AN EXPERT SYSTEM ARCHITECTURE FOR COPING WITH

COMPLEXITY IN COMPUTER—-AIDED CONTROL ENGINEERING

John R, James, Department of Electrical Engineering, ‘
United States Military Academy, West Point NY 10996 USA

James H., Taylozr, General Electric Corporate Research and

Development, Schenectady, NY 12345 TUSA

Dean K. Frederick, Electrical, Computer, and Systéms Engg.,
Rensselaer Polytechnic Imstitute, Troy NY 12181 USA

- Abstract, We disouss an architecture for using the knowledge fepresentation and infer—

ence mechanisms of expert systems to build an enviromment to assist a control engimeer in

coping with the complexity of computer—aided control emgineering, with major emphasis
placed on implementation, Issues to be treated include: rule base orgamization,
knowledge to be contained in various rule bases, a mechanism to switch between rule bases
as the problem solution proceeds, a protocol to coordinate the symbolic computations of
the inference engine with the numeric computations of conventional analysis and design
software, support of non—monotonic reasoning to permit retracting and revising steps in
the design process, and specialized functions to support conversion between numeric and
symbolic data, We present our approach to these issues, and give examples of rules used
to represent operational knowledge and to guide the solution of the problem.

Keywords. Artificial intelligence; expert systems: computer architecture; computer—aided

system design; contxol system synthesis,

1. INTRODUCTION

Control engineering problems to be solved and the
software tools with which to solve them are becom—
ing ever more complex, The development of increas—
ingly more powerful analysis and design procedures
together with the rewards for their effective use
sexve to motivate the creation of these mnew tools,
Unfortunately, as their number, capabilities, and
complexity increases, the possibility that any
single individual will be able to apply the avail-
able range of techniques and software effectively
is becoming progressively lower. It is our belief
that the expert systems methodology provides a
solution to this difficulty,

The use of expert systems to represent and apply
expert knowledge in a particular domain is becom—
ing increasingly widespread (Hayes—Roth, 1983 and
Wallich, 1984). Our recent efforts (Taylor, 1983
and 1984 a,b; James, 1985) have been focussed on
the use of expert systems to aid a control
engineer in exploiting available software to
achieve an acceptable design, In this research,
we use General Electric's DELPHI inference engine
in combination with the following conventional
analysis and design software tools:

a, the Cambridge Linear Analysis and Design Pro—
gram (CLADP) (Edmunds, 1979), which contains
more than thirty separate routines to perform
design, analysis and simulation functions fox
both single—input, single—output and
multiple—input, multiple—output systems in
either the time or frequency domain,

b. SIMNON (Elmgvist, 1977), which supports the
simulation of nomlinear systems,

¢, extensions to SIMNON (Taylor, 1982), which
provide equilibrium finding and linearization
about the equilibrium point for nonlinear
system models, and ’

d, a routine to access and categorize the output
of the root—finding routine of CLADP, to pro-
vide the basis for diagnosing the time—domain
characteristics of the system model by the
expert system,

In addition, we have developed a set of about
thirty LISP functions which support the various
actions described in Sections 2 — 4 below. It
should be noted that extensions were required in
CLADP anhd SIMNON in order to support the exchange
of data between the expert system and the externmal
processes, ,
Integrating the numerical capabilities of the
above software with the knowledge representation
and deductive mechanisms of the DELPHI inference
engine results in a high-level combination of
large-scale numerical processing with large—scale
symbolic processing, During the execution of a
design sequence, we use the expert system (written
in FRANZ LISP and running undexr the EUNICE operat—
ing system) to control the start-up of the various
numerical routines (writtenm in FORIRAN and running
under the VAX/VMS operating system), direct the
transformation and exchange of data required to
proceed with the problem, and implement the inter-—
face with the user. As many as four external
VAX/VMS sub—processes are created, and external
programs are started, used, and stopped by the
expert system through these sub-processes., To
illustrate the scope of this activity, more than a
hundred individual commands may be asutomatically
issued to CLADP by the expert system as compensa-—
tors for a control system are designed. Such a
software system thus achieves a transfer of much
of the burden of the complexity of the control
engineering problem from the shoulders of the
design engineer fto the expert system.

