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Abstract. Using sinusoidal-input describing functions (SIDF's) is a well-known
approach for studying limit cycles in nonlinear systems with one dominant nonlin-
earity [1,2]. In recent years, a number of extensions of the SIDF method have
been.developed to permit the analysis of systems containing more than one nonlin-
earity. In many cases, the nonlinear system models that can be treated by such
extensions have been quite restrictive (limited to a few nonlinearities, or to
certain specific configurations; cf. [2]). Furthermore, some results involved
only conservative conditions for limit cycle avoidance, rather than actual limit
cycle conditions. The technique described in this chapter and in [3] removes all
constraints: Systems described by a general state vector differential equation,
with any number of nonlinearities, may be analyzed. In addition, the nonlinear-
ities may be multi-input, and bias effects can be treated.

The general SIDF approach was probably first fully developed and applied in
[4]. It has also been applied to determine limit cycle conditions for rail
vehicles; references for this work may be found in [3]. 1Its power and use are
illustrated here by application to & second-order differential equation derived
from a two-mode panel flutter model [5] and te 2 highly nonlinear model of a tac-
tical ajrcraft in a medium-angle-of-attack flight regime [6,7]. Some problems
associated with direct simulation (especially "obscuring modes" and the initial

condition problem) are also discussed.
1. INTRODUCTION

The study of limit cycle (LC) conditions in nonlinear systems is a problem of
considerable interest in engineering. Am approach to LC analysis that has gained
widespread acceptance is the frequency domain/sinuscidal-input describing function
(SIDF) methed [1,2]. This technique, as it was first developed for systems with



a single nonlinearity, involved formulating the system in the form

2=Fx+gn
o =hx (1)
uo=u(t) - ¢(o)

where x is an n-dimensional state vector. The first two relations describe a
linear dynamic subsystem with input p and output o; the subsystem input is then
given to be the external input signal u(t) minus a nonlinear function of 0. There
is thus one single-input/single-output (SISO) nonlinearity, ¢(o), and linear dy-
namics of arbitrary order that may be represented by the SISO transfer function
(in Laplace transform notation) W(s) = h?(si}iﬁ_l g+ This system description is
4 modern control theoretic reformulation of the more conventional "linear plant

in the forward path with a nonlinearity in the feedback path" [1,2], depicted in
Fig. 1.

Fig. 1 System Configuration With One
Dominant Nonlinearity
In order to investigate LC conditions, the nonlinearity is treated as
follows: First, we assume that the input 0 is essentially sinusoidal, e.g.,
O = a cos wt, and thus the output is periodic. Expanding in a fourier series,

we have

$(a cos wt) = ] Re [bk (a) exp (Jkwt)] (2)
k=1

By omitting the constant or D.C. term fyom Eq. (2) we are implicitly assuming that
$(0) is an odd function, ${—0) = -¢(0) for all g, so that no rectification occurs;
cases when ¢ is not odd present no difficulty [1,2], but are omitted to simplify

the discussion. Then we make the approximation

e

¢(a cos wt) = Re (b, (a) exp (jut)]

[t

Re [kl (a) * a exp (juwr)] 3

This approximate representation for ¢ (a cos wt) includes only the first temm of
the fourier expansion of Eq. {2)}; therefore the approximation error is minimized

in the mean square error sense [1-3]. The fourier coefficient b1 (and thus the



"gain" kl) is generally complex unless ¢(0) is single valued; the real and imag-
inary parts of bl represent the in-phase (cosine) and quadrature (-sine) funda-

mental components of ¢(a cos wt), respectively. The so-called describing func-

tion kl(a) in (3) is "amplitude dependent", thus retaining a basic property of
a nonlinear operation.

By the principle of harmonic balance, the assumed oscillation —- if it is
to exist -— must result in a quasi-linearized system with pure imaginary eigen—

values; substituting ¢(g) = kl(a) 0 in Eq. (1) yvields
30T - F + k (a) gh'| = 0
for some value of w, or by elementary matrix operations
W(w) = —1/k1(a) (4>

Condition (4) is easy to verify using the polar or Nyquist plot of W{jw) [1,2];
in addition the LC amplitude a is determined in the process.

