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ABSTRACT

Generating a linearized dynamic system model cor-
responding to a nonlinear system at a specific operat-
ing point provides a critical bridge between nonlinear
simulation and linear analysis and design. Obtaining
such a linearized model by numerical means (taking fi-
nite differences) is by no means a simple task. In some
cases obtaining an accurate estimate of the derivative
of a nonlinear function requires careful selection of
the perturbation used in taking finite differences; in
other cases the derivative is not defined and simple
numerical differentiation may lead to totally mean-
ingless results. In this paper we present algorithms
and heuristic logic for the accurate and robust lin-
earization of nonlinear dynamic system models.

This research ! in robust linearization methods has
yielded new conventional methods and algorithms for
linearization, as well as a new expert system to aid
the controls engineer in determining linearized models
for nonlinear systems. Some important aspects of this
work include: an approach to minimize the effects of
truncation and round-off errors incurred through nu-
merical differentiation, and techniques for accurately
identifying certain discontinuities in the mathemati-
cal description of a nonlinear systems and other prob-
lems that make linearization difficult or meaningless.
We focus here on conventional methods and algo-
rithms, which incorporate all of the “expert knowl-
edge” gained in the course of this effort.

1. INTRODUCTION AND OVERVIEW

A substantial research effort at GE CR&D has been
fucussed on the development of general environments
for Computer-Aided Control Engineering (CACE),
covering the traditional span from nonlinear modeling
and simulation of the system to be controlled, through
linear analysis and design, and culminating in nonlin-
ear simulation of the controlled system [1]. This in-
cluded both conventional software development [2,3]
and the investigation of expert system applications in
a package referred to as CACE-III [4,5,6,7]. Through-
out this work, linearization has played a pivotal role in

!Some of this work was performed by Mr. Alfred J. Anto-
niotti as part of 2 Master's project for the Rensselaer Polytech-

nic Institute, under the guidance of Dr. James H. Taylor and
while employed by GE CR&D,
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the functionality of the environment [1,6], and much
has been learned. The results presented here repre-
sent the algorithmic and heuristic knowledge gained
during this research.,

The software package used for the development of
linearization techniques has been SIMNON 2, which
supports modeling and simulation of nonlinear sys-
tems and has been extended with routines for equi-
librium finding and linearization [3]. This package
was incorporated both in the Federated System [2]
and in CACE-III. The history of our studies of lin-
earization demonstrate how conventional and expert-
system software development can be synergistic —
the first algorithms were inplemented convention-
ally in SIMNON+, then “expert aided” in CACE-III,
then improved in SIMNON+ to exploit the knowl-
edge gained in expert system development without
the overhead of an ancillary expert system shell. Fi-
nally, SIMNON+ has been made an integral part of
MEAD (9] and was again refined in the process.

The purpose of all this was to develop the most ap-
propriate linearized model for a nonlinear system at
a given operating point, and to qualify that model in
general terms (e.g., to establish what types of non-
linearities exist and provide a measure of validity of
the linear model). Eventually, a more versatile pack-
age may be developed to include the use of describ-
ing function techniques to characterize certain system
nonlinearities and to form a base from which further,
more extensive treatment can proceed (e.g., describ-
ing function synthesis methods, [10,11]), as outlined
by Taylor and Frederick [6].

2. SIMNON+ LINEARIZATION
ALGORITHM

We begin with a formal definition of the lineariza-
tion problem and an overview of some of the principles
involved in numerical differentiation [1]. Details of
SIMNON+’s linearization algorithm follow, including
numerical properties and heuristic logic. This discus-
sion is strictly limited to the conventional implemen-
tation of linearization, although it is based on lessons
learned in developing an expert-system rule base for
extracting linearized models.

3SIMNON (8] was developed by the Department of Auto-
matic Control at Lund Institute of Technology, Lund, Sweden,
and is & commercial product of SSPA Systems, Goteborg, Swe-
den; versions extended by GE CR&D are called SIMNON +.
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2.1, Problem Statement

SIMNON+ addresses the following linearization
problem: Consider a system in the form:

(1)
(2)

where x represents the state vector of dimension n, u
denotes the input vector of dimension m, and y is the
output vector of dimension p. Both functions f and h
are nonlinear in general.

