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Abstract. Covariance analysis can be combined with describing function theory
(statistical linearization) to provide a mgthod for the direct statistical analy-
sis of nonlinear stochastic systems. It combines the efficiency of covariance
analysis with the realism of quasi-linear describing functions in capturing the
amplitude dependence of signal transfer through nonlinear devices. This paper
presents the basic principles of this approach and summarizes a variety 6£ prob-

lems that have been treated successfully with the technique.

1. INIRODUCTION

In the paét, the only feasible method of analyzing the statistical performance
of a nonlinear dynamic system driven by random inputs has been the use of monte
carlo simulation. However, associated with the monte carlo method is thé pfoblem
of obtaining a sufficiently large sample size (number of simulation trials)'to
provide the required confidence in the resultslu Because of the expense and time
required to perform many monte carlo trials —— often 200 or more are needed — the
monte carlo method is not a very satisfactory tool for performing sensitivity and
parameter trxadeoff studies, since an entirely new set of simulations must be gen-
erated each time a variable is changed.

Linear covariance analysis [2] is a mathematical technique which yields the
exact second-order ensemble statistics (means and variances) for linear system
varlables as functions of time. Therefore, a single sclution of the system co-
variance equations directly provides the desired results. TIhis generally requires
substantially less computer time than a large ensemble of monte carlo trials.
However, covariance amalysis -— in the usual sense —- can only be applied to 1lin~
ear or linearized systems.
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The problem of choosing an appropriate sample gize is addressed in [1],



The most common techmnique used to deal with a nonlinear system is small-signal

linearization, in which each nonlinearity is expanded in a Taylor serles about

some operating point -~ i.e., a nominal trajectory -— and only the linear terms of
the expansion are retained. This approximates the monlinearity only for "small"
perturbations about the operating point. Furthermore, there are many important
nonlinear relationships which exhibit discontinuities (e.g., limiters, quantizers,
and dead zones) for which the required partial derivatives do not exist; this is
a major restriction which limits the applicability of Taylor series linearizatiom.
A more powerful approach is statistical linearization, in which a nonlinear
operation is approximated by a linear ome that represents the transfer character-
istic of the ﬁonlinearity and depends on some properties of the input signal,
namely, form and amplitude. Ihis procedure, often referred to as quasi-lineari-
zation, Tesults in different lineat approximations to the same nonlinearity for

different assumed input signal forms, with the associated "gains" dependent upon

input signal amplitude. Quasi-linear approximators of this type are termed de-

scribing functions and have received extensive treatment in [3, 4, 5, 6, and 7].

Using statistical linearization, the assumed form for signals in systems having
stochastic inputs is restricted to a blas plus a zero-mean gaussian random process;
the input signal level or amplitude is measured in terms of its mean (bias level)
and the standard deviation of the random process. Because the quasi-linear model
that results depends upon the nonlinearity input signal statistics, any range of
input signal magnitude can be accommodated realistically.

The application of covariance analysis to stochastic system models containing
quasi-linear approximators for nonlinear effects has proven to be very effective,
Ihis approach, called the Covariance Analysis Describing Function Technique
(CADEITM), was first independently proposed in [6,8)] and has been developed more
fully in [9-11]. Additional detail on the theory of CADEI is provided in Appen-—
dices A and B. 7The main body of the paper presents examples of a few specific
nonlinear systems which have been successfully analyzed with the technique.

2. APPLICATIONS

Three examples of the application of CADET are.discussed in this section. The
first, concerning an antenna pointing and tracking study, is treated in some de-
tail, to illustrate the CADET methodolegy. The next example is a simple pursuer/
evader intercept problem, and the third is a spacecraft spin-up study.

