CADCS’88 PI

ATH IFAC SYMPOSIUM ON COMPUTER
AIDED DESIGN IN CONTROL SYSTEMS

SPONSORS

International Federation of Automatic Control (IFAC)
Applications Committee (APCOM)
Systems Engineering Committee {SECOM)
Education Committee (EDCOM)
Computers Committee (COMPUT)
Theory Committee (THEORY)
Chinese Association of Automation
China Association for Science and Technology
China International Conference Center for Science and Technology
Natinal Natural Science Foundation of China

INTERNATIONAL PROGRAM COMMITTEE "

Chairman: A. van Cauwenbeighe {B)

Co-Chairman; Chen Zhen-Yu (PRCY

Vice-Chairman: Qin Hua-Shu {(PRC)
P. Kopacek (A) JH Anderson = (AUSy
K.C. Daly (AUS) W. Schaunfelberger (CEy
M. Mansour (CH) F. Conrad . (DK}
M. Kummel (DK) PM Larsen (DK}
A, Titli (E) G. Davoust {
H. Unbechauen {FRG) R. Isermenn (FRG)
C. Schmid (FRG) H. Rake {FRG)
L. Keéviczky . (H) K Furuta 0.
A Tysso) P van den Bosch (NL}
B A Ogunnaike (NI) Wang Ying-Luo (PRC)
Han Jing-Qing {PRC) Wang Zhi-Bao (PRCY
T. Soderstrom (8 X J. Astrom {5}
N. Munra {UK) J. Celantuoni {USA)
G. Leininger (UsA) M I Shah (USA)Y
C.J. Herget (USA) G. Stephanopoulos {(USA}
H.A. Spang I {USA) J. Taylor (U§A) :
I. McAvoy {USA) C. Geoigakis | . {USAY

NATIONAL CRGANIZING COMMIITEE

Chairman: Yu Jing-Yuan

Vice-Chairman: Wang Zheng-Zhong
Zhang Zhen-Hua Wang Zi-Ping Wu Zhi-Ming
Mao Jian-Qin Dai Guna-Zhong Shu Di-Qian
Han Zhi-Gang 1i Shu-Ying Ye Qing-Kai

Xiong Guang-Leng Tu Qi-Lie Mao Xu-Qin

EXPERT-AIDED ENVIRONMENTS FOR CAE OF CONTROL SYSTEMS

James H. Taylor

Control Systems Laboratory

GE Corporate Research & Development
Schenectady, NY 12345 USA :

Abstract: - Artificial intelligence in general and expert systems (ESs) in particular have
recently gained prominence as effective approaches to computer-aided problem solving,
The earliest successes of ESs were in the area of diagnosis or trouble-shooting; computer-
aided engineering (CAE) is a much more recent application area of this technology 'The use
of ESs for computer-aided control engineering (CACE) is the specific focus of this
presentation. The primary goals are to discuss frankly our group’s recent work in this area
{see References), to outline various approaches to expert- -aided CACE and their
implications, and to present a balanced, realistic view of the promise, Hmitations, and cost of
ES technology for CACE. The intent is to provide a personal viewpoint, based on
observations and lessons learned in the course of our effort rather than a sigorous survey of
the field. It is hoped that this retrospective / tutorial discussion will be beneficial to others
working or about to work in this field.

Keywords. Control éysteni'design; computer-aided engineering; computer-aided design;

expert systerns; artificial intelligence; heuristic programming.

1. INTRODUCTION

Substantial interest has developed over the last few
years in the perceived benefits of combining
conventional CACE software with some sort of
artificial intelligence (AI) system. The most common
idea has been to add an expert system 0 an existing
CACE environment; this concept is the thrust of the
project we call CACE-IIT (third-generation CACE
environment) and is the particular subject of this
presentation. The objective is to provide as much
insight and realistic information as possible about this
approach in terms of what to expect, what to do, and
how to do it.

-Several questions should be considered before
seriously contemplating or pursuing the development
of ES-based CACE software:

1. What sort of users are to be supported by the
software?

2. What activity can be and is worth expert
aiding?

3. What is the best knowledge representation for
expertise in performing that activity?

4. Inwhat form should expert aiding be supplied?

5. How should the expert-aided CACE software
be asserabled (structured)?

6. What is - and is not - supported by an ES-based
environment?

These considerations are intimately coupled. It is
also fair to say that the success or failure of an expert

aiding project is likely to hinge on some or all of
these issues. :

We will explore the above questions in the following
framework: Section 2 defines expert-aided CACE,
Section 3 covers knowledge representation issues,
Section 4 overviews ES software functional
requirernents, Section 3 titled “Other Implementation
Issues™ discusses the interreiated topics of the target
user group, selection of activity to be expert aided,
and the model or “paradigm” for such aid, Section 6
treats architectures as related to these issues, and
Section 7 integrates these considerations into an
overall assessment of the vse of ESs for CACE.