Finding the system equilibrium corresponding to a
given constant input value ug is usually the first step:

®

x = f(x,u)w

y = h(x,u)

ug — Xo: f(xo,uo) =0
Then the output at this equilibrium is given by:
(4)

The linearized model about the operating point
(xg,ug) is defined as follows:

Yo = h(xg,ug)

6x = Abx + Béu (5)

(6)

where éx = x — xg, 6u = u — ug, and 6y = y — yj.
The matrices A, B, C, D are defined by:

(g, ol
Ix Xg g fu XU

éy = Céx + Déu

(7)

o-[2] L o-[] @
0x Xg:Ug du Xg.Ug

This linearized model is valid for limited variations in
the states and inputs about the equilibrium, provided
that the above partials exist. The appropriate range
of variation of the states and inputs depends on how
nonlinear the system is at (xg,uq). This process is
sometimes called small-signal linearization.

2.2 Linearization by Numerical
Differentiation

The derivative of a function f(z) at a point z; is
defined by

4
dz

f(zo +8) ~ f(zo - 6)

= lim
§—0

provided that the derivative at z exists. A sufficient
condition ensuring the validity of Eqn. 9 is that f(z)
should have a Taylor-series expansion about the point
zo. (Note that the notation here and below is simpli-
fied by confining the discussion to a scalar function
of one variable ~ the extension to the general case,
Eqns. 1 and 2, is obvious. Also, the symbols z and
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6 are used quite freely throughout to signify a value
and perturbation in either a state or an input.)

One way to compute an estimate of the derivative
of a function is to calculate a finite central difference:

&) f(::o+6)—-f(zo—6)
Df = 26

(10)

Complete accuracy would require the perturbation to
be infinitesimal and the number of significant figures
in the function evaluations to be infinite.

From a theoretical standpoint, any error incurred
in using Eqn. 10 is an indication of the curvature
of the nonlinearity. If the nonlinear function can
be represented by a Taylor-series expansion, then it
is easily seen that the accuracy of Eqn. 10 depends
(in part) on how dominant the constant, linear, and
quadratic terms are in relation to higher-order terms
in the expansion: the central-difference calculation
yields an exact result only for quadratic functions
(see Appendix A). Error arises through neglecting
the higher-order nonlinear terms of f(z), or trun-
cation of its Taylor-series expansion. Such error is
thus called truncation error. Since truncation error
increases with perturbation size, the obvious remedy
is to use the smallest perturbation possible.

Another source of error devolves from the fact that
computers have limited precision. Specifying an ar-
bitrarily small perturbation generally does not work,
as the quantities f(z+6) and f(z — §) become nearly
equal. When this happens the central difference loses
accuracy; results are said to be dominated by round-
off error. It is difficult to say what perturbation size
introduces round-off error, since this depends on the
particular problem under analysis. However, the dele-
terious effects of round-off error can be greatly re-
duced by performing calculations with higher preci-
sion. Doing computations in double precision as op-
posed to single precision can have a dramatic impact
on the significance of round-off error. Calculations are
performed with single precision in SIMNON, however,
so round-off error is a valid concern.

Thus the tradeoff between truncation and round-
off effects must be considered in specifying the proper
perturbation size for linearization. The curvature of
the nonlinear function to be linearized plus the mag-
nitude (or units) of the variables and of the function
near the point of linearization together with machine
precision define the problem.

In most applications minimum total error is ob-
tained over a rather wide range of perturbation sizes,
rather than by a unique value. A typical plot of lin-
earization error versus perturbation size would thus
have the form of & “valley” region of minimal error
for some range of §; on either side error rises, as il-
lustrated in Fig. 1. The truncation-error region is
generally rather smooth, with an initial trend that
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Figure 1: Conceptual Relation Between Linearization
Error and Perturbation Size