2.1 ANIENNA POINIING AND TRACKING PROBLEM

The function of the antenna pointing and tracking system modeled in Fig. 1 is
to follow a target line-of-sight (LOS) angle, Bt" Assume that Bt is a determin-
istic ramp,

6, = wu_; (£ (L)

where w is the slope of the ramp and u_y denotes the unit step function. TIhe

pointing error,

Ihe term CADET is a trademark of The Analytic Sciences Corporation,



e=8 -8 (2)

where Ba 1s the antenna centerlinc angle, 1s the input to a nonlinearity f£(-}

which represents the limited beamwidth of the antenna; for the present discussion,
£(e) = e(l-k e®) (3)

where ka is suitably chosen to represent the antenna characteristic. The noise
w(t) injected by the receiver is a white noise process having zero mean and spec—
tral density q. This problem formulation is taken directly from [12]; a discus—-
sion of the approach and results in [12] vis-d-vis the current treatment is given
in [13].
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Figure 1 Antenna Pointing and Tracking Model

In a state space formulation, Fig. 1 is equivalent to
x=£x) +w ()

where %, is the pointing error e, x, is defined in Fig., 1, and

1 2
kxy 9
f(x) = ; W= (5)
a (f(xl) - x2) aw(t)

The statistics of the input w are given by

w
0
0 0 (6)
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| N
Elx(0] 2 8] 70
’ (D
g 2 0
A= Al %o

ELx(0) = m)) (x(0) ~m') 85



where m and ¢ are the initial mean and standard deviation of the pointing er-

ror, resgectivelgn
The above problem statement is in a form suitable for the application of CADET.

Ihe quasi-linear representation for f(xl) in Eq. (3) is of the form
f(xl) = f + n(.jxl -—ml) (8)

where, for gaussian random variables [3], the random-input describing function

components £ and n are

~

£ m -ka(mi + 3 Sl,l) m,
)
n=1- Ska(mi + sl,l)
and my and 51’1 are elements of m and E} respectively. The CADEF solution is then
obtained by solving Eq. (20), which specializes to
i hm,
mw=] +b
al{f — mz)
. (10)
S-N5+5X +Q
subject to the initial conditions in Eq. (7), and where
0 _kl
K - | an
an —a

As noted in Appendix A, Eq. (10) is exact if x is a vector of jointly gaussian
random variables; if e(0) and w(t) are gaussian and the effect of the nonlinear-
ity is not too severe, the solution to Eq. (10) will provide a good approximation.
The solutions depicted in Fig. 2 are based on the assumption that e(0) and
w(t) are paussian. Ihe system parameters are: a = 50 sec“l, k = 10 sec“l, ka =
0.4 deg_z, m, = 0.4 deg, o, = 0.1 deg, q = 0.004 degZ“ The goal is to determine
tracking capability for varigus values of w; for brevity, only w = 4 deg/sec is
shown here, To provide a basis for assessing the accuracy of CADET, four solu~
tions are presented. In a&dition to the CADET results, ensemble statistics from
a 1000-trial monte carlo simulation are plotted} Solutions from [12] are alsc
shoun, labeled 'linear approximation” (corresponding to k_ = 0) and "second-order
Volterra"; the latter is based on a technique developed in [12]. The monte carlo
data are depicted with 95% confidence intervals based on the gaussian assumption
[1]. Evidently, the CADET solution provides a significantly better fit to the
monte carlo data than either of the other analytical approximations. For higher
tracking rates, w > 6 deg/sec, the tracking error can become so large that the
antenna characteristic effectively becomes a negative gain, producing unstable
solutions. This effect is predicted by CADEL, whereas the linear and second-order

Volterra approximations do not capture the instability {12,137].
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Figure 2 Pointling Error Statistics
2.2 PURSUER/EVADER INTERCEPT PROBLEM
Consider the problem illustrated in Figs. 3 and 4, of a pursuer and evader
initially closing head-on in a plane with velocities‘gp(ﬂ) and EE(O), respective-
ly. . The evade; nas a random lateral accéleratiom, Xy perpendicular to the ini-
tial line-of-sight, characterized as a first—order markov process with a standard
deviation of 0.5g (16.1 ft/secz)w The pursuer commanded lateral acceleration,

x,, is subject to saturation. The guidance command to the pursuer dynamics is

1
given to be proportional to the line-of-sight angular rate {the so-called propor—

tional guldance law), with the guldance gain o equal to 3. It is assumed that

the relative closing velocity is constant, with an initial time-to-go until inter-
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The equations of motion corresponding to Fig. 4 can be
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Recognizing that the mean state vector is zero in this example, the covariance
equation (Eq. (20)) is formed from Eq. (12) with f(xl) replaced by the random-input
describing function gain associated with the saturation element. Agssuming X to