2. WHAT IS EXPERT-AIDED CACE?

First, what is CACE? Under the designation CACE,
we include computer-aided analysis and design tools
that can perform at Jeast the following catalog of
basic activities: nonlinear modeling and simulation,

‘mode! identification, equilibrium finding, lineariza-

tion, and linear anatysis and design (both in the time
and frequency domains). In many disciplines, there
exist non-generic CACE fanctions that add to this
List: trim finding for flight control is a good example
Finally, this list could be extended almost indefinitely
by adding other nonlinear systerm analysis and design
methods. The fact that control enginieering involves
such a wide variety of aciivity - and thus requires a
broad and complicated CAE environment for solving
realistic problems - provides much of the motivation

_for considering expert aiding. By the term “realistic”

we usually mean not small and not linear - many of
the tougher challenges of CACE are presented by
such problems. 4

Next, there are various understandings of what is
meant by the term “expert” or “expert-aided” as
applied to CAE software. This can cover the range
from “this software was designed by an expert to
help you perform CAE betier”, a claim that can be
made independent of the type of programming that
was emiployed in developing the software, to “this
CAE sofiware is or incorporates ‘real’ Al software
(eg, an expert system shell)” The term expers-
aided CACE will be used in the second sense in the
discussion that follows.

3. KNOWLEDGE REPRESENTIONS

The first major consideration in developing expert-
aided CACE software is deciding what CACE
functionality to expert aid and selecting a suitable
knowledge representation. A wide variety of
knowledge representations exist in Al; in general,
they have been motivated and shaped by the class of
problem(s) being solved. It is, therefore, important to
couple the question of knowledge representation with
the specific scope of expert aiding,

We have not made an exhaustive study of the full
range of possible knowledge representations available
in the Al liteyature; rather we considered the types of
problems we wanted to solve and found an
appropriate representation for that class. We thus
start by discussing types of CACE functionality that
we considered for expert aiding, then describe the
knowledge representation we have found useful, as
mechanized in the expert system shell (ESS) we used
in owr woik, and conclude by mentioning one
contrasting problem area and ES framework as an
illustration of the range of possibilities.

3.1 Selection of Expert-Aided Functionality Expert
or knowledge-based systems are software
environments designed to aid in solving problems
that require expertise, some degree of inference
(“reasoning”), the use of hewrisfics (nonrgorous
procedures or “rules of thumb™), and the systematic
processing ‘of symbolic information. Such problems
are often complicated and broad in scope, and are not
amenable to clear-cut well-posed algorithmic
solutions. Many control engineering tasks fit these
characteristics. The types of e¢xpertise that are
required for CACE problem solving are: development
and diagnosis of realistic plant models, formulating a
well-posed controls design problem, selecting
appropriate analysis and design methods, performing
design tradeoffs, validating and documenting designs,
and, in the course of all this, making effective use of
conventional CACE gsoftware. In many cases, this
involves judgments such as “that frequency response
curve fit doesn’t look good at low frequencies -
perhaps changing the weighting wili produce a betier
result” and the corresponding knowledge required to
carry - out this decision using available tools.
Symbolic information to be processed in CACE
zlpdes procedural descriptions of methodalogies for

CACE (especially the decision-making aspects as
illustrated above), problem formulation, the status cf
the current problem solution, -the names and
capabilities of CACE packages, their command sets,
syntaxes, ~and error handling, data and model
relations, etc. It may seem surprising that we include
low-level detail such as command sets and syntaxes
along with higher-level knowledge; however, in
many cases the greatest benefit of expert aiding is
relieving the user from having to attend to that type
of activity - .

In the process of deciding where to invest our effort
in expert-aided CACE, we developed the following
set of questions and rules: First, define a candidate
function for expert-aiding; then consider:

1. Does the candidate CACE function involve a
' substantial amount of heuristic decision
making? ¥ the answer is ‘no’, then
conventional programming may be sufficient

for the task and less costly to develop.

2. Does the knowledge required to impiement this

- function really exist in a form that can be
clearly stated, or is there reasonable hope that
this knowledge can be gained? Often a
proposed CACE function has o be discarded
because the answer is ‘no’; we find that there is
a natural tendency to propose developing an ES
to do tasks that are not well defined If the
answer is ‘no’, then eliminate this candidate -
unfortunately, no programming envirenment is
suited for such endeavors.

3. Is there a user group that wants that function to
be expert aided? We have found several
instances where the answer is ‘no’, either
because the function is too important to ‘trust’
to the ES, or because users believe that
important knowledge is gained when doing that
function manually.

A second consideration in setting our goals has been
the observation that conventional CACE packages do
provide suitable functional capability (all the required
analysis and simulation power to get the CACE effort
done), but suffer from a lack of high-level support to
make the software as effective and “user friendly” as
typically desired. This is discussed in detail in Taylor
and Frederick (1984); in summary, most conventional
packages require that the user:

» have substantal expertise and knowledge of low-
level detail (command sets and syntaxes, etc) in
order to take advantage of the available
capabilities;

s adopt a single, usually rigidly-defined, style of
interaction;

o make decisions without adequate support
mechanisms and the ability to document the basis
for judgment; and

e keep track, mentally or manually, of exacily what
has been done and where the results are stored

In addition, most users must use several packages in
order to cover the full range of CACE, compounding

-9 -

these problems. These may not be serious problems
for regular users who have invested the time to learn
how to use the packages effectively and who keep
that knowledge current; less-than-expert and
occasional users do not fare so well. We decided that
removing or reducing these obstacles to effective
CACE should receive high priority

Based on this line of reasoning, the general focus of
our work has been the development of CACE
software to provide expert-aiding for complicated or
decision-intensive procedures, cspecialiy those that
involve a substantial amount of routine, low-leve]
effort