It is generally well-understood that the classical SIDF analysis as outlined
above is only approximate, so caution is always recommended in its use. The
standaxd caveats that W(jw) should be "low pass to attenuate higher harmonics"
and that ¢(0) should be "well-behaved" (so that the first harmonic in (2) is
dominant) indicate that the analyst has to be cautious.

The utility of SIDF analysis for systems with one significant SISO nonlin-—
earity as outlined above has naturally resulted in a number of attempts to gen-—
eralize the technique to the multiple-nonlinearity case. In the work that pre-
ceded [4], only SISO nonlinearities were considered, and bias effects (either
due to constant inputs or to "rectification” caused by nonlinear effects) were
excluded. Also special model configurations were often assumed [2]. The earlier
results are discussed more fully in [7]. The LC analysis approach described in
this chapter and in [3] removes all restrictions with respect to model configur-

ation, nonlinearity type, or the presence of biases.

2. THE GENERAL SIDF LIMIT CYCLE ANALYSIS METHOD

The most general system model considered here is

= f (x,u) (5)

when x is an n-dimensional state vector and u is an m~dimensional input vector.
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Assuming that u is a vector of constants, denoted U, it is desired to determine
if Eq. (5) may exhibit LC behavior.

As before, we assume that the state variables are nearly sinusoidal,
X = % +Rel(a exp (jut)] (6

where a is a complex amplitude vector and X, is the state vector center value

(which is not a singularity, or solution to ;_(go, go) = 0 unless the nonlinear-
ities satisfy certain stringent symmetry conditions with respect to Eo)" Ihen

we again neglect higher harmonics, to make the approximation

= fpp(%e>a,u)) + Re[F (x ,a,u) 2 exp (jut)] (7



The real vector f__. and the matrix are obtained by taking the fourier expan-

—F F
sions of the elements of ;jft + Re a exp (jut), Eo) as illustrated below, and

4!

provide the quasi-linear or describing function representation of the nonlinear
dynamic relation. The assumed limit cycle exists for u = u if X, and a can be

found so that

(1) —9F(§c 2 —o) =0

(&)

(11) [jwl - F (% ,a,u}]a=0,2#0
(EbF,has a pair of pure imaginary eigenvalues, and a is the corresponding

eigenvector.)

The nonlinear algebraic equations (8) are often difficult to solve. A
second-order DE with two nonlinearities (from a two-mode panel flutter model
[8,9]) can be treated easily by direct analysis [5], as shown below., An iterative
method, based on successive approximation, can be used successfully for more

complicated problems such as the aircraft problem described later in this chapter.
3.  APPLICATIONS

‘3.1 A PANEL FLUTTER PROBLEM
The following second-order differential equation has been derived to de-

scribe the local behavior of solutions to a two-mode panel flutter model [8,9]:
S+ @+x) x4+ B+x) x=0 9

Heuristically, it is reasonable to predict that limit cycles may occur for o
negative (so that damping is negative for small values of x but positive for
large values). Observe also that there are three singularities if £ is megative:

X, = 0, + v . The corresponding state vector DE is

X 0 1 0
x = - % - (10)
s 2
% "] xl(x1 + xz)
The SIDF assumption for this system of equations is that
xl = X = xc + al cos Wt
X, = X = -a,0 sin wt

(From the relation Xy = X, it is clear that X, has no center value, and that

a, = jmal in (6)). Therefore, the combined nonlinearity in Eq. (10) is quasi-

2
linearized to be

2 2 .
xl(xl + x2) = (x + al cos wt) (x + a, cos wt - a, w sinwt)
~ 2 3 2
= (x +-§ a; x ) + (3 + 78 ) a, cos wE
+ (x +-% a )(—a1 w sin wt) (11)

This result is obtained by expanding the first expression using trigonometric

. L 2 3 . 2 . ) .
identities to reduce cos"u, cos’u and sin u cos' u into terms involving cos ku,



sin ku, k = 0,1,2,3 and discarding all terms except the fundamental ones (k = 0,1).