is dominated by the first neglected term in the Tay-
lor series expansion at z¢; for larger values of é the
higher-order terms begin to show their influence. The
jagged nature of the curve in the round-off region is
an indication of the “random” behavior in the com-
putation of the central difference. For this range of ¢,
the value of f(z + &) — f(z — 8) seems to vary errat-
ically; however, there is an underlying error growth
that is inversely proportional to § (due to the de-
nominator of Eqn. 10). For calculations performed
with double precision, the region of minimal error may
be many orders of magnitude (in perturbation size)
broader, and the error would generally be much less
over this range; nevertheless, the same valley-shaped
curve governs the relation between linearization er-
ror and §. Finally, observe that an optimal § must be
found for each partial derivative, i.e., for each element
in the system matrices A, B, C, and D; therefore, it
is necessary to determine an optimum matriz [6; ;]
corresponding to each system matrix.

2.3. SIMNON+ Linearisation

SIMNON+ does not simply compute a single cen-
tral difference estimate (Eqn. 10) with some fixed § to
determine an approximation to the desired derivative.
In general terms, it calculates one estimate based on
perturbation 6, denoted by Df(%), and another esti-
mate based on perturbation 26, denoted by Df(28),
compares these values for error control to determine
an optimal value of §, and finally returns a weighted
combination of the central difference estimates ® for

that §:

D7 = [4Df® - DfCV)/3 (1)

3Note: the equations in this section are written for con-
ceptual clarity, and are not recommended for implementation
of computer algorithma, For example, care must be taken to
avoid unnecessary round-off errors that would be incurred if

these formulas were coded literally,
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Figure 2: Linearization Error for Df( ) (‘') and
Df) (‘2") in z° Example

This calculation is an extension of Richardson ex-
tropolation ([1]; c¢f. Dahlqvist and Bjorck [12]). In
Appendix A it is shown that Eqn. 11 eliminates trun-
cation error in all terms up to (not including) the
fifth power in any nonlinear function expressible in a
Taylor series expansion. The linearisation error from
such a combination of derivative estimates still ex-
hibits the general behavior shown in Fig. 1 as the
perturbation § varies, but the magnitude of the error
in the optimal region is smaller. Figure 2 shows a
comparison of the linearization error incurred in esti-

mating the derivative of 2% about z¢ = V2 with 57(6)
(curve 1) and Df(®) (curve 2) over a range of pertur-
bation sizes. The trend in round-off is still inversely
proportional to §, but the behavior at the onset of
truncation error dominance is governed by 6°, as this
is the lowest-order term in the error. Note that the
curves are plotted on a log-log scale.

The perturbation used in the calculation of the fi-
nal derivative estimate per Eqn. 11 is obtained via
a routine that examines the tradeoff between trun-
cation and round-off error in an effort to select a §
yielding lowest overall error. The characterization of
linearization error is an important point in this anal-
ysis and procedure. It is necessary to estimate the
amount of error incurred by using a particular 6, and
to be able to classify such error (for example, is the
error dominated by truncation or round-off).

The available measure of linearization error is based

on comparing the finite-difference linearization esti-

mates calculated using perturbations § and 26. The
analysis in Appendix A demonstrates that the error
in Eqn. 10 at the onset of truncation is dominated by

(8 = _;. D _ pf®) (12)

—— e om
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Figure 3: Error Estimate e(®) (‘1’) and Actual Error
(‘2’) for Df¥), £° Example

By a similar analysis, the error in Eqn. 11 at the onset
of truncation is dominated by &(%), given by:

—(26)

DF (%)

a0 =L - Df

16 (13)

The above error estimates are based on the assump-
tion that the linearization error is dominated by trun-
cation effects. Note, however, that these estimates are
themselves finite differences, and thus also subject to
round-off error as § becomes small. This effect has
not been analyzed, but it is noteworthy that the es-
timated linearization error e(®) tracks the actual lin-
earization error for D f(%) very closely throughout the
round-off region, as well as during truncation: This is
illustrated in Fig. 3, which shows these calculations

for the derivative of 2 about z¢ = \"/5 The same ob-
servation holds for the derivative estimate Df( ) and

error estimate é(%), as shown in Fig. 4 which shows ex-
cellent agreement between actual and estimated error
in the truncation-error region, and respectable track-
ing during round-off (there is an appreciable offset of
about one order of magnitude in this case).