32 Selection of Knowledge Representation: From
the above perspective, the type of knowledge that we
want to capture is primarily procedural in nature. In
particular, expert aiding the class of CACE functions
we selected requires having an experienced controls
engineer state in detail what steps are to be taken,
what decisions are to be made in executing the
procedure, how to judge that an acceptable solution

has been obtamcd, and how to use conventional

CACE software to carry out the required steps. This
generally produces “declatatwe" knowledge, that is
most readily represcnted as productlon rules”,
having the generic form:
IF (condition_1 & condition_: 2 & ...)
THEN { action_1 & action 2 & ...)
The elements condition_i and action_j are expressed
symbolically; for example, consider
Rule 1234:
IF ({ gain_margin desired_value .
(gain_margin actual value .
" 10% tolerance

= GM spec) &
<= 9%*GM _spec)

THEN (write (compensator_type needed lead))

where the variable GM spec must have a value
assigned before the rule can be executed

Production 1ules can be proéessed according 16 two
basic strategies: forward chaining, in which an
“inference engine” goes through the set of rules in a
systematic fashion (e.g., depth first or breadth first)
and executes any rule whose conditions are met, and
backward chaining, in which a goal is set (“
fry_to_execute (action_j) ”), the inference engine
seeks a “target rule” that can in fact carry out
action_j, checks the conditions of that rule, and
either {i) executes it if the conditions are met, or {ii)
sets ummet conditions of the target rule as sub- goai.s
that are in furn to be satisfied The first strategy is
useful for untlahz.mg a knowledge base or whenever
a straight-forward procedure is to be executed, while
backward chaining is more effective in sstiing an
objective (e.g, ty_to_execute (write (gain_margin
specification . sotisfred))), especially when an
objective is embedded in a larger framework where
forward chaining to completion may be very
wasteful. Many CACE problem domains .are of
sufficient complexity that a mixed strategy is
generally most effective (cf James, Taylor, and

Frederick, 1983).

Processing production rules involves generating,
modifying, or discarding “facts”. The conditions and
action illustated in Rule 1234 ‘above provide
examples of facts Note that an action may not
directly involve a fact; for example, the immediate
action may be to run a conventional CACE package
to generate a numerical result, then process that result
to produce more knowledge in symbolic form. The
second condition of Rule 1234 must be obtained in
this fashion.

The ES generally is initialized by loading a fixed set
of facts that set up the problem to be solved; more
facts accumulate as a problem is being solved by the
expert system, in a data structure usually called the
list of facts. The evolution of the list of facts is
achieved by obtaining new information from the user,

by running a CACE program io get new results, or by |

direct inference (if the conditions of a rule are
satisfied, the actions often involve writing additional
facts, as Rule 1234 illustrates).

The inference capabilities of rule-based ESs are not
limited to the basic inference shategies outlined
above There are numercus refinements, including,
most notably, reasoning with unceriain or
approximate information and non-monotonic
reasoning. The first involves the addition of
measiures of uncertainty or imprecision of
information and conclusions, and mechanisms for
propagating these rmeasures as inference proceeds
(see, eg., fuzzy reasoning, Mamdani and Gaines,
1981) This is oftén required in dealing with humaz
operator questions, . such as representing and
processing information of the form "If the pressure is
high and the temperature is low, then . ”; we have
not found an application for this reasoning approach
in the CACE functions we have treated to date.
Non-menotonic reasoning, on the other hand, is often
required in engineering problem solving. This phrase
designates a process in which the problem solution
develops for a number of steps (procedures are
carried out and facts accumulate), then it is necessary
to backtrack and try again teking a different path.
This happens whenever specifications cannot be met
or a trade-off study is required, for example. In such
instances, it is necessary to reset the facts by defining
a previous point in the problem solution to be the new

“current state” of the ES and eliminating the facts
developed after that point (“retracting belief”). It
may be necessary to save the ES state (in the case of
design trade-off study), or the information might be
partiaily or completely discarded (in the case of a

‘dead-end). In any event, the retraction of belief may

be difficult to manage in full generahty, but can be
lmplcmented if it is permitted only in carefully-
defined sitvations (e.g, design trade-off studies);
refer to James, Bonissone, Frederick, and Taylor
(1983). : '

The preceding overview outlines the thyee major
elements of a rule-based expert system: rules, facts,
and inference engine. The power of this

- 10 -

progiamming approach azises from this partitioning,
in which knowledge is expressed in rules and facts
that are handled in a dynamic fashion using a separate
processor (inference engine) which may be as simple
or sophisticated as necessary. This division achieves
a high degree of transparency, so that the rules can be
kept lucid (assuming the expert system developer has
a clearly-enunciated problem and solution
formulation) and the inference mechanisms can be
developed and validated separately for use in any
number of applications.

We acknowledge that the above “atoms” of
knowledge and basic inference mechanisms are not

terribly deep, and that an assemblage of such rules -

could be programmed in a variety of ways that do not
require the use of an ESS. We discussed the
advantages of programming procedural knowledge in
an ES framework as opposed to conventional
programming methods in James, Frederick, and
Taylor (1987); in summary,

L. The rules are often quite complicated, having
pethaps three of four conditions and as many
actions, and there may be as many as several
hundred or more such productions io solve a
problem of moderate complexity; conventional
coding of such a mass of logic may be difficult
to implement, maintain, and extend.

2. The first problem may be compounded when
dealing with a problem whose solution cannot
be stated clearly at the boginning of the project.
We found, for example, that the design of'a
lead / lag compensator (James, Frederick, and
Taylor, 1985) could not be translated into rules
directly from a controls textbook; rather, we
iterated many times, making insumerable rule-
base modifications until we were (almost!?)
satisfied with the resulis. ‘When this happens in
a conventional programming effort, one usually
generates code that must be re-implemented
and discarded; the ES approach supports the
incremental development of understanding
much more powerfully,

3. Most ES environments provide ‘help’ and
‘why’ facilities that greatly simplify program
development and can be used to satisfy the user
that the ES “knows what it is doing” (or
doesn’t know!).