Therefore, the conditions of (8) require that

—
0
fop = =0 (12)
2 3 2
h—xc ¢+ X + 78
B 0 1 0 1
For = = (13
2 3 2 2 1 2 2
h—{B + 3xc + 7 al) - (o + X + Z al) - o

Relation (12) shows two possibilities:

H

Case 1: x, = 0 yields a, 2V (14)
o = /B -3

The amplitude a, and frequency w must be real. Thus, as predicted, o < 0 is re-
quired for an LC to exist centered about the origin. The second parameter must
satisfy B > 3a, so B can take on any positive wvalue but cannot be more negative

than 3o.

Case 2: x =4+ /= o yields 2, 2u/§ -8
> (15)
w = vB ~ 3u
Fox the two case 2 limit cycles to exist, it is necessary that 3a < B < @, so
again limit cycles cannot exist unless oo < ¢, Two additional constraints must

be imposed: ]xcl > a, must hold or the two limit cycles will overlap; this con-

dition reduces the peimitted range of B to 20 < B < 0. Also, for 2o < B < & the
case 2 LC's must lie inside the case 1 LC which also exists for this range of B;
from Eqs. (14) and (15) this is indeed satisfied over the range 2a < 8 < a.

The stability of the case 1 LC can be determined as follows: Take any
is

€ > 0 and let 32 = 44 - £ < ~4a; then

1 For

L

3 1
“B-3-2e) Fe

which for € > 0 has slightly unstable eigenvalues. Thus a trajectory just inside

the LC will grow, indicating that the case 1 LC is stable. A similar analysis

of the case 2 LC is more complicated, and thus omitted.

Another viewpoint is provided by the traditional singularity analysis ap-
proach (refer to [101), which involves linearization about x = 0 and (if 8 < 0)
x =+ V-8 . The linearized E}matrices and singularity characterizations for

o < 0 are given as follows:



B <0 = saddle

"0 1
x = 0: E = 0<B < %-az + unstable node
_8 —t
1 2
B > Z—a + unstable focus
31 < B <@ - unstable node
2 < B < B, > unstable focus
o 1 t
X = i_/:E: i:= B =0 -+ center
— 26 B8-w

32 <P <o =+ stable focus

B <B, =+ stable node

2
where
By = (a ~ & + 24 T 2g
B, = (@ ~ 4) - /4 Ty

The LC analysis and singularity analysis are completely consistent for
o<, B> 20. TFor all B > 0, the single singularity is unstable, and for
a < § <0, the three singularities are unstable, so in both cases the predicted
existence of a single stable LC is reasonable. For B = @, the existence of two
center singularities at xe = i,VCE is in exact accordance with the condition
B < o for two interior limit cycles to exist, with centers X, = + /-8. The only
range of B which seems to give rise to contradictory results is 30 < B < 2q,
where the disappearance of the two inner LC's is not consistent with the stable
nature of the singularities at X, = i_/:g'and the continuing presence of a large
stable LC centered about the origin. The seemingly anomalous result that the
SIDF analysis predicts the existence of two overlapping LC's for 3ua < B < 2a
might suggest that there may in fact be a single "peanut-shaped” LC inside the
large stable LC — but such a conclusion would only be an intuitive speculation.
Since the conjectured inner limit cycle would be quite distinctly nonsinusoidal,
it would be necessary to include higher harmonics (e.g., X=X, + Re [éi exp
jwt)] + Re {23 exp (3jwt)]) in the SIDF analysis in order to reveal its presence.
Such an assumption gives rise to substantially more complicated LC existence
conditions, so it is not pursued here.
In the terminology of bifurcation theory, we observe that the SIDF analysis
indicates the following:
* Bifurcation from a single stable singularity at x = 0 to a single
stable LC centered about x = 0 for 8 > 0, o passing from positive
to negative,
* Bifurcation from one stable LC enclosing three unstable singular-
ities to one stable LC enclosing two unstable LC's and a saddle

for o < 0, B passing from greater than & to less than a,



* Disappearance of the two inner LC's for a < 0, B < 2a,

* Disappearance of all limit cycles for B < 3a.
One quite simple analysis has revealed a great deal of the rich variety of be-
havior that the DE can exhibit, as illustrated in Fig. 2.