This paper is organized as follows: In Section 2
we discuss a partitioning of an expert’s control
engineering knowledge into various rule bases and
the organization of these rule bases. The imple-—
mentation of the design process and the role of a

James, Taylor,

switching function in that implementation are dis—
cussed in Section 3. The protocol used to coordi-
nate the symbolic manipulations of the inference
engine with the numeric computations of the con-—
ventional control engineering analysis and design
routines is treated in Section 4. We conclude the
paper in Section 5 with an outline of the key
issues and our approach to addressing them, and
salient conclusions,

2. ENOWLEDGE PARTITIONING

The rule base architecture is shown in Fig, 1. The
production rules which comprise this structure
were developed to realize the concepts presented
in the Computer Aided-Control Engineering (CACE)
architecture of Taylor (1984b). The present
structure differs slightly from what was origi-
nally proposed. The principal difference is that
the design responsibilities are no lomger split
between Rule Base 4 and Rule Base 5 (Taylor,
1984b); both rule base functions are contaimed in
the DESIGN rule base. It was found that the former
structure led to unnecessary switching between the
rule bases that could be eliminated by having
design functions pexformed in omne rule base,

The six operational rule bases of Fig. 1 are
integrated through a set of supervisory rules
(meta~rules) which checks the current state of the

problem solution and decides which operation needs’

to be done next, Invoking the next applicable
rule base is accomplished by use of a switching
function which is further discussed in Section -
3.3. This implementation of the expert system
architecture was also suggested in (Taylor,
1984b),

The knowledge contained in the rule bases (Fig, 1)
is as follows: .

SUPERVISOR: The function of this rule base is to
permit the user to select a training or design
session, and to direct its execution, Fig. 2.
This selection allows any of the sets of rules
to be invoked individually (the TRAINING
option), or aids the user in directing the
integration of the individual rule bases into
a general procedure (the DESIGN option). The
training option makes use of archival lists of
facts associated with the design of lead-—lag
precompensators for a third—order, type—one
plant, to allow the user to explore the work-—
ings of each individual rule base. Specific
functions are:

a. starting and stopping the seossion,

b. permitting the user to select a training
or design session,

¢, .selecting the appropriate rule base to
continue the session when one set of
rules has completed its work (during a
DESIGN session),

d. saving the current list of facts if the
user desires to intexrrupt the session and
continue at a later time, and

e. permitting the user to change specifica-
tions as the result of further analysis
done in the design or diagnose rule
bases, (It should be moted that this is
an example of non—monotonic reasoning,
That is, we are able to "revise a belief"
that specification development has bsen

and Frederick

completed, and return to update the
specifications.)

MODEL: This rule base deals with obtaining a model
of the plant. These rules will either aid the
user in building a CLADP description of a
linear model or request the user to enter the
file name of a previously-developed CLADP
model, The ability to enter a nonlinear model
as a SIMNON file followed by equilibrium find—
ing and determination of a linearized model is
also supported,

DIAGNOSE: The function of this rule base is to
analyze and characterize the model of the
plant. Currently s—domain informatiom is pro-
vided omn:

a, the stability of the open—loop system,

b. whether the system is type—zero, one or
two,

¢, whether the plant can be approximated as
an overdamped or underdamped second-order
system, and

d. whether the plant has a dominant pole or
pole paizx,

Also, the following frequency—domain informa—
tion is provided:

&, open—loop bandwidth (type-—zero system),
b. wuncompensated gain and phase margin,

¢. low-frequency gain (type—zero system) or
velocity constant (type—one system),

d, closed-loop bandwidth with unity feed-—
back,

e, closed~loop bandwidth with 15 db of gain
margin,

f. approximate bandwidth achievable with two
leads, and

g. approximate low—frequency gain or velo—
¢ity constant achievable with two lags,