These factors all reduce to the same issue: what is the
most effective programming environment for expert-
aided CACE? As mentioned at the beginning of this
section, the general answer is: an ESS that supports
the most suitable knowledge representation and
processing power. We decided that the production
rule-based ES form of knowledge representation and
basic inference strategy can be used to characterize a
broad spectrum of CACE activity that might be
expert aided, However, it is fair to note that such a
conclusion may be colored by the way the problem
solver or ES developer thinks, and may not be
objectively true for everyone.

There may well be other problems that are difficult to

express and solve using production rule-based
systems: To-illustrate that there are other classes of
problems and corresponding knowledge
representations, we merely point out as an example
that there are many important problems that require
detailed classification and pattern-matching (e.g,
image processing and understanding or interpreting
time-series data in terms of dynamic or other
characteristics). Frame-based ESSs have been
developed that have built-in mechanisms for setting
up classification schemes in terms of parent / child
relations, inheritance properties, slots for key
atiributes and perhaps production rules, etc,
facilitating the processing of taxonometric
information and approximate pattern matching in a
manner that would be difficult to do in a purely 1ule-
based ES.

4. EXPERT SYSTEM SHELLS

To be effective in CACE applications, an ESS must
have certain non-symbolic-processing capabilities in
addition to the inference power outlined above.
Expert aiding, as defined so far, involves the
development of rule bases to carty out high-level
CACE procedures; the resulting expert system must
mimic an expert or highly competent user, using
conventional CACE tools to carry out the procedures
as programmed in the rule bases whenever they are
invoked. In keeping with this model, the ES must be
abie to issue commands to the conventional CACE
software in the same way as the user, accept the
results from the package(s), transiate the numerical
results into symbolic form if necessary, and carry out
whatever numerical and logical -operations are
required to complete the task. (For example,
frequency-response data must be processed to obtain
the symbolic information gain_margin actual value
. 12345 _dB and then analyzed to arrive at the fact
gain_margin actual value . <=150_dB). If this
complete cycle of activity cannot be done directly,
then the ES would have to be used “off-line”, telling
the user to enter certain commands and data to the
packages, and to return information to the ES in
symbolic form. The latter approach may be adequate
for experimental purposes (exploring the use of an ES
for CACE; cf James, Bonissone, and colleagues,
1985), but it would not be satisfactory for actual use.

Combining ' this functionality with the knowledge
representation and inference capabilities described in
Section 3, the following requirements were
established for our work:

1. Production rules must be supported, preferably
with variables. The use of variables allows one
to implement a rule base with fewer actual
rules due the ability to eliminate *hard-wired”
numerical and symbolic information; Ruie
1234 Diusees s,

2. The shell must support, at a minimum, both
forward and backward chaining inference
strategies.

3. Multiple rule bases (RBs) must be supported,
so that the scope of the expert system can be

- N
kept manageable; see Section 6. Some CACE/.

ES architectures (§§ 6.1, 6 2) require that one
must be able to maintain the same list of facts
when switching from one RB to another, so
that results do not have to be regenerated and
reprocessed.

4, Numerical operaticils must be supported. For

example, simple arithmetic, comparisons
(inequalities), etc. must be performed. - in
carrying out most CACE tasks.

5. A reasonable ‘why’ andfor ‘help’ facility is
needed, both for development and user support.

6. The shell must be able to mterface with

. conventional software in a quasi-interactive

mode: The ESS must be able to issue

commands for the conventional core software

to perform the appropriate operations and have

the results reported back to tie ESS for

translation into symbolic form; in most cases

the conventional software must be supported

interactively through . a number of such
exchanges, ot run as a batch process.

A survey of a large number of commercially
available ESSs was conducted and reported in James
{1987). There are, to the best of our knowledge, no
completely supportive ESSs available today. This
necessitates developing a suitable ESS oneself, or
firiding the best comptomise ESS and modifying or
extending it as needed. This latter approach can best
be accompllshed using an ESS - based on an
mterpretwc Llsp environment.

We ﬁnally note that the roqmred capablhty of an ESS
is generally driven by the complexity of the problems
to béselved. It is beneficial to have the correct ESS /
problem match to avoid the extremes of “overkill”
(using a powerful inference engine to solve simple
problems, usually at a high cost in terms of computa-

tion and response time) and “brute force” (having to -

dcvelop an ulmecessaniy large rule base of simple-
minded rules that may also take a long tnne to

process).

5 OTHER IMPLEMENTATION ISSUES

At the same time one determines the answers to the
questions posed in Sections 3 and 4, it is important to
consider what type and style of expert aiding is
desired. This involves gaging the. capabilities . and
needs of the potential user group, and then deciding
how to provide the appropriate support and acquire
the necessary knowledge. These issues are discussed
in-detail below.