3.2 A HIGHLY NONLINEAR ATRCRAFT DYNAMICS MODEL

In a realistic model of the dynamics of a high-performance aircraft at mod-
erate angle of attack, one is confronted with a large number of nonlinearities.
These nonlinearities arise from the empirical aerodynamie data for the specific
aircraft (aerodynamic coefficients and stability derivatives) and from dynamic
and kinematic effects. The state equations for the aircraft motion can be written
in body axes as in Eq. (16) if small off-diagonal moment-of-inertia terms and

nonaxial thrust components are neglected [11]:

|"o' - 1
8 qecos § -~ sin &

u (X+T)/m + v - qw - g sin ©

q ((Iz-Ix)pr + M)/Iy
_;5_ A |wl=1{ 2/m+qu-pv+gcos¢cos 8 QE(E‘_»_) (16)

v ¥/m+ pw - ru + g sin ¢ cos O

r ((Ix—ly)Pq + N)/IZ

P ((Iy“Iz)qr +L)/I

_._ | p+qsin ¢ tan 8 + r cos ¢ tan 8

The state variables are the aircraft velocity components in body axes {u,v,w),
the rotational rates about the body axes (p,q,r), and the pitch and roll Euler
angles (6,¢). The parameters g, m, I, Iy’ Iz denote the acceleration due to
gravity and the aircraft mass and moments of inertia, respectively.

The aircraft data and response characteristics are associated with the
force and moment components, X, Y, Z, L, M, N; these contributions are expressed
in terms of non-dimensional aerodynamic force and moment coefficients, for ex-—
ample,

1.2
L = 5pV SbC (i7n

ET

where p represents air density, V is the velocity vector magnitude, and S and b
denote reference area and wing span. The aerodynamic coefficients are deter-
mined by the aircraft control settings,

T _
u = [63 6Sp sds 51‘]

which are stabilator, spoiler, differential stabilator and rudder, respectively.
In addition, they are highly nonlinear functions of angle of attack and sideslip

angle,

@ = tan 1 (w/u) 8 = sin~t (v/V)
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Fig. 2 Qualitative Behavior of the Panel
Flutter Model



In terms of these variables, the force and moment contributions as in Eq. {17)

are represented in standard form; for example,

Cn = cz(a,s) + Cz (a)sds + c2

()&
T 8 8 P
ds gp .
+C (a)ﬁ + B [cg (Wr + Cy (a)pl (18)

'3

61 p

The nonlinear terms in Eq. (18) were supplied in the form of empirically
determined values of the aerodynamic coefficients and stability derivatives at
various flight conditions. Based on this information, analytic representations
were developed by curve fitting; for example,

= (Lt kyg atk a?) (19)

Cy 35 36

P

Finally, the approximations
f2. 2 2.

V=vYu+v tw =u
o= an_l(w/u) = w/u
B = sinnl(v/V) = v/u

are used in most instances. The resulting highly nonlinear model with ki suit-
ably evaluated in the curve fit relations as in Eq. (19) is realistic for the
aircraft considered at angles of attack between 15 and 30 deg.

The nonlinearities in Eq. (16) which were selected for rigorous study are
{(-r sin @), (Iz—Ix)pr, Z, N, and L. These five terms are potentially important
in studying lateral-mode oscillations, including possible "wing rock" mechanisms,
so they were quasi-linearized; the remaining terms in Eq. (16) were handled by
small-signal linearization.

Before LC analysis is undertaken, it is useful to obtain the complete equi-

librium or trim condition, i.e., the values of_go and u, that satisfy

_0
£lxgs up) = 0 (20)

determined according to Eq. (16). In a preliminary investigation of aircraft
behavior for various flight regimes, complete small-signal linearization is use~
ful; the (n*n) matrix F, defined by

= A 3f

F.o2 °=

-0 5%

Xy By (21)

determines the dynamic properties of the perturbation equation corresponding to

Eq. (16). The small-signal eigenvalues, or solutions A k=1, 2,...,n, to

0,k
the characteristic equaticn

det(A.I - F,) =0 (22)

0— —O
govern the transient response of the aircraft to small perturbations for a fixed

control setting u(t) = EU'



For small o, the eigenvalues given by small-signal linearization are gener—
ally moderately well damped, and nonlinear effects may not be important. As o
increases damping generally decreases, so the nonlinear effects become critical
in determining the behavior of the aircraft, and LC conditions may exist.