CONSTRAIN: The funotion of this rule base is to
enable the user to enter a set of constraints,
Currently these rules only support frequency—
domain parametric constraints, The user can
limit the compensator do gain, phase lead
added by the leads, or low—frequency gain
added by the lags,

DESIGN: The function of this rule base is to aid
the user in applying the CLADP analysis and
design procedures to design lead—lag precom—

. pensation for a single—input, single—output
linear plant, A detailed description of the
heuristic used to automatically design the
compensator is given in (James, 1985). A
synopsis of the heuristic is as follows:

a. Add lead precompensators to adjust the
open—loop phase angle at the desired
closed-~loop bandwidth, This places the
high~frequency portion of the Nichols
locus in approximately the right region,

AN EXPERT SYSTEM ARCHITECTURE FOR COMPUTER-AIDED DESIGN

b. Add or adjust a constant—gain precompen—
sator to meet the gain margin,

¢, Adjust the actual closed~loop bandwidth
by making incremental changes in the lead
compensator pole/zero ratios.

d. Repeat steps b. and ¢, until the gain
margin and bandwidth specifications axe
met, When both conditions are satisfied,
the high frequency portion of the Nichols
locus is correct,

e, Add lag precompensation to adjust the low
.. frequency gain (for a type—zero system)
or velocity constant (for a type—omne sys—
tem). The lag(s) are placed so the high
frequenocy portion of the Nichols locus is
not disturbed significantly.

SIMULATE: The function of this rule base is to
facilitate the simulation of the closed—loop
system, CLADP is used to provide the step
response of the system with a linear plant
model, and SIMNON is used to perform more gen—
eral and realistic simulations of the response
of the system with linear or nonlinear plant
models,

3, IMPLEMENTATION OF A HEURISTIC
PROCESS

The user directs the design process of the expert
system by providing names of data files, menu
selections, and responses to queries, While the
user is in charge of the problem solutiom, the
expert system implements a specific train of
thought to aid in achieving the solution (e. g.,
check that reasonable specifications are entered
before continuing with the design of compensation,
or follow a logical sequence of actions to add
lead—lag compensation to meet specifications), -
The knowledge summarized in Section 2 is needed to
implement such a train of thought, This knowledge
is symbolically represented in a partitioned sets
of rules and a list of facts. A discussion of the
syntax of production rules and lists of facts and
how they can be used to represent knowledge can be
found in (Taylor, 1984b) or (Johnson, 1983).

As the number of design procedures grows and the
complexity of the other portioms of the expert
system increase, partitioming the knowledge into
modules will be an essential requirement to reduce
the time required to execute various phases of the
analysis and design process, In addition, modular-
ity will make the expert system easier to develop,
modify, and maintain, The expert system proceeds
with the design problem by focussing its search om
the next applicable rule base, This is achieved by
recognizing when the current rule base has com—
pleted its tasks, switching to the supervisory
rule base, and determining which rule base should
be invoked next. The method of implementing the
transition from one rule base to another in DELPHI
is as follows:

a. save the current list of facts in a file,
b. 1load the supervisory rule base,

¢. load the list of facts for the supervisor to
process,

d. have the supervisor determine which rule base
to invoke next,

e. save the list of facts in a file,

f. 1load the new rule base, and finally

\ -

g. load the list. of facts.

A LISP switching function has been written to per—
form these actions,

To convey a clearer understanding of how we have
controlled the logical flow associated with the
design process, we will first discuss forward
chaining through a rule base, then discuss back—
ward chaining, and then present some lessomns
learned about switching between rule bases.