be gaussian with zero mean and standard deviation o , the describing function
X

is [3] L
n=2PL (8o ) -1
x
S /o
=¥/%T X exp(-y2/2) dy - 1 (13}

where PI represents the standard probability intergral. Solutions to the covari-
ance equation for the root-mean—square (rms) values of the lateral separation for
two different pursuer acceleration saturation limits are plotted as functions of

time in Fig. 5. Results from a 200-trial monte carlo analysis are also presented
for comparison. At t = 10 sec (or TGO = 0), the lateral separation represents the

intercept miss distance.
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Figure 5 Simulation Results for Two Levels of
Pursuer Lateral Acceleration Saturation
"In Fig. 5{a), the equations of motion are linear, since § = ®; trhus, the CADEI
results are exact. In this case, the close agreement with the monte carlo data is
a measure of the accuracy of the monte carlo anmalysis. 1In Pigu 5(b), gocd agree-—
ment between monte carlo and CADEI is maintained even though the equations con-
tain a significant nonlinearity that has substantially degraded the performance
of the pursuer.
This is the simplest example of a wide variety of intercept problems that have
been treated by CADET. Further examples, of higher order (more than 20 states)

and having many nonlinearities (more than 20), may be found in [9} and [10].



2.3 SPACECRAFT SPIN-UP PROBLEM

Figure 6 portrays the nose cone of a spacecraft having thrusters mounted on
the cone base. Ihe thrusters are ignited after injection into orbit, yielding
thrusts Tl and 'I‘2 which spin-up the nose cone to achieve spin stabilization. Be-
cause of asymmetries in the vehicle mass distribution and imperfect thrust appli-
tcation, the spinning motion about the x-axis will be accompanied by a coning
motion of the x-axis (assumed to be a principal body axis) about the angular mo-
mentum vector. This example illustrates how CADEI can be used to compute the
coning angle statlstics as a function of the vehicle configuration, initial con~

dition statistics, and thrust statistics.

CENTER OF
MASS

Figure 6 Spacecraft Nose Cone Geometry

Tt is assumed that the body x, y, and z axes are principal axes, the thrust-
ers are symmetrically placed with respect to the vehicle x-axis, and the thrust
vectors lie in the plane of the cone base. Under these conditions, the equations

of motion for the components of vehicle angular velocity in body axes are

. 1 )
e =T, [0p#T Gyos 6 % 2y sin 0+ dytduyw,]

- 1

wY - f; I(TZ"Tl)xlCOS 8 +'(Iz—lx)wxwz] . as)
Vo= b - in 8 - -

w, =1 [(T,-T)x;sin & + (T Iy)wxwy]

%

where xl, yl, zl are the coordinates of thruster Il in Fig. 73 wx, my, wz denote

components of angular velocity; Ix’ I, Iz denote moments of inertia about body
axes; and & is the thruster pointing angle defined in Fig. 6. The coning angle

SC is given by the relation
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BC = sin n
1w + 1w 4+ I "w I w
¥y ¥y zZ oz x

X X
where Gc is assumed to be a small angle. Ihe angular velocities and thrust levels
at the beginning of spin+-up are assumed to be independent gaussian random vari-
ables.

Space does not permit a detailed presentation of the CADEI model corresponding
to Egs. (14) and (13). The model is obtained by straightforward application of
Eqs. (18) and (20} after limearizing Gc in Eq. (15) about the mean of wx and the
random components of wy and wzﬁ The nonlinearities which are quasi-linearized in
this model are the angular weleocity cross products, wywz, etc.; describing fumc-
tions are directly derivable from Eq. (28). Figure 7 presents monte carlo-CADET
comparisons of the rms coning angle as a function of time (referenced to the start

of spin-up). Both cases have the following initial condition and parameter values:
E [w (0)] =E [wy(O)] =E [w(0)] =0

E [w;Z(O)] = 5.61 x 10~ rad’/sec’

|

3 Iwy?(O)] E {wzz(o)] = 3.06 x 107 rad?/sec’ (16)

§ = 26 deg, X, = -0.81 m, vy = 0.18 m, zy = 0.0547 n
= . 2 = ]

I_= 1.8k kgem, E [T;] = E [T,] = 11.2 ¥

E [(x, - 11.2)%1 = B [, - 11.2)%] = 0.0126 N°

In Case A, the moments of inertia about the y and z axes are equal; this condi-

tion, together with the chosen set of initial conditions, implies that W has a
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deterministic solutfion. Consequently, the CADLT model for Lq. (14) is linear; the
only nonlinearity is the expression for the coning angle., However, in Case B, Lie
x and y moments of inertia are unequal, resulting in a nonlinear model for Eq” (14)
which is quasi~linearized in the CADET analysis.