The iterative solution of condition (8) proceeds as follows: First, assume
that an oscillation exists in the system. For the present problem, it is natural

to assume that the steady-state angle of attack satisfies
@ = a,(l +« sinw t) (23)

where % is moderate and Kk is generally less than unityl. The assumed ffequency,
w, is initially the imaginary part of the most lightly damped eigenvalue given
by small-signal linearization; w will be adjusted in the subsequent iterations.
The goal of the limit cycle investigation is to determine either that some k¥ (or
several values of k) exists such that Eq. (23) is a valid assumption (limit cy-

cles are predicted), or that no value Kk can be found for which Eq. (23) is con-

sistent with condition (8) (limit cycles probably are not present). The LC

analysis computer program developed for such a determination uses the method of

successive approximation, and is doubly iterative, as follows:

Step 0: Set i=0Q; start the procedure with RS §0 satisfying Eq. (20) and

»

EDF,i = EO from Eq. (21).

Step 1: Choose a trial value of k¥ in Eq. (23), e.g., €k = 0.1.
Step 2: Based on the assumed oscillation, Eq. (23), and the current quasi-lin-

ear system dynamics matrix F. determine the amplitudes of oscilla-

) O
tion throughout the system model by finding 3y in the steady-state
solution

X = X
= =,i

Step 3: Using the quasi-linear system model, Eq. (7), determine the adjusted

+Re (a, exp (jur)) (24)

center x

X 341 satisfying

f C(x (25)

for,1 e, 1420 2108 = 2
which reflects the change in .3 caused by the postulated sinusoidal

component of x.

Step 4: Obtain the adjusted quasi-linear system dynamics matrix EDF,i+1

(gc 447102 Y ) which contains the sinusoidal-component describing
3
function gains for all nonlinearities. Reset 1 = i+}.

Step 3: Calculate the adjusted frequency, W which is the imaginary part of
the most lightly damped of the quasi-linear eigenvalues of EDF,i'

Step 6: Check to see if the iterative center determination procedure has
converged; if not, return to Step 2; if so, continue to Step 7.

Step 7: Compare the most lightly-damped eigenvalues with those obtained for

Choosing the sinusoidal component amplitude to be ki, often leads to a conven-
ient normalization. For limit cycle analysis about & zero center valuve, it
would not be appropriate,



the previous trial value of k, denoted K (in the first trial ¥ = 0,

i.e., the eigenvalues are as obtained by small-signal linearizationm,

Eq. (22)):

* If the pair of eilgenvalues near the imaginary axis has crossed
the axis, then some value of K exists in the range (k , k) such
that one pair of the adjusted quasi-linear eigenvalues Ai’k(x)

is on the imaginary axis -- a limit eycle is predicted. The

value of K, denoted Kg» can be found by further iteration on K.

*» If the pair of eigenvalues near the imaginary axis remazins on
the same side of the axis, increment Kk (for example, by adding
Ak = 0.1) and repeat Steps 2 to 7.
Steps 2 to 6 represent an iterative solution of the steady-state conditions
for the bias component or "center' of the assumed oscillation; condition (8(i))
is thereby satisfied. The term center is used to distinguish x, from the equi-
librium x

=0
be met for some K.

satisfying Eq. (20). Step 7 is a test to see if condition (8(ii)) can

If for a representative set of values of ¥ (e.g., kK = 0, 0.1, 0.2,..., 2.0)
the most lightly damped eigenvalue pair does not cross the imaginary axis, then
it is predicted that limit cycles camnot exist for the particular fixed control
setting Y- Otherwise, the above procedure will iterate to find the value or
values of K which corresponds to probable limit cycle amplitudes.

One detail regarding the procedure mentioned in Step 2 is in order, since
it is central to this technique. Given the quasi-linear system dynamics matrix
that is known from the previous iteration, EbF,i’ plus an assumed oscillation in

one state,

x = a cos (mit)
(neglecting the bias component for simplicity), it is desired to determine the

complex vector of amplitudes, a, such that x = Re [a exp (jmit)]. If w is a

natural frequency correspending to é_= EbF ;X» then {cf. condition (8})
¥
(Gw,1 - _EDF,i)g =0 (26)

The latter relation serves to define the entire vector a, given one of its ele-
ments, a., by deleting one of the equations in Eq. (26) and solving the remain-
ing (n-1) equations. The solution a for specified a, is not unique unless we

is actually an eigenvalue of F. this will be true only for a value of k for

which 1limit cycles are prediczzgji This approach is dealt with in more detail in
[6,71.