51 User-Gioup Characteristics. . The first

consideration in our work has been that the user of
expert-aided CACE software would b2 a controlz
engineer (no - we are not yet ready to propose that
your job be eliminated!); or at least a student of
control engineering. This provides us with a level of
technical expertise and computer familiarity such that
a “lead the user by the hand down the straight and
narrow path” ES paradigm may generally be rejected
out of hand. In contrast, contréls engineers will insist

on knowing what is happening, will want to be able
to influence the course of events, and will rot want to
be lead through an unnecessarily long or tedious
process (e.g., dozens of menu sclections or question
& answer dialogs) to get a job done. In shost, no ES
user should be patronized, and expert-aided CACE
software must set a particularly high standard in this
regard or face the reality that most users will stop
using the system after a few frustrating episodes

52 Paradigms for Expert-Aiding: The above
paragraph indicates that style is important. To be
more specific, several distinct “models” or paradigms
for expert aiding come to mind when considering
how expert aiding can be provided to a user:

¢ “Expert System as Taskmaster”, wherein the ES
leads the user “by the hand” through a strictly-
defined procedure;

“Expert System as Tutor”, wherein the ES tells
an inexperienced user what is involved in
carrying out a procedure, how to do it, and what
to look for;

» “Expert System as Assistant”, wherein the ES
carries out complicated but clear-cut tasks and
reports the results to the controls engineer for
assessment and iteration; ‘

» “Expert System as Coach”, wherein the ES
monitors the work of the user and offers
suggestions when it believes they are required
(see Larsson and Astrm, 1985), and

» “Expert System as Authority”, whereini the ES
solves the probiem and provides the solution on a
take-it-or-leave-it basis with no opportunity for
review and iteration

The selection of such a model has major implications
with respect to the integration of symbolic processing
(artificial intelligence) with numerical processing
{conventional CACE software); see Section &:
Architectures. In addition, this defines the type of
environment that is created, and thus the type of user
that is well - or poorly - supported, and the cost of
development. '

We would contend that neither the Taskmaster nor
Authority style of expert aiding wouid be appropriate
for CACE, based on the user characteristics ouilined
previously. The Tutor model (by which we mean an
ES providing detailed ‘help’ and ‘why’ support and
perhaps tutorial examples, not merely a Taskmaster)
may be very valuable during learning, but would
probably become tedious unless the tutoring can be
switched off, transforming the ES into one of the
otter paradigms. The Coach style ES is very
interesting in terms of being completely unobtrusive
yet supportive when necessary; however, it womld
probably be difficult to implement Coach rule bases
except for the small subset of CACE activity that fits
into clear-cut patterns that can be treated using
approximate pattern matching techniques (cf. Larsson
and Asirém, 1985). This leaves us with the belief
that the CACE practitioner will be best served by
providing Assistant expert aiding. Perhaps the “role

- 12 -

model” for this approach is the dental hygienist or
medical assistant who acts to relieve the professional
of routine chores and low-level detail (according to
instructions) and reports Back with only the necessary
high-leval information.

We observe that the distinctions made above hinge on
differences that may not be black-and-white and
which may easily be changed For example, the
difference between the Authority and Assistant
paradigms might be that the Assistant starts with
user-suppliad specifications, generates the
corresponding design if possible, and presents the
resulis (e g, control system simulation results for step
response) to the user for review and iteration, while
the Aauthority decides what specifications are
“correct” (based on the characteristics of the plant),
and generates one design for acceptance or rejection.
The complete difference may be in the following
alternatives:

Assistant: Recommended specifications are:
bandwidih = 25 Hertz,
gain margin = 1§ 48,
position ervor 5.0 percent;

Hnter specifications: bandwidih 7

Authority: Designing controller for:
bandwidth = 25 Hariz,
gain mergin = 18 dB,
position error 5.0 percent,

Iudgeﬂfor yourself which mode is preferable!

3.3 Knowledge Capture: Obtaining the procedusal
knowledge required to expert aid a CACE task may
or may not be simple, In some cases, the
methodology has been clearly defined in the literature
and is thus ready for programming into rule base
form; in other cages, there is a lot of “feel” and
“instinct” in the minds of experienced practitioners
_that may be very difficult to elicit (even when, as has
often been the case in our work, the mind of the
‘expert’ and the mind of the rule base developer are
one and the same). The generation of scenarios (e.g.,
Taylor, Frederick, and James, 1984; Taylor, 1985;
Taylor, James, and Frederick, 1987) played a large
part in this aspect of the development of CACE-IT.

We find thar-the best way to acquire the knowledge
that will be capiured by any ES is to carry out the
given activity in full detail, with realistic probiems,
using exactly the required tools. In our work, we
have generally selected a nonlinear plant model and
first go through a “dry run” on paper, then develop
commangd files and macros to execute real exercises
using conventional CACE software, and finally write
rule bases to capture the process. At this point, we
start using the ES to carry out additional scenarios in
full, and keep iterating until we believe we have tried
enough examples to validate and “de-bug” the
system. Taylor, James, and Frederick (1987)
provides the best example of this procedure (but note

that the nonlinear CACE rule base is still under
development}.

There is one limitation or drawback to the use of
scenarios: 'We find that there is a tendency to think
that an ES that can carry out one scenario or a few
scenarios is a “real system”. Often this is not true.
In many cases, there is. too much “branching”,
“groping”, and “exploration of alternatives”
involved in CACE to make a one-scenario ES of
general utility. In other words, an implementation
that can only execute a single prescribed sequence of
procedures would generally miss much of the
judgment and selection of alternatives that has to be
performed in the solution of real-life engineering
analysis and design problerns.