Figure 7 shows excellent agreement between monte carle and CADEI results for
both cases. The best agreement is obtained for Case A, which has the lesser de—
gree of nonlinearity; however, the CADEI result is also quite accurate in Case B.

3. SUMMARY OF CADET CAPABILITIES

One of the maln arguments advanced for the use of CADEI in obtaining projec—
tions cof nonlinear system performance is the significant reduction in computer
central processing unit (CPU) time achieved by using CADET instead of the monte
carlo method. In making this comparison, the number of monte carlo trials that
must be performed in order to obtain adceptably accurate results wmust be estab-
lished.

To achieve + 10% accuracy with 95% confidence, 256 monte carlo trials are
needed in the gaussian case*. This level of accuracy appears to be reasonable
for many applications; hence, the 256-trial set is chosen as the standard. The
accuracy of CADEI is typically found to be competitive with 256 monte carlo trials,
in the sense that the CADET tesultd lie within the 95% confidence bands for the
monte carlo results. CADEI has demonstrated up to 30:1 CPU time advantage over
256-trial monte carlo sets in applications having more than 40 state variables and
up to 26 nonlinearities. In pursuer/evader studies, such effects as nonlinear
airframe characteristics, seeker gimbal mass imbalance and coulomb frictiom, non-
linear springs, coordinate transformations, and nonlinear kinematics have been
treated. This accumulated experience clearly demonstrates the advantages of CADEI
as an analysis tool for nonlinear stochastic systems.

APPENDIX A — IHE COVARIANCE ANALYSIS DESCRIBING FUNCIION FECHNIQUE (CADEI)

The Covariance Analysis Describing Functiom Iechnique (CADEI) is a method for

directly determining the statistical properties of solutionrs of nonlinear systems
with random inputs [8]. The principal advantage of this technique is that it
greatly reduces the need for monte carlo simulation, thereby achieving substantial
savings in computer data processing time.

The dynamics of a nonlinear continuous—time stochastic system can be represen—
ted by a first—order vector differential equatioan inr which x(t) is the system

state vector and w(t) is a forcing functiom vector,
x(t) = £(x,t) + G(t) w(t) (17)

Ihe state vector is composed of any set of variables sufficient to describe the
behavior of the system completely. The forcing fumction vector w(t) represents
disturbances as well as control inputs that may act upon the system. In what
follows, w(t) is assumed to be composed of a mean or deterministic value b(t)

and a random component u(t), the latter being comprised of elements which are

* If nonlinearity causes an appreciable departure from the gaussian case, more
trials may be needed for + 10% accuracy [1].



uncorrelated in time; that is, u(t) is a white noise process having the spectral
density matrix E(t)u Similarly, the state vector has a deterministic component
m{t) and a random part r{t); for simplicity, m(t} will usually be called the mean
vector, Thus the state vector x(t) is described statistically by its mean vector
and covariance matrix, Eﬁt)” Henceforth, the time dependence of the wvariables
w, b, u, Q, X, m, T, and S will not be explicitly denoted by (t).