The aerodynamic data curve fits obtained by adjusting the coefficients ki
as in Eq. (19) were initially verified by determining the eigenvalues obtained
by small-signal linearization, for various trim values of angle of attack. Good
agreement with the empirical aero model was obtained; in particular, the Dutch
roll mode stability boundary given by small-signal linearization of the curve fit

model agreed with that given by the experimental aerodynamic model which showed



~

marginal stability for o = 19.6 deg. This case (¢ = 19.6 deg) corresponds to the
nearly straight-and-level flight condition specified in Table 1; the corresponding

control setting was therefore chosen for study since small-signal linearization

u
leads to nearly ;grginal gtability and higher-order nonlinear terms thus become
critical in determining the aircraft performance. The corresponding eigenvalues
associated with the Dutch roll mode are ADR = 0.0366 + 1.52j, which for small
perturbations predicts an unstable response. It is important to note that there
is a much slower unstable lateral mode ('lateral phugoid"), with elgenvalues

ALP = 0,0187 + 0.131j. 1In most instances, a mode which is as slow as the lateral
phugoid in the present case is not a concern, so attentlon is generally restrict-

ed hereafter to the behavior of the Dutch roll mode.

Table 1. Selected Equilibrium Condition

STATE VARIABLE VALUE
(ELEMENT OF 30)
17.46 deg
Uy 81.7 m/fsec
44 0.296 deg/sec
g 29.1 m/sec
5 6.04 n/sec
T, -0,033 deg/sec
Py ~0.011 deg/sec
¢0 -5.303 deg

The multivariable LC analysis computer program described above was then used
to find limit cycle conditions. It was foumd that lDR is virtually on the imag-

inary axis, A _ = 4X10“5 + 1.495j for k equal to 1.20. Corresponding to this

DR
value of Kk, the "center" wvalue %, and oscillation component a for the state vec-
tor are given in Table 2.

Table 2. Center and Predicted Limit Cycle
Amplitude for the Stable Limit Cycle

woe e wn | e | e | o
Sc 18.35 0.259 -0.234 deg
u, 80.25 -0.177 0.165 m/sec
q, 0.174 0.219 0.182 deg/sec
v, 28,80 -0.810 -0,718 m/sec
\A 6.14 7.38 0.0 m/sec
LR 0.792 -1.79 -1.89 deg/sec
o -0.310 -7.35 14.90 deg/sec
¢C 8.55 9.55 5.295 deg




Checking the limit cycle prediction requires that noenlinear simulations of

the dynamics specified in Eqs. (16-19) be performed. Choice of the initial con-

dition for this procedure is critical, because there also exists an unstable mode,

a slow spiral mode which for k = 1.2 is governed by P\S = 0.0618. 1If this mede
is excited appreciably, its growth will completely obscure the fast limit cycle
that is sought. Fortunately, choosing x(0) = Re a will make the limit cycle in
the Dutch roll mode be the dominant mode.

This limit cycle prediction shown in Table 2 was checked by choosing
x(0) = 0.8 Re a. The resulting time histories of pitch angle 8,y body-axis
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Fig. 3 Simulation of the Limit Cycle Prediction



velocity v, and z body-axis velocity w, are portrayed2 in Fig. 3. The plot of

8 shows that the solutions do diverge very slowly, due to a small unavoidable
excitation of the spiral mode. The time histories of v and w show that the dom~
inant Dutch roll mode is very slowly growing for the first 25 sec of the simu-
lation, as would be expected for an initial condition that is slightly interior
to the predicted limit cycle. The predicted center value of v 1s nearly exact,
while that for w is in error by about -0.5 m/sec, or about -1.7 percent. Finally,
the predicted limit cycle frequency is 1.495 rad/sec, while the observed fre-
quency is 1.497 rad/sec; the agreement is excellent. After 25 sec of simulation,
the slow divergence begins to alter the limit cycle that developed in the first
part.