' 6 ARCHITECTURES

The selection of an appropriate architecture for ES-
based CACE software may be quite directly refated to
the paradigm of style of expert aiding to be provided.
The major architectural issues that are considered
here are . (de)centralization and conwrol, as an
example of the coupling with style, an Assistant ES
may merely be a normally inactive ES with sets of .
rule bases that are loaded and executed at the
command of the user, while the Tutor and Coach
paradigms clearly involve a higher degree of control
and a central “supervisory” capability that is always
active. Another architectural consideration, that may
or may not be linked with the expert aiding paradigm,
might be called ‘manner’: conventional CACE
software (especially: - most. . recent . commercial
offerings) often has a very ‘business-like’ interface
(e.g., command-driven) that can be used rapidly and
responds quickly, while many ESs interact with the .
user in a more chatty and ‘supportive’ fashion at a
substantially slower pace. The question then
becomes whether the user will be more comfortable
working primarily with a business-like or supportive
interface; this preference should be reflected in the
architecture.

We will start this discussion by describing the highly
centralized (and idealized) architecture that sprang
from our earlier work (Taylor and Frederick, 1984),
We will then present a more practical simplified
version of that framework (James, Taylor, and
Frederick, 1985), and finally outline the decentralized
architecture . we are presently developing In each
case our goal was to create a CACE Assistant; the
architectural change from centralized to decentralized
was motivated more by considerations of ‘manner’
and speed than paradigm. We will dwell on the first
of these in some detail, because we feel that it still
provides a useful conceprual framework for expert-

a2 LS R - mmbratemnd el e
Ao uz‘-‘xCu, A Tn the dscoonolized a.l\-xutﬁcﬁuy,

because of the growing conviction that most CACE
practitioners will find it more congenial and effective.

6.1 Centralized Architectures for Expert-Aided
CACE: Our first effort in expert-aided CACE was to
develop the overall framework that can be

- 13 -

represented as in Fig. I The basic idea* was that a
complete, meaningful problem Sformulation is the first
central issue to be addressed in capturing the control
system design process; this may be represented by a
“list of facts” or, in artificial intelligence
terminology, “frame”. The information in this so-
called problem frame was divided into three parts,
with the following content:

o MODEL - contains the plant model description,
eg, its form (ordinary or pastial differential
equations), type (linecar or nonlinear), and
characterization {stable or unstable, minimum or
nonminimum phase, (un)controllable and/or
(un)observable, et cetera)

o CONSTRAINTS - contains restrictions with
respect to control architecture {¢.g , centralized or
distributed control), implementation (e g., analog
or digital; if digital, then limits in sampling time,
processing power, and memory), parametric (e g,
gaing, input signal limits), et cetera.

e SPECIFICATIONS - contains performance
requirements in terms of time- and/or frequency-
domain behavior, petformance indices,
sensitivity, disturbance rejection, robustiess, et
cetera. ’ '

This information is cleatly a ma301 focal point for
CACE

Given a meaningful control design problem, we saw
the human expert working in a parallel abstraction,
which we called the solution frame. This is a list of
facts that is developed as a “scratch pad” where the
expeit system keeps track of both the data base
{models, analysis and design results) and the process
{methodology, overall plan-of-attack, what has been
done and what needs to be done, information required
for decisions about the selection of design procedures
and tradeoff analysis, etc.

These structured lists of facts gave us a basis for
conceiving rule bases. The process proceeds by
asking: What are the functions that mist be
implemented in order to produce and manipulate
these facts to solve the problem? This line of thoughi
- linking the activities of an expert with two key lists
of facts (frames) and associated rule bases - gave rise
to the functional architecture of CACE-II that is
depicted in Fig. 1. In particelar, we created a
construct in which the rule base is partitioned into six
functional parts, as shown, and a seventh supervisory
rule base (not porrayed) which is discussed below.
As originally conceived, the functions of the rule
bases in CACE-TH may be summarized as follows:

o RB1 governs interactions involving the design
engineer, plant models (nonlinear and/or linear),
and the model component of the problem frame.
This rule base provides support in model
development (including diagnostics relating to the
physical process and suitability of models for
control systern design and numerical analysis),
and sees to it that all required plant data are added

to the knowledge base. Examples of the activities
of RB1 are illustrated in scenarios in Taylor,
Frederick, and James (1984), Taylor (1985), and
Taylor, James, and Frederick (1987).

e RB2 governs interactions between the design
engineer and the constrain: and specification
compenents of the problem frame Constraints are
requested but are not mandatory; if supplied,
these are also written into the list of facts that
makes up the problem frame. These rules guide
the user in entering design specifications and
checks specifications ~ for consistency,
completeness, and achievability (realism) For
example, consistency checks include being sure
that the damping ratio dictated - by percent
overshoot and rise-time-to-settling-time ratio
agree, etc, and realism tests include determining
the specifications that can be achieved by a simple
design approach mechanized and executed by the
ES {(e.g, use of a standard PID design algorithm)
and checking to see that the user’s specifications
are not excessively more demanding

¢ RB3 and RB5 govern interactions between the
problem frame and the solution frame. RB3 deals
with specifications, constraints, and ~ plant
characteristics, and initializes the list of facts in
the solution frame describing what needs to be
done to achieve design goals. I design iteration
or tradeoff analysis is called for, then RBS
supports the user in selecting the specifications to
vary (relax or tighten) and modifies the problem
frame appropriately, RB3 resets the . solution
frame accordingly, and the required set of designs
is carried out by RB4. Finally, RB5 will present
the results of the iteration or tradeoff analysis

r

» RB4 govems interactions between the solution
frame and the available design procedures. These
rules decide what design approach(es) will best
solve the problem (e g., by matching approaches
with specifications), executes the appropriate
procedure(s) and algorithm(s) using conventional
design software, and updates the solution frame to
reflect the comresponding addition/change in the
system. RB4 also performs a preliminary
validation by checking that all specifications are
met with the linear plant model and controller.