3.1 Forward Chaining

Most frequently, the inference engine uses the
1ist of facts to determine the curremt situation
and then take the appropriate action(s) to proceed
with the mext step in the process. This inference
mechanism is called forward chaining, For example,
the rule which recognizes that the lead—lag design
eriteria have been met and writes the facts that
will display summary information to the user,
direct the expert system to provide a Nyquist plot
of the compensated system, and then return to the
supervisory rule base, is as follows:

(Rule_130 (" design for GM, 1lfg, clbw is done ")
(WHEN

(TRUE (SYSTEM TYPE . ZERO)

" Fave a type—zero system ')

(TRUE (PHASE—-AT-OMEGA-BW VALUE . ADJUSTED)

" Have adjusted the phase at omega bw ")
(TRUE (EXCESS—GAIN-MARGIN VALUE . -3<..<+3DB)
" Excess gain margin is ok *)

(TRUE (LOW FREQUENCY . ADJUSTED)

" Low frequency gain is ok ")

(TRUE (CLOSED-LOOP-BY VALUE . ADTUSTED)

" ¢losed—loop bandwidth is ok ")

(TRUE (GAIN-MARGIN FINAL-VALUE . (? GI))

" The final gain margin is known ")

(TRUE (CLBW FINAL-VALUE . (? CLBV))

" The final closed—loop bandwidth is known ")
(TRUE (LFG FINAL-VALUE . (? LF@))

" The final low-frequency gain is known ")
(TRUE (DESIGN-FACTS VALUES . ALL~ENTERED)

" We have entered all required facts "))

(THEN

(CLEAR (DESIGN-FACTS , ALL-ENTERED)

» prevent looping on this rule *)
(SCREEN (?7 7?7 . 17)

" (lear the terminal display for the user ")
(DISPLAY (2?2 27 . 1)

n

" LEAD-LAG design specifications are met: "

" n

" gain margin = 9GM db "
" bandwidth = 7CLBW 1zps "
" jow—frequency gain = ?LFG db)

(ACENOWLEDGE (L-L-DESIGN CONDNS-MET . ACENLD)
Wait for the user to acknowledge info ")
(WRITE (PROVIDE FINAL ., NYQUIST-PLOT)

" Fire the rule to provide a Nyquist plot ')
(WVRITE (SYSTEM-SESSION REQD . FROM-DESIGNLL)
" Move to the Supervisory rule base ")))

The nine conditions in the premise of the above
rule (i.e., those elements between WHEN and THEN)
are used to recognize that the lead-lag design has
been successfully completed for a type—zero sys—
tem. Comments associated with each fact are
enclosed in double quotes. The six statements in
the conclusion (i.e., those elements following
THEN) perform those actions needed to continue

James, Taylor, and Frederick

-

with the design process or are used to fire othex
rules which will perform such actions., Some
quoted material (e.g., " Prevent looping on this
rule ") comprise comments, while some phrases are
displayed to the user (e.g., " LEAD-LAG design
specifications are met: "); this is govermed by
the verb (CLEAR or DISPLAY, respectively). Symbols
are assigned values by the inference engine (e.g.,
(7 GM) may have the value 19.5 dB), and those
values are also displayed to the user (e.g., line
5 of the DISPLAY action above results in the mes—
sage gain margin = 19.5 db

being issued). The forward chainer starts work as
soon as a rule has its premise satisfied, and con—
tinues until no rule has its premise satisfied,

3.2 Backward Chaining

A rule can also recognize that the current situma-—
tion calls for establishing a hypothesis (goal) to
be verified (achieved) by the inference engime,
This inference mechanism is called backward chain—
ing, For example, the rule which implements the
repeated verification of the completion of the
major steps in the design process, and thus is the
heart of Fig. 1, does so by invoking the backward
chainer to vexify a list of facts:

(Rule_300 (" Design process being checked ")
(WHEN

(TRUE (SYSTEM SESSION . BEGUN)

" You have selected a DESIGN session "))

(THEN

(CLEAR (SYSTEM SESSION . BEGUN)

" Prevent looping on this rule ")
(PROVE (MODELING ASSISTANCE . PROVIDED)

" Has the system model been entered? ")
(PROVE (DIAGNOSIS ASSISTANCE . PROVIDED)

" Has the system been diagnosed? ")
(PROVE (CONSTRAINT ASSISTANCE . PROVIDED)

" Are system comstraints entered? ")
(PROVE (SPECIFICATION ASSISTANCE . PROVIDED)