The differential equations that govern the propagation of the mean vector and
covariance matrix for the system deseribed by Eq. (17) can be derived directly,

as demonstrated in [14]), to be

m=E [£(x,0)] + G(t)b
8%+ (18)
S=E[£x]+E[x£]+8()Qa ()

The equation for E:can be put inte a form analogous to the covariance equations

corresponding to f being linear, by defining the auxiliary matrixz N through the

relationship
NE2E 1£G,0) 1] (19)
Then Eq. (18) may be written as
m = £+ G(6)D
. (20)
s_ww.35T eI
S§=NS+ 8N " +6(t)Q 6 (1)

~

IThe quantities f and E defined in Eqs. (18) and (19) must be determined before
one can proceed to solve Eq. {20)., Evaluating the indicated expected values re-
quires knowledge of the joint probability density function (joint pdf) of the
state variables. While it is possible, in principle, to evolve the n-dimensional
joint pdf p(xz,t} for a nenlinear system with random inputs by solving a set of
partial differential equations known as the Fokker-Planck equation or the forward
equation of Kolmogoyov [14], this procedure is generally not feasible from a
practical peoint of view. IThe fact that the pdf is not available precludes the
exact solution of Eq. (2Q).

One procedure for obtaining an approximate solution te Eq. (20) is to assume
the form of the joint probability demsity function of the state variables in
order to evaluate_£ and E:according to Eqs. (18) and (19). Although it is pos—
sible to use any joint pdf, all CADEI development to date has been based on the

assumption that the state variables aré jointly normal; the choice was made be-

cause it is both reasonable and convenient.

While the above assumption is strictly true only for linear systems driven
by gaussian inputs, it is often approximately valid in nonlinear systems with
nongaussian inputs. Although the ocutput of a nonlinearity with a gaussian input
is generally nongaussian, it is known from the ceatral limit thecrem [15] that

random processes tend to be made gaussian when passed through low-pass linear



dynamics ("filtered"). Thus, in many instances, one may rely on the linear part
of the system to imsure that nongaussian nonlinearity outputs result in nearly
gaussian system variables as signals propagate through the system. By the same
token, if there are nongaussian system inputs which are passed through low-pass
}inear dynamics, the central limit theorem can again be invoked to justify the
assumption that the state variables are approximately jointly mormal. The valid-
ity of the gaussian assumption for nonlinear systems with gaussian inputs has
been studied and verified for a wide variety of systems.

From a pragmatic viewpoint, the gaussian hypothesis serves to simplify the
nmechanization of Eq. (20) significantly by permitting each scalar nonlinear rela-
tion in f(x,t) to be treated in isoclation [8], with E_and E formed from the indi-

vidual random—input describing functions (RIDE's) for each nonlinearity. It is

this direct connection with describing function theory that has motivated the
name, Covariance Analysis Describing Function Technique (CADET). Since RIDE's
have been catalogued for numercus single—input nonlinearities [3,4] and are read-
ily available for many multi-input monlinearities (see Appendix B), the implement~
ation of CADET is a straightforward procedure for the analysis of many nonlinear
systems. This method of dealing with nonlinear effects in stochastic systems,
also called gquasi~linearization or statistical linearization, is discussed in

5] as well.

As a consequence of the gaussian assumption, the random-input describing
functions for a given nonlinearity are dependent only upon the mean and the co-

variance of the system state vector. Thus, f and ﬁ:are written explicitly as

£=£f@m !E» L)

o (21)
N =N@m,S$,t)
TFurthermore, it can be proved [6, 7] that
— = d - (22)
w50 -4 £ (

~

Since calculating f 1s required for the propagation of the mean (Eq. (20}), it is
generally much easier to employ Eq. (22) than to evaluate ﬁ:directly using Eq.
(19).

R Relations of the form indicated in Eq. (21) permit the direct evaluation of
f and E at each integration step in the propagation of m and E. Note that the
dependence of E_and E:on the statistics of the state vector is due to the exis-
tence of nonlinearities in the system.

A comparison of quasi-linearization with the classical Taylor series or
small signal lineavization technique provides a great deal of insight into the
success of the RIDF 1n capturing the essence of.nonlinear effects. Figure &
illustrates this comparison with a concrete example. TIf a saturation or limiter
is present in a system and its input x is zero-mean, the Taylor series approach

leads to replacing £(x) with a unity gain regardless of the input amplitude,



while quasi-linearization gives rise to a gain that decreases as the rms value oé
X, Ux’ increases. The latter approximate representation of f(x) much more accu-
rately reflects the nonlinear effect} in fact, the saturation is completely ne~
glected in the small-signal linear model, so it would not be possible to determine
its impact. The fact that RIDF's retain an essential characteristic of system
nonlinearities —— input-amplitude dependence -—- provides the basis for the proven

accuracy of CADEI.
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Figure 8 Illustration of a Describing Function Representation

APPENDIX B — PRACTICAL RIDF EVALUAIION IECHNIQUES

References [3,4] catalog RIDF's for a wide varilety of single-input nonlinear-

ities. Since CADEI has proven to be useful in treating more complicated nonlin-
ear effects -~ modeled by multi-input nonlinearities — a few approaches for
treating functions of several variables are outlined in this appendix.