RB6& govemns the control system validation
process (which generally involves highly realistic
simulation or emulation of the plant and
controller), conversion from idealized controller
design to practicel implementation, - and
documentation. The last step involves archiving a
record of the design process, including tadeoffs
and information supporting all design decisions,
and a record of the data base (model and data
files, including information regarding
assumptions and conditions for validity)

The goal of the first two rule bases is to have a well-
formulated problern, thus ensuring a reasonable
probability of success in the design phase They were
conceived as outlined above simply by consideting
the informational content of the problem frame and

* This discussion is taken quite directly from Taylor and Frederick (1984).

- 14 -

ANALYSIS
PROCEDURES

DESIGN
PROCEDURES -

AN

AN

RULES:

MODEL

/OE;IGN

ENGINEER

CONSTRAINTS

=~ SPECS

ETmMrwoEIw
mEz»xam

RE4
> s
NEEDS o
:
L F RULES:
u R o -
STATUS T A hat -
- -1 M RBE
¢ E
OTHER N

\ RULES: RULES:

- EXPERT SYSTEM
" RB2 RB3 CACE ~ lit
Y .
\ ! /
ANALYSIS
PROCEDURES

Figure 1. The Conceptual Architecture of CACE-III

detenmmng what functionality must be implemented
in order to arrive at a meaningful problem. Observe
thtat RB3, RB4 and RBS may represent an iterative or
dynamic “loop™: In some cases the ES must invoke
these rule bases repeatedly until all specifications are
satisfied, if possible. Again, these rule bases were
established based on our model for how an expert
controls engineer sets up and solves design problems.

Finally, RB6 provides a more rigorous assurance that
the user has a control system that will perform as
reqmrcd with as little need as possible for additional
engineering for implementation, and with the
required engineering documentation.

We find that the rule base partitioning depicted in Fig.
1 serves two important funciions: First, it clarifies
many conceptual aspects of the CACE process, and
thus provides a basis for rule base development. In
addition, this structure Las proven to be useful for
developing “meta-rules” (Al terminology for “rules
about rules”) that increase the efficiency of the expert
system by partitioning the rule base and restricting
the scope of the expert system to the rules needed for
the task presently at hand. These meta-rules are
contained in a seventh supervisory set of rules
(James, Taylor, and Frederick, 1985) which monitors
the status of the problem solution (as established by
RB1-RB6) and determines when a rule base has
completed its work and what rule base to invoke next.

The above rule bases, in principle, cause the ES to
invoke conventional CACE software in performing
all analysis and design functions. Expertise regarding
the use of this software is “built-in”, so that the user
need not know command sets, syntaxes, and error
messages. To the extent possible, the expert system

should know how to interpret error messages and take
corrective action. A protocel for coordinating the
operation of the expert system and the CACE
software is completely designed and implemented
(James, Taylor, and Frederick, 1985) Finally, this
expert system architecture can also support data-base
management (DBM), in the sense that the expert
system has access to the relational information
necessary for this function and can either perform the
activity itself or supply the information to separate
DBM software.

The implementation of CACE-TII did not adhere
strictly to the idealized framework presented above.
The main difference in the actual CACE-OI
architecture shown in Fig. 2 was climinating the
problem and solution frames. This was done in part
because the ESS available to us did not readily
support organizing the facts in this fashion, and in
part because we didn’t see’any immediate advantage
to building such a system. The main benefit that
fmght arise from adopting such a formalism would be
in’ permitting higher forms of reasoning that require
knowledge of the structure of information. Take
nonmonotonic reasoning {Section 3.2): the retraction
of belief required for back-tacking would be more
implementable when facts are organized. Performing
a design trade-off siudy, for example, might simply
involve changing one item in the problem frame (a
specification or constraint), clearing the solution
frame, and starting over. We have not pursued this
idea, however.

6.2 Decentralized Architecture for the ES
Assistant Paradigm: We have been finding that the
Assistant ES paradigm would generally prove to be
more effective, and certainly be easier to implement,

P

- 15 -

EXPERT SYSTEM CACE
LSER SHELL |1 SOFTWARE

A1MMIMIMITINY
N Moo N SPECIFY S‘\\

O

.

CONSTRAINRY DIAGNOSE R VALIDATE §
NMirsrsrr
Figure 2. The Actual Architecture of CACE-TI

Rule Bases

in a decentralized architecture. In this model,
portrayed in Fig. 3, the user is not primarily
interacting with the expert system; rather, the user is
operating all software through a user interface (UI)
via a supervisor that manages the operation of both
the ES as well as the conventional CACE software.
In this medel, the Ul and supervisor are
conventionally programmed, and the ES is inactive
untl invoked (by the issuance of a command to
execuie an expert-aided function rather than a
conventional algorithm). The ES then takes over the
operation of the entire software svite by assuming the
functionality of the UL In other words, the Ul is
“toggled out”, to be replaced by the ES.