" Are system specifications entered? ")
(PROVE (DESIGN ASSISTANCE . PROVIDED)

" Has the design met the specs? ")
(PROVE (SIMULATION ASSISTANCE . PROVIDED)

" Is simulation of the CL system dome? ")
{ ACKNOWLEDGE (ADVISE DESIGN~VERIF . DONE)

" "

" Control system design and verification
" is finished., You may wish to alter the
" given model, constraints, and/or specs

® and redo the design, or repeat another ~

" portion of the process, or exit. ")
(WRITE (DESIGN-SESSION MENU . REQUESTED)
" Allow user to modify.or quit. "})) ~

This rule is fired each time the supervisory rule
base is loaded, The backward chainer considers
ecach PROVE statement in turn, If it is already
established in the list of faots, the backward
chainer moves on to the next statement; the first
hypothesis that has not already been established
will be picked by the inference engine for test-
ing. The supervisory rules are formulated so that
this results in invoking the appropriate opera-—
tional rule base, The inference engine will
proceed in this way until the entire set of
hypotheses has been satisfied and therefore the
goal can be said to be achieved.

Generally, this rule results in the progression
MODEL, DIAGNOSE, CONSTRAIN, SPECIFY, DESIGN, SIMU-
LATE. However, this is not a rigid regimen: if
during the design process it is determined that a
specification cannot be met and should be changed,

the fact (SPECIFICATION ASSISTANCE . PROVIDED) can
be cleared by a 'rule in the design rule base.
Other faots can be written to indicate which
specification needs attention, When the super-—
visory rule base tries to verify that (SPECIFICA—
TION ASSISTANCE . PROVIDED) is a fact, it will no
longer be in the list of facts. Thus, the infer—
ence engine will again invoke the the specifica~
tion rule base and work to validate this fact.

Comparing the premise of this rule to that of the
example used for forward chaining, we see that
only a single condition is needed to recognize
that the steps in the design segquence need to be
verified. The PROVE verb is used to indicate to
the backward chainexr that the associated fact
(e.g., (MODELING ASSISTANCE . PROVIDED)) is a
hypothesis to be verified, The backward chainex
will then check to see if the faot is already
known to be true or false. If the fact is not
known, then the backward chainer will proceed to
look for rules which will write this fact in their
conclusions and work to establish the premise of
those rules, This involves switching in the
modeling rule base and proceeding until (MODELING
ASSISTANCE . PROVIDED) is true.

3.3 Using a Rule—Base Switching Function

Rules in each operational rule base recognize that
it is time to return to the supervisory rule base
to proceed with the overall problem. The facts
are then saved in a file, the supervisory rule
base is loaded as the curremt rule base, and the
facts are made available to the supervisor. The
next applicable rule base is selected by the
supervisory set of rules. The six operational
rule bases are contained in separate files which
are invoked using the switching function. This
process continues until the expert system can do
no more or the user elects to end the session, As
we have seen above, Rule_300 performs this top—
level control of the process.,

This approach is useful if the problem being
addressed can be partitioned into "phases” with
well-defined initial and final conditions, and if
the phases are of sufficient complexity that the
overhead involved in switching is warranted. The
knowledge partitioning discussed in Section 2
satisfies these conditions.

The exit criteria for a rule base must not be
satisfied until all required actioms have been
completed, This condition is met when the pattern
which fires the rule in which the switch funotion
is called occurs only for that rule, We normally
achieve this by executing a switch as the last
action taken by the first rule in a rule base.

The list of facts is passed as a queue from one
set of rules to the next, and DELPHI starts to
check rules for firing as facts are being loaded.
In this case, one must be careful mnot to start any
actions in a new rule base until the entire list
of facts has been entered. (Otherwise some facts
may be lost if a subsequent switch occurs before
all of the old facts are entered, or the new set
of rules will not behave properly since all of the
facts would not be available.) Thexrefore, each
rule base is designed such that its start—up rule
cannot be fired until the last fact written by the
prior rule base is loaded.