2.3.1. Bases for a Linearization Heuristic

This section begins with an overview of a heuristic
approach to the linearization problem. The ad hoc
approach is based on concepts from [6], and justified
by results obtained from the analysis of several gen-
eral types of nonlinear functions. Then the logic in
the SIMNON+ linearization routine OPTDELTA is
presented in the section that follows.

Before proceeding to find an optimal perturbation,
several tests should be made to ensure the function
f(z) is in fact differentiable at the point zy. Cer-
tain tests have been devised, based on a number of

Log Estimated Error (1), Actual Error (2)
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Figure 4: Error Estimate é° (‘1) and Actual Error
—(4
(*2") for Df( ), z° Example

observations concerning the distinctively different er-
ror estimate behaviors exhibited by functions that are
differentiable at z(, discontinuous at that point, or
have a discontinuous or infinite derivative at zo. To
demonstrate these behaviors, we define four examples:

Ezample 1 (Differentiable Function):
fr=2° (14)
Ezample 2 (Discontinuous Function):
f2 = 2%+ 0.5u(z — zo) (15)

where the unit step u(z — z) is:

0 ifz<ag
1 otherwise

u(z = z0) = { (16)

Ezample 3 (Function with Infinite Derivative):
'f3 =gz° + 0.57‘t(3 - :Do) (17)

where the “root” function ri(z — z,) is:

o= )= {

Ezample 4 (Function with Discontinuous Slope):

(19)

ifz < 2z
otherwise

(18)

fa =2+ 0.5r(z — 2¢)

where the ramp function r(z — =) is:

_ 0 if © < Zp
(@~ o) = { z — 3y otherwise

(20)

Curves showing the variation in the error estimates
el®) (curve ‘1’) and &(%) (curve ‘2’) versus the per-
turbation size for Examples 1 through 3 are shown
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Figure 6: Ratio of the Error Estimates e(#)/é(%) in
Example 1

in Figs. 5, 7 and 9. A study of these data reveals
the importance of an indicator called the error esti-
mate ratio, i.e., e(®)/é(%); these metrics are portrayed
in Figs. 6, 8 and 10. These plots are discussed below:

1.

2.

Differentiable Functions (Example 1) - the plots
in Fig. 5 depict the error estimate behavior, as
discussed above. The error estimate ratio, Fig,
6, shows that this metric attains a maximum at
a value of 6 that is very nearly optimal with re-
spect to the (%) error curve. It is also seen from
these figures that all values of é such that the
error estimate ratio is greater than 100 are near
or within the optimal region of §. This behavior
is typical of differentiable functions.

“Infinite Derivative” Functions (Examples 2, 3)

160

185,

Log Estimated Error

-
(]

(2]

-
.

-4, -2, 0. 2.

Log Perturbation Size

Figure 7: Error Estimates e(®) (‘1’) and é(%) (‘2’) in
Example 2

- the plots in Figs. 7 and 9 show the behavior
of the error estimates for a discontinuous func-
tion and for one with a “smooth-but-infinite-
derivative” characteristic, and Figs. 8 and 10
portray the corresponding linearization error es-
timate ratios. Note the virtual disappearance of
round-off effects in the curves for this and the
other undifferentiable function (Example 4). As
mentioned in Section 2.2, round-off error occurs
in the central difference estimate when f(z + 6)
and f(z — 6) are nearly equal - this does not oc-
cur for discontinuous functions, and for functions
such as the ‘root’ rt(z) and ramp r(z) this dif-
ference does not approach zero fast enough for
round-off effects to dominate. Also note that for
the “infinite derivative” functions the error es-
timate ratio curves are constant for small per-
turbation sizes. These properties readily dis-
tinguish these types of undifferentiable functions
from other cases.

. Discontinuous Functions (Example 2) - the plots

in Fig. 11 show the behavior of central differ-
ence ratios based on derivative estimates D f(¢/2)
Df and Df(2% for a discontinuous function
involving the step function u(z — z¢). It is easily
seen (make a simple sketch or refer to [6]) that,
for small 6, the value of Df halves as the per-
turbation doubles in such cases. Thus we expect
the ratio of Df(3%) to Df(9 to approach 0.5 as
the perturbation size approaches zero, as shown
in Fig. 11. If the function has a component with
smooth-but-infinite derivative, as in Example 3,
then this ratio does not converge to 0.5.