USER CACE
USER — nrereace [SUPERVISOR 1 ooerwiane
EXPERT SYSTEM
SHELL

T e
N mooe. R seecry R oesen R

It

\cousm;\m N DHAGNOSE R VALIDATE,
AMMTTITTTHTEFITT

Rule Bases

o

7/

Figure 3. A Decentralized Architecture for
Expert-Aided CACE

Diuring operation, the ES may issue any number of
commands to the conventional software components
via the supervisor, receiving the resuits and
interpreting them, and proceeding with the task until

it is completed. At that point, the ES becomes “just -

another package”, and reports the final result to the
user via the supe:visor and UL

/

The scheme outlined above simplifies the structire
and operation of the ES (for example, one does not
have to worry about keeping the list of facts when
bringing in a new RB), and should make the system
more responsive More importantly, the system
should be less rigid, since the user performs the
higher-level supervision and thus is not limited by the
capabilities of a supervisory rule base. :

7 OVERALL ASSESSMENT _

We have come to a general understanding of the use
of Al as support for CACE that might best be
characterized as being “very positive but-careful not
to ger carried away”. The intent of the preceding
sections was to capiure what we have learned in the
process of developing expert-aided CACE software,
so that others may profit by both our successes and
mistakes Some of the lessons may be summarized as
follows:

1. Know your users - find out what is needed
{functionality) and how it should be provided

{paradigm)

2. Match the problem being solved with the best
knowledge representation and ES software
suppott.

3. Don’t expect miracles - you have to have or be
able to develop a clear solution to the problem,
in every small detail, whether using an ES or a
conventional programming environment.

4. Don’t underestimate the cost of developing
such a system. Unless you have all the
functionality outlined in Section 4, writing the
rule bases may be a small part of the total
effort. In addition, the development of truly
general and robust rule bases is no small task,
either :

We believe that making CACE software easier to use
and more effective may be a better investment of
effort than trying to create an ES that, in some high-
level sense, “performs like an expert” Eliminating
much of the undesirable overhead in the use of
conventional CACE software is clearly feasible,
especially for the non-expert user who carries out
procedures that have been anticipated and built into
the system. The corresponding funciions to be
assuined by the ES are invoking packages, executing
algorithms, and ezror handling.

Anciher excellent application of expert-aided CACE
is “technology transfer”. Many new methodologies
for control system design - especially approaches
based on nonlinear analysis and design techniques -
involve large amounts &f CACE effort to cammy out
using existing tools and may also entail heuristic
judgment that is difficult to convey “on paper” The
development of a rule base that can execute the
methodology - even if only for relatively simple
applications - may be a powerful vehicle for
disseminating the approach and getting people to
apply it to their own problems.

- 16 -

Finally, the main potential problem in the use of
expert systems is the possibility of unrealistic
expectations. As we have stated before (Taylor and
Frederick, 1984) we believe that it is realistic to use
this methodology to raise the level of interaction for
users that are basically competent and to support
them in the ways outlined above, but it is nor
reasonable to expect that such a system will be fool-
proof and able to provide an optimal soiution to all
problems. These factors make it imperativc that such
a systern be designed to keep the user in a posmon of
responsibility and authority. These issues require that
the system be flexible enough that the user will be
supported to the extent needed and possible, withcut
dominating the proceedings and forcing the user to
accept. undesired or meaningless solutions; this is
exactly the motivation for adopting the decentralized
Assistant paradigm in our recent work.

Acknowledgernents: I would like to recognize most
gratefuily the contributions made by Professors Dean
Frederick (RPI) and John James (USMA | West
Point), both for the effort involved in realizing
CACE-OI."as a working ES, and for many
illuminating conversations. I hasten to caution the
reader, however, that many observations in this
presentation are my personal opinions, based in part
on what I have seen looking over their shoulders and
contemplating our individual and collective results.

REFERENCES
Tames, J. R. (1987). A survey of knowledge-based
systems for CACSD American’ Control Conf,

" “{not in Proc.; write to USMA, West Point NY
10996—1787 USA),

James, J.R., P P. Bonissone, D: K Fredenck and 1.

H Taylor (1985). A :etrospectxve view of

" CACE-IE considerations - in coordmalmg

symbohc and numeric computatlons ina rule-

based expert system Proc. 2nd Conf. on

Amﬁczal Inselligence Applications, Miami
Beach, Florida USA.

James, J] R., D. K Frederick, and J. H. Taylor (1985
and 1987) On the application of expert systems
programming techniques to the design of
leadflag precompensators. Proc. Control 85,
Cambiidge, UK; IEE Proceedings, Vol 134, Pt
D: Control Theory and Applications, No. 3,
137-144

James, 1. R, J. H. Taylor, and D. K. Frederick
(1985). An expert system architecture for coping
with complexity in computer-aided control
engineering. Proc 3rd IFAC Symposium on
CAD in Control and Engineering Systems,
Lyngby, Denmark.

Larsson, J E. and K J. Asttdm (1985). An expert
system interface for Idpac. Proc. 2nd IEEE
Symposium on CACSD, Santa Barbara,
California USA

Mamdani, E H and B. R. Gaines (1981), Fuzzy
Reasoning and its Applications. Academic
. Press, New York.

Spang, H. A II (1984). The federated computer-
aided control design syszem IEEE Proceedings,
Vol 72, 1724-1731.

Taylor, . H and D. K Frederick (1984). An expert
system architecture for computer-aided control
engineering. JEEE Proceedings, Vol 72, 1795-
1805.

Taylor, J. H, D K. Frederick, and J R. James
(1984)." An expert system scenaric for
coimnputer-aided control ' engineering. Proc.
American Control Conf., San Diego, California
USA.

Taylor J. H. {1985): An expert system for integrated
-atrcraft/engine controls design. Proc National
Aerospace and Electromcs Conf. (NAECON),
Dayton, Ohio USA.

Taylor, 7. H, I R. Iames, and D. K. Frederick
(1987). Expert-aided control engineering
environment for nonlinear systems. Proc Tenth
IFAC World Congress, Munich, FRG.