The seven rule bases now total approximately 300
rules: using a command file to run through a typi-
cal design sequence takes about thirty minutes on

AN EXPERT SYSTEM ARCHITECTURE FOR COMPUTER-AIDED DESIGN

an unloaded VAX 11/785. About half of this time is
required to compile the rules as we switch between
operations, This time would be reduced signifi-
cantly if the DELPHI inferemnce engine supported
accessing a compiled version of the rules,

4. PROTOCOL FOR COORDINATING SYMBOLIC
AND NUMERIC COMPUTATIONS

The operation of the expert system in concert with
conventional analysis and design software requires
that:

a, VAX/VMS sub-processes be oreated to start,
run and stop CLADP, SIMNON, and other exter—
""nal programs which are sources of data for
the expert system,

b. a two-way transformation of data be esta-
blished between the symbolic representation
of the expert system and the numeric
representation of these external programs,-
and

¢, coordination of the operation of the expert
system with external programs be established
to prevent the expert system and the extermal
programs clashing (e.g., trying .to provide
information to the user at the same time, or
returning to symbolic manipulation before
numeric data has been completely supplied).

The DELPHI inference engine has a LISP function
available to create a VAX sub-process which uses
mailboxes for the input and output ports of the
sub-process. Read and write functions are also
available to communicate with the sub—process via
the mailboxes, We use the mailboxes to start up
programs (Fig, 3), and then transmit commands to
them and receive data from them using files.

We have implemented a protocol which coordinates
the expert system with external programs and pro-—
vides support for two~way communication via files.
Figure 4 is a timing diagram for running CLADP
which depicts the actions taken to implement the
protocol. A detailed discussion of this timing
diagram follows:

a, The usexr starts the expert system (point A on
Fig., 4) and proceeds to respond to its
queries until data is needed from an external
program, At this time, the expert system
writes the commands necessary for CLADP to
perfofm the required calculations to the file
EXPOUT (points B,C), creates a VAX/VMS sub-
process, starts CLADP through the sub-
process, and begins to wait (point D) until
it detects that CLADP has created the
handshake file (point J).

b. Once CLADP is started, it reads the sequence
of commands from the file EXPOUT (points
E,F), performs the required calculations,
writes the results to the file EXPIN (points
G,H), creates the handshake file (point I),
and begins to wait (point J) until it detects
the deletion of the handshake file (point P),

¢, When the presence of the handshake file is

detected (point J), the expert system reads
the symbolic data written to the file EXPIN
by CLADP (e.g., (GAIN-MARGIN DB-VALUE . 8.5),
points K,L), and continues with the inferemce
process until additiomal data is needed. At
this time, the expert system writes the
sequence of CLADP commands to EXPOUT (points

M,N) to obtain the required data, deletes the
handshake file (point 0), and waits (point P)
until CLADP has created the handshake file.

d. This sequence of writing commands to EXPOUT
and symbolic information to EXPIN while coor—
dinating the operation based on the existence
of a handshake file continues until CLADP is
no longer needed., At that time the expert
system can stop CLADP and the VAX/VMS sub—
process is then available to run another pro-—
gram,

The protocol for coordinating several processes is
identical to this outline; for each process there
is an associated file set for handshake and input
and output data transfer., Symbol/numeric
transformations are required throughout this pro—
cess: The expert system must know how to write
CLADP and SIMNON commands in order to achieve the
required results, and CLADP and SIMNON had to be
extended to convert numerical data back into sym—
bolic form (e.g., (GAIN-MARGIN DB-VALUE . 8.5) has
to be written into the file EXPIN in the above
example) .

5. CONCLUSION

The application of the expert systems approach has
proven to be useful in coping with the complexity
of computer—aided control engineering (CACE) pro-
cedures. By reducing the burden on the design
engineer to recall the details of using software
packages effectively, and by containing the
heuristic procedures involved in various analysis
and design approaches, an expert system can be an
effective aid in the CACE process.

