservative, as mentioned in the introduction -- seems

to result from an attempt to obtain more from the stability criteria than can



reasonably be expected, or needed. Take the problem treated in Section 4 as a
case in point.

The control system in Fig. 8 is designed so that the unity-gain linearized
model, g(o,t) = o, satisfies certain performance specifications. Various stabil-
ity criteria were then applied to obtain the stability results summarized in
Iable 1. First, observe that the parabola criterion (PC) result is not terribly
conservative; the nonlinearity gain (in the sense shown in Table 1) may be as
close to the linear gain limit K = 7.2) as desired, and can be substantially
less than unity (F = 0.54). The circle criterion (CC) result, on the other hand,
does appear to be conservative in the sense that g/c is not allowed to exceed
2.7, which is much less than K. Réalistically, however, even if the system were
linear time—invariant, its performance will be degraded considerably if k ex-
ceeds 2.7; in fact, the M-peak value for k = 2.7 is Mm = 3.5 which fails to

TABLE 1 — Summary of Stability Results from Section 4

Feedback Gain Comments
Law Constraints

¢' = ko k=1 Linear time-invariant; meets perfor-
mance specifications

g' = ko 0 <k<7.2 ' Linear time~invariant; asymptoti-
cally stable

a' = £(o) 0w54_f £%?2'§_7"2w€ Nonlinear time-invariant; PC+UASIL
(¢ may be arbitrarily small)

o' = g(o,t) 0.61 < f%’t—) < 2,7 Nonlinear time-varying; CCHUASIL

a' = £{c) 0< %%‘i 7.2-e Monotonic nonlinear time-—invariant;

OACC»UASIL

meet the design specification Mm = 1.3 by a considerable margin. TIhus, since
the linear system with k > 2,7 does not achieve the desired performance, it is
doubtful that a nenlinear time—varying system with E-Z 2.7 would be desirable
even if it were ''safe" from the stability standpoint. In this sense, the CC
result may very well be all that is required. Finally, imposing the much more
stringent slope restriction on the nomlinearity 0 g_g% < 7.2-g by the 0ACC leads
to a stability condition that is not at all conservative.

It is the author's hope that this presentation will encourage greater
interest in the use of absolute stability criteria by practicing engineers, and
that the applications literature in this area will be enriched thereby.
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