Further analysis of the simulation results was undertaken to attempt to
separate out the effect of the slow divergence. The time history depicted in
Fig. 3b was processed to determine the exponential growth component (c e Zt);
then the predicted limit cycle envelope is given by the relation

c,t

Ee = &¢ g las]
where [asl is the amplitude of the predicted limit cycle in v (state 5). This
envelope is portrayed in Fig. 3b; within the limits of the simulation accuracy,
convergence of the time history to the envelope is shown.

The effort to verify the limit cycle condition by direct simulation has
pointed up a major difficulty in using the latter technique as an exploratory
tool to locate limit cycles, without recourse to describing function analysis.
Realistic aerodynamic models such as those used here often have slow modes that
are unstable or that are very lightly damped. Initial conditions for direct
simulation must be chosen very careful}y to avoid exciting these modes. In a
linear system, it is not difficult to use eigenvector information to obtain ini-
tial conditions that selectively excite a desired mode. However, eigenvectors
are not rigorously defined for nonlinear systems.

The concept which was successfully used in this study may be called the

quasi-linear eigenvector; in essence, the complex vector a, given as in Table 2,

is in a sense an amplitude-specific e1genvector which specifies an initial
condition that only excites the predicted oscillation. The fact that the quasi-
linear eigenvector 2 1s amplitude-dependent is illustrated in Fig. 4, which
shows a for three values of k, corresponding to the study deplcted in Fig. 3.
For € = 1.0 and 1.5, the eigenvector components for 6 and ¢ are too small to be
shown; the differences between the remaining components (which are normalized

to make the length of the v component equal in each plot) are rather small. For

K = 2.5, the changes in 2 are clearly quite substantial,

2 The plots show the perturbation of each variable about the predicted center
value, X.» Table 2.
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4, SUMMARY AND CCNCLUSIONS

The SIDF technique described in this chapter and in [3] permits the investi-
gation of LC conditions in completely general multivariable nonlinear systems.
Restrictions as to the type and number of nonlinearities, the system configuration
and the presence of censtant inputs have been completely removed.

The studies presented here illustrate the effectiveness of the general LC
analysis method. The predicted LC frequency and center value (Fig. 3) are in good
agreement with the simulation results; the accuracy of the amplitude prediction is
more difficult to assess quantitatively due to the simulation problems mentioned
previously (see Fig. 3b). 1In general, these results bolster the expectation that
the iterative LC analysis technique will be found to converge to locate limit cycle
conditions, provided that limit cycles indeed exist. Considerable further research
could be performed to conclusively demonstrate the power and accuracy of the gen-
eral SIDF LC analysis approach, and its limitations.

A major point of departure from previous SIDF analysis methods is the sub-

3 The eigenvectors correspond to 6, u, ¢, w, v/10, r, p/5, ¢/5; this scaling was
performed to permit all components of a to be shown on the plots for k = 2.5,



stitution of root locus-like plots of quasi-linear eigenvalues, e.g., the locus
of XDR for various values of Kk, in lieu of frequency-response plots based on
W(jw) and —1/kl(a). This alternative viewpoint has permitted the breakthrough
in terms of system model generality in comparison with frequency-domain SIDF
techniques for multivariable systems. As a result, one losés the ability to
modify or remove LC conditions by the classical methods for altering the frequen-
cy response of W(s) by changing pole locations or adding compensation networks.
However, systems designers versed in the more modern technique of pcle placement
using state variable feedback should find that method of system response compen-
sation applicable to LC conditions found using this new SIDF technrique; an ap-
proach due to Sankaran [12] appears to be particularly useful in this regard.
Combining the general SIDF LC analysis method with an iterative pole pesition
modifying algorithm would result in a very powerful approach teo multivariable
nonlinear systems synthesis,

Finally, other benefits of this technique are

* Any number of nonlinear effects can be investigated, singly or in any
combination, without manipulating the system model into the "linear plant
with nonlinear feedback" formulation required in the frequency-domain
approach;

* Am iterative algorithmic approach to limit cycle analysis is desirable
for mechanization on digital computers;

* The amount of computer time required to determine the existence of lLimit
cycles by the general SIDF approach should generally be significantly
less than the computer time expenditure that would be needed using direct
simulation alone as a way to search for LC conditions.

The last observation is based on the difficulty of choosing the direct simulation
initial condition correctly to excite only the desired nearly oscillatory mode,

as discussed in the preceding section.
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