Partitioning the CACE problem into distinct well-
defined subprocedures and corresponding rule bases
is ome key to addressing the complexity issue.
This can be achieved by 'modeling” the computer—
aided control engineering effort along functional
lines (Taylor, 1984a,b). In implementing this
feature, we have found that switching between rule
bases has several benefits, namely:

a. Top~level goals can be reevaluated continu—
ally by the supervisor, based on the results
achieved by the different operational rule
bases. For instance, once initial control
system specifications have been developed,
the fact (SPECIFICATION ASSISTANCE . PRO-
VIDED) is known by the supervisor and the
specification rule base will not be called
again, However, if further work reveals that
a bandwidth specification cannot be met with
two leads, this fact can be cleared from the
list of facts, and the supervisor will re—
invoke the SPECIFY rule base and ask the usex
to reduce the bandwidth specification.

b, Incremental design by the user is supported,
since the rule bases are functiomally
arranged and the list of facts can be saved
to inmitiate another session, Thus, the user
can complete a model and diagnosis session,
save the facts, and restart the expert system
at a later time., Several specification sets
and solutions can be studied, starting from
the same initial state,

¢. Ruole bases can be written and debugged
separately, and then integrated into the
overall structure, This is helpful, since
the time required to make trial rums is
greatly reduced, and errors can be identified
more quickly.

James, Taylor, and Fredexrick

d. The supervisor is used to reduce the scope of
search, so the running time of the complete
expert system should be kept to reasonable
bounds even as the number of procedures sup-
ported by the expert system increases.

Using the switching technique to implement the
rule base partitioning requires careful attemtion
to detail, as indicated in Section 3.3,

VWe have presented architectural and implementation
issues involved in applying expert systems
knowledge representation and inferemnce mechanisms
to ereate a higher—level, flexible enviromment to
help the control engineer solve CACE problems,
However, it should be emphasized that the develop-
ment of an expert system is not a panacea., The
creation of an expert system has its own set of
difficulties, the most burdensome being the crea-
tion of the architectural implementation and
knowledge base, The process of translating human
expertise into a rule base (knowledge acquisition)
is not well understood (Hayes—Roth, 1983)., How—
ever, we believe that "modeling” the computer—
aided control engineering effort along functional
lines (Taylor, 1984a,b) is a necessary first step
in knowledge representation and acquisition that
greatly alleviates this problem, The reduction in
the difficulty of the problem presented to the
user justifies the increased complexity of the
software tool which implements the design emviron—
ment, b

Acknowledgments., The research reported in this
paper has been substantially aided by the contri-
butions of persons other than the authors. Dr.
Piero .Bonissone has assisted from the beginning of
the project, providing the initial inference
engine and his experience with expert systems
development, More recently, Dr. Melvin Simmons,
Dr. Dale Gaucus, and Steven Kirk assisted in
implementing the expert system using the DELPHI
inference engine. Also, David Kassover has helped
in making modifications to CLADP and SIMNON,
These individuals were employed by General Elec—
tric Corporate Research and Development (David
Kassover as a consultant). Their support is grate-
fully acknowledged,

REFERENCES
Edmunds, J. M, (1979). Cambridge linear analysis

and design program, IFAC Symposium on Com-—
puter Aided Design of Control Systems, Zurich,

Elmgvist, H, (1977). SIMNON ~ An interactive simu—
lation program for non—linear Systems.
Proceedings of Simulation 77, Montreux.

Hayes—Roth, F., D. A, Waterman and D. B, Lenat
(1983) ., Building Expert Systems, Addison—
Wesley, Reading, MA,

James, J. R., D. E. Frederick and J., H., Taylor
(1985) . On the application of expert systems
programming techniques to the design of lead-
lag precompensators, Proceedings of the Con—
tzol 85 Conference, Cambridge, UK.

Johnson, H. E, and P, P, Bonissone (1983). Expert
system for diesel electric locomotive repair,
Journal of FORTH Applications and Reseaxech, 1,
No, 1.

Taylor, J. H., (1982), Enviromment and methods for
computer—aided control systems design for non-—
linear plants,” Proceedings of the Second IFAC
Symposium: CAD of Multivariable Technological
Systems, West Lafayette, IN. 361-367.