. Functions with Discontinuous Derivatives (Ex-

ample 4) - It is also important to determine if
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the derivative of a function is discontinuous at
the point of differentiation. This can be done
by considering the right and left derivative esti-
mates, defined according to:

s e )

and s
- flzp —

f(zo) g( 0 ) (22)
If the derivative of f is not continuous at zo,
then the right and left derivative estimates will
not, in general, converge to the central difference
estimate as the perturbation decreases. Example
4 with the ramp imposed at zg = /2 exemplifies
this type of nonlinear function. Figure 12 is a
plot of the ratio of the right to left derivative es-
timate for this f as a function of §. The fact that
this ratio does not converge to unity is an indi-
cation that the derivative of f is not continuous.

Dfl(f) =

The above observations provide the basis for test-
ing and characterizing each nonlinearity in the model.
This information is central to the development of the
robust algorithm and logic in SIMNON+, as well as
the rule-based system described elsewhere [6].

2.9.2. The SIMNON+ Routine OPTDELTA

The heuristic logic outlined below addresses the
problem of robustly differentiating a scalar function
of one variable, f(z), at a point 9. The extension
to the general problem of linearizing vector functions
of several variables, f(x,u), h(x,u) (Eqns. 1 and 2)
about an operating point is straightforward.
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1. Start with an initial 6o = 0.01, unless the user

specifies another value. Since the appropriate
value of § is dependent upon units and scaling,
the user should be prepared to supply at least
a reasonable default starting value, especially if
0.01 is blatantly inappropriate.

. Determine if f is a constant, linear, or piecewise-

linear function. In particular, we must distin-
guish between the linear and piecewise-linear
case. This is done by comparing several deriva-
tive estimates over a wide range of perturbation
sizes. To determine if f is linear evaluate and
compare

Df}JlOOJo) Df£1060) Df}:’o)

o If these six estimates are gero to within a
tolerance based on machine precision, then
declare the function to be constant (with
respect to the variable under consideration).
The derivative estimate is set to 0.0.

o If these six estimates are the same to within
a tolerance based on machine precision,
then f has no curvature over a wide range
and it is declared to be a linear function of
z. The value of §g is returned for use in
calculating T)?(d) (Eqn. 11).

o If the right estimates are the same, and the
left estimates are the same, but the right
estimates differ from the left estimates by
more than a user-supplied tolerance (per-
centage), then it is concluded that f is a
piecewise linear function with a break-point
at zo. (This is a special case of having a
discontinuous derivative - see Step 4 below.)
The value of §; is returned for use in calcu-
lating DY) and Df{*), and the ‘diagno-
sis’ is reported to the user, who can then
decide which derivative estimate to employ
(right, left, or average).

3. Check that a derivative exists at the point of

differentiation, zo. For example, f may be dis-
continuous, or its derivative may be infinite at
zo. In such instances round-off is almost nonex-
istent in the computation of derivative estimates,
as mentioned above. Therefore, in checking for
this condition, we consider error estimates for
a very small perturbation size. Furthermore, it
has been established (cf. Figs. 8, 10) that the
ratio of the error estimates e(%)/é(%) is constant
for small values of perturbation size. Thus, tak-
ing 6 = 60/100, compare the ratios e(?)/é() and
e(2%) /6(28). if the difference between these ratios




is not within a given tolerance, then we conclude
that f does not have an infinite derivative at z,.
If the ratios are the same to within the speci-
fied tolerance, then verify this result by taking
§ = 60/1000 and repeating the above calcula-
tion. Now if the difference between all four of
these ratios is within tolerance we check the ra-
tio of the central difference with perturbation &
to that with perturbation §/2. If this value is
within some neighborhood of 0.5, then we con-
clude that f is discontinuous at z¢ and report
this finding to the user,

4. Compare the right and left derivative estimates
at ¢, using perturbations of §,/100 and &,/1000.
If the difference is not within some specified tol-
erance (percentage), then we conclude that the
derivative of f is discontinuous at ¢, and inform
the user, who would again decide which deriva-
tive estimate to accept (right, left, or average).