In general, for the single multi-input nonlinearity £(v) where v is a vector

of jeintly gaussian inputs with statistics

E vl =m, 2 In]

(23)
E [(v-m ) (v-m )"} =5 & [s; .]
- v = v -V i,3
the RIDF representation is
x F 1
£=1f+n (vem) | (24)
where the RIDF components f and n are [11]
co
o 1 T = -1
f=—=————— f- JE( exp (-1/2 (ym )" S "(v-m)) dv; dv,...
=
Fanls,l /- -
and
ot = 2L (26)

Exact analytic results for several broad classes of multi-iaput nonlinear-—
ities are derived in [11}. These can be outlined as follows:

Case 1: f(vl’VZ) = v, g(vz) 7



yields

n = ' (28)

where £ and ng are the RIDF constituents of g,

g = & +n (v,=m,) (29)
. k
Case 2: f(vl,vz) =V, glv,) (30)
yields
¥ 3
fa ) (K)ed | prv i) 28 3D
.2 3 1,2 1 i
i=0 8m2

where (?) is the standard binomial coefficient, k{k-1)...{k-}+1}/3! The formula
for n is obtained directly by partial differentiation (Eq. (26)).

Case 3: f(vl’VZ’VB) =V g(vz,v3) (32)
yields
£ = ml§ + s n +s n (33

Results of the sort illustrated in this paragraph reduce RIDF evaluation from a
tedious procedure of multiple integrations (Eq. (25)) to a straightforward sub-
stitution, for a number of nonlinearity forms.

Two approximate techniques are widely useful when amalytic results are not
available. The first involves series expansions of the nonlinearity, and the
second is direct numerical integration. In both cases, only the evaluation of %
is considered (Eq. (25)) since n follows directly. For simplicity, only functions
of two random variables are considered in illustratioms.

A Taylor series expansion of f{y) about the mean leads to

£(v) = £(m) + agég) (x-m
~ o2
1 g f
3w -mt %%i%] (v-m + .0 (34)

Taking the expected value term-by-term yields, e.g.,

s A s SN & S
1,1, 2 51,2 T, om 2,2 . 2 e
Bml 12 Bmz

EIOR R

5 (33)

Often, truncating the series at the second-order terms as shown in Eq. (35) re-
sults in a good approximate RIDF, especially if the value of m is not near a sin-
gularity of f(v). More terms can be included if greater accuracy is required.

Numerical integration is most simply implemented by using a transformation



u=T~m , (36)

which leads to a u-vector with an identity covariance matrix (§;= i}; a grid of
points in the u-space can then be established, and summation over the grid approx-
imates the integral in Eq. (25). For example, with n_Xmn cells as shown in Fig.

¢
9, and with welighting

o1 .. 12 .2
Vi = Jig e (-5 (G- 3" &) (37)
the approximation 1s
n n
R (38)
£ = W, £{viu s U ¥ 3
-1 K=l 1,3,k 2,7,k

where

u

ik = U= DA cos (9

u = (j_-%DAr sin (¢k)

2,3,k
b = 2H(k~l)/n¢ _ (39

and v is found by inverting Eq. (36). If the nonlinearity ls well-behaved so that
a very fine grid is not needed, and if efficient coding is used, the computatiomal

burden of direct numerical integration is not prohibitive; any degree of accuracy

is possible with a corresponding trade-off in computer time.

Figure 9. TIransformation of Variables for Numerical
Integration of Random-Input Describing Functions



Ihe availability of RIDF's for the large number of single-input nonlinearities

treated in [3,4], augmented by the approaches for multi-input nonlinearities out-

lined in this appendix, permit the routine application of CADEI to a wide variety

of complicated, highly nonlinear problems.
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