Taylox, J. H., D, K. Frederick and A, G. T.
MacFarlane (1983)., A second— generation
software plan for CACSD. Abstracts of the IEEE
Control System Society Symposium on CACSD,
Cambridge, MA.

Taylor, J. H., D, K. Frederick and J. R. Janmes
(1984) . An expert system scenerio for
computer-aided control engineering, Proceed—
ings of the American Control Conferemge, San
Diego, CA, 120-128,

Taylor, J. H., and D. K. Frederick (1984) . An
expert system architeoture for computer—~aided
control engineering, IEEE Proceedings, 72,
1795-1805,

Wallich, P. (1984). Technology 'B84 software. IEEE
Spectrum, 21, No, 1, 47-49.

FIGURES

. EXTERNAL

USER DELPHI PROGRAMS
SUPERVISOR
I
1 { i
MODEL CONSTRAIN DESIGN
DIAGNOSE SPECIFY SIMULATE

KNOWLEDGE BASE

Fig. 1. Expert system structure

AN EXPERT SYSTEM ARCHITECTURE FOR COMPUTER-AIDED DESIGN

{ TRAININGJ

l DESIGN

YES
__—.p.l MODEL?

[

GO MODEL |l
_

USER

TERMINAL

=

DELPH!

PROGRAM
OUTPUT MAILBOX

\

\\‘

PROGRAM
INPUT MAILBOX

EXTERNAL
PROGRAM

_—

A -~ USER BEGINS EXPERT

8 -
C -~
D~

_-TITO T m
1

EXPERT OPENS EXPOUT AND WRITES COMMANDS

EXPERT CLOSES EXPOUT
EXPERT BEGINS CLADP VIA MAILBOX AND

BEGINS TO WAIT

CLADP OPENS EXPOUT AND READS COMMANDS

CLADP CLOSES EX

CLADP OPENS EXPIN AND WRITES RESULTS

pPOUT

CLADP CLOSES EXPIN
CLADP CREATES AND CLOSES HANDSHAKE

COMMAND
YES FILE EXPOUT
—-——p{ DIAGNOSE? _¢_{Go DIAGNOf}__g_—
- NO DATA
. , l, ves FACTS/RULES FILE £XPIN
] CONSTRAIN? GO CONSTRAIN}
' 1 no -
YES Fig, 3. Running extermal programs
___a,.(SPECIFY? GO SPECIFY
NO '
YES
—————v-{iDESIGN? GO DESIGN
NO
YES
SIMULATE? QO SIMULATE
NO
MENU OF
OPTIONS
Fig, 2. Flow chart for the supervisor set of rules
A B C P E F G HIJK L M N op Q
. I T I N N A N |
WORK __ _ _| | | | | N M ! i
1 ' ¥ L] i 1 1
wart __ Lo Lo ! : " | I I [I o
EXPERT [],1 p— ! i | Pl I | ! | Pt
woRk-_— . S R R e b ! | |] [| o
i | | | |] | | | | | T
WAIT L R T I AN OO |
CLADP OFF T | | |- P [| | | | {
| | | | [
EXIST : i | { : ' g ' |
HANDSHAKE NONE . e ! Lo } : ———
|
OPEN : ! :] ! | i
Lo toy | P | E““‘]
EXPIN CLOSED | | : :] I ——
OPEN) ! I
EXPOUT CLOSED ’ i [J l ——

J - EXPERT SYSTEMS RETURNS TO ACTIVE STATE,
CLADP BEGINS TO WAIT
K - EXPERT OPENS AND READS EXPIN
L - EXPERT CLOSES EXPIN
M - EXPERT OPENS EXPOUT AND WRITES COMMARNDS
N -~ EXPERT CLOSES EXPOUT
O - EXPERT DELETES HANDSHAKE
P - CLADP RESUMES WORK, EXPERT WAITS
Q - CLADP OPENS EXPOUT AND READS COMMANDS

Fig. 4. Protocol timing diagram