5. If, by the above tests, f is found to be nonlin-
ear, continuous, and to have a finite continu-
ous derivative, the following procedure is used to
determine an optimum § to estimate its deriva-
tive: First, take 6; = 69/1000 and assume that
the derivative estimates are then dominated by
round-off error. Then for each iteration increase
& by a factor of 2, until the ratio é(%)/e(?) is
greater than 100 or until a maximum number of
iterations has been exceeded. It was seen that
when this ratio becomes greater than 100, § is
close to optimal (cf. Figs. 5, 6), so that value

(&
is used in calculating Df ; if such a value of 6
cannot be found, then the user is prompted to
supply a new initial guess for the perturbation.

3. CONCLUSION

General algorithms and heuristics for robust nu-
merical differentiation are required for using linear
analysis and design methods on nonlinear systems.
These have been obtained by developing and refin-
ing the linearization routine of SIMNON+ in parallel
with the creation of rule-based systems for expert-
aided modeling. As a result of this research, SIM-
NON+ now possesses a powerful routine to ‘diagnose’

the types of nonlinear relations in a system and then -

(when a function is found to be differentiable) to min-
imize the effects of truncation and round-off error in-
curred through the numerical differentiation process.

The error in estimating a derivative by comput-
ing a central difference is a function of the pertur-
bation used. By measuring and comparing such er-
rors for different perturbations, the SIMNON+ rou-
tine searches for the minimum of this function. In ad-
dition, a scheme for detecting discontinuities, discon-
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tinuous partial derivatives, and infinite partial deriva-
tives has been implemented in SIMNON+. Tests have
shown that the performance of the resulting SIM-
NON+ linearization routine is robust.

APPENDIX A.
TRUNCATION ERROR IN DERIVATIVE
ESTIMATION

It is shown here that a derivative estimate obtained
by Richardson extropolation (Eqn. 11; [1,12]) elimi-
nates truncation error through the fourth-order term
of a nonlinear function expressible in a Taylor se-
ries about the point of differentiation. In addition, it
is shown that the difference of two central-difference
derivative estimates is a useful measure of the trunca-
tion error in the derivative estimates. Such a measure
is indispensable for error control in the linearization
process.

Consider the Taylor-series expansion for f(z) about
the point zo = 0 (with no loss in generality):

(23)

Consider, then, the following two estimates of the
derivative of f(z) at z¢ = 0:

f(z) = ap + a1z + azz® +a3z® +agz* + -+

pso = L _10) (24)

46
Result: The derivative estimate of Eqn. 11 elimi-
nates truncation error through the fourth-order term
in the Taylor series of f(z).
Proof: By direct substitution, a central-difference
derivative estimate for f(z) with perturbation size A
(Eqn. 10) gives:

Df(A) =a1+a3A2+a5A‘+a7A6+-~-

Letting €(2) denote the truncation error in the central
difference above, it is evident that:

€®) = a3A% 4 asA* + a7 A + - -

We therefore have two instances of interest:
€)= a36% + agb? +a76% + - - (26)

(%) = 4a,6% + 16a56* + 64a78% + - - (27)

————— 6
From Eqns. 26 and 27 the truncation error in D f( )
(Eqn. 11) is:

&) = %A“ - %e(”) = —4agé* — 20a76% — ... (28)

——— 6
Eqn. 28 reveals that the truncation error in D f( ) is
governed only by terms of order five or greater in the
Taylor-series expansion of f(z). QED.




It is now shown that the following error measure,

el®) = % ‘Df(") - Df"”l (29)
is a good indicator of the actual truncation error in
Df{%) when the perturbation size is small. We see

from Eqns. 26 and 27 that:
el) = 3 |~3a367 — 15058* — 63ar8® — - |

For small values of § the lowest order term dominates,
so e{®) ~ az6%, which (by Eqn. 26) is approximately
the actual truncation error in D f(9),
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