IFAC/IMACS Symposium on Computer Aided Design in Control Systems, University of Wales, Swansea, UK, July, 1991

CAE TOOLS FOR NONLINEAR SYSTEMS ANALYSIS AND DESIGN BASED ON

SINUSOIDAL-INPUT DESCRIBING FUNCTIONS

James R. O’Donnell, Jr.
Department of Electrical, Computer, and Systems Engineering

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

James H. Taylor
Control Systems Laboratory
General Electric Corporate Research and Development
PO Box 8, Schenectady, New York 12301

Abstract: We report on recent progress in the development of a computer-aided engineering
(CAE) environment for nonlinear control system analysis and design based on sinusoidal-input
describing function (SIDF) methods. Several major additions have been made to our nonlinear
controls CAE software: ACSL macros were developed to allow the generation of SIDF models
of nonlinear plants in a manner analogous to that of the SIMNON-based software developed
earlier, and MATLAB routines were developed for the analysis of these models and for the
design of general nonlinear controllers based on them. This software provides an integrated tool
set for treating very general nonlinear systems with no restrictions on system order, number of
nonlinearities, configuration, or nonlinearity type. Based on the new software presented here,
the use of SIDF-based nonlinear control system analysis and design methods is substantially
easier to carry out and more powerful than before.

Keywords: Nonlinear control systems, describing functions, control system design, computer-

aided design, computer software.

INTRODUCTION

The theoretical basis for the work described herein has
been described in earlier publications: Taylor (1982,
1983) lays the foundation for control design for systems
with amplitude-dependent nonlinearities via quasilin-
earization using sinusoidal-input describing function
(SIDF) techniques. Taylor and Strobel (1984, 1985a,
1985b) first describe the generation of nonlinear com-
pensators with a single nonlinearity, generated by fit-
ting gain-amplitude information to a piecewise-linear
compensator gain nonlinearity, and then present the
synthesis of fully nonlinear PID compensators using a
frequency-response mapping technique. Taylor (1985)
discusses software for the generation of SIDF models
using simulation and Fourier analysis and for the syn-
thesis procedure of (Taylor and Strobel, 1984).

Taylor and O’Donnell (1990), a companion paper to
this one detailing the new algorithms developed, ex-
tends these techniques and demonstrates a new design
procedure for nonlinear rate feedback and PI cascade
compensation. The application of this last method to
design a fully nonlinear PI compensator and rate feed-
back controller for a motor model with saturation and
stiction is also presented. Nanke-Bruce and Atherton
(1990) classify the different types of describing func-
tion characteristics encountered, describe an extension
to the frequency-response mapping technique, and also
show an alternative approach to the solution of the
nonlinearity synthesis problem.

This paper describes two major additions to the CAE
software for nonmlinear controls detailed in (Taylor,
1985):

1. ACSL macros for the generation of SIDF mod-
els (these macros duplicate the functionality of
the SIMNON-based software described in (Taylor,
1985), with a few extensions); and

2. MATLAB routines for the analysis of SIDF fre-
quency-response models and for the synthesis of
nonlinear controllers based on this information.

All the above nonlinear control design techniques use
a set of SIDF models of the nonlinear plant as the
basis for nonlinear compensator synthesis. SIDF mod-
els are used because they provide an excellent char-
acterization of the major nonlinear effect with which
we are concerned: the sensitivity of the nonlinear
plant’s input/output (I/O) behavior to the ampli-
tude of the input signal; this issue has been discussed
in detail in (Taylor, 1982, 1983; Taylor and Stro-
bel, 1984). In summary, given an input in the form
u(t) = uo + a; cos(wt) the I/O model is of the form

y(t) = yo + Re[G(jw; uo, a,;)a;e]“"t] (1)
where higher harmonics are neglected in this repre-

sentation. A set of SIDF models corresponding to an
amplitude set {a;} is denoted {G(jw; uo,ai)} = {Gi}.



Once a set of SIDF models is available, the synthesis
of a nonlinear compensator proceeds as follows: first, a
linear compensator set is designed based on these mod-
els, one for each input amplitude a;, with the objective
of making the overall open-loop control system as in-
sensitive to input amplitude as possible. This yields
a parameterized set of compensators {Cj(a;)}, where
the configuration of each compensator is the same
(e.g., PID) but the parameters differ (e.g., {Kp,i(ai)},
{Kr,i(ai)}, {Kp,i(ai)}). Final synthesis of the non-
linear control system is then accomplished by SIDF
inversion to determine the required compensator non-
linearities.

The particular approach presented here is the same
as in (Taylor and O’Donnell, 1990), and involves the
design of a tachometer inner-loop to provide nonlin-
ear rate feedback and a nonlinear PI compensator in
cascade with the resulting rate-feedback-compensated
plant; hereafter this will be referred to as a PI+Tach
controller to distinguish it from PID in the forward
path (Taylor and Strobel, 1985a, 1985b). In general,
there is no restriction as to compensator structure ex-
cept that the linear controller set and final nonlinear
controller must be of the same type.

This approach and corresponding software can treat
nonlinear plants of a very general type, with no re-
strictions as to system order, number of nonlinearities,
configuration, or nonlinearity type. These routines im-
plement SIDF-based nonlinear controller design meth-
ods that are substantially more effective than our ear-
lier CAE tools (Taylor, 1985). It is also believed that
these results will provide a framework for further de-
velopments in the realm of analysis and design of non-
linear systems.

NONLINEAR PI4+TACH DESIGN

First, it is important to state the premises of the SIDF
design approaches that we have been developing:

1. The nonlinear system design problem being ad-
dressed is the synthesis of controllers that are ef-
fective for plants having frequency-domain I/O
models that are sensitive to input amplitude (e.g.,
for plants that behave very differently for “small”
and “large” input signals).

2. The primary objective of nonlinear compensator
design is to arrive at a closed-loop system whose
response is as insensitive to input amplitude as
possible.

This encompasses a limited but important set of prob-
lems, for which gain-scheduled compensators cannot
be used and for which other approaches (e.g., vari-
able structure systems, model-reference adaptive con-
trol, global linearization) do not apply because their
objectives are different (e.g., their objectives deal with
asymptotic solution properties rather than transient

behavior, or they deal with the behavior of transformed
variables rather than physical variables).

The design algorithm for the nonlinear PI+Tach con-
troller proceeds as follows:

1. Select a set of input amplitudes and frequencies
that cover the operating regimes of interest for
the plant under consideration.

2. Generate SIDF models of the plant corresponding
to these input amplitudes and frequencies.

3. Examine these SIDF models to qualitatively de-
termine:

e appropriateness of the design approach,

e appropriateness of the amplitude and fre-
quency set,

e severity of the nonlinear plant amplitude sen-
sitivity, and
e type of nonlinear controller that is likely to

be needed.

4. Design a nonlinear inner-loop tach feedback com-
pensator using a D’Azzo and Houpis algorithm
(1960) extended to the nonlinear case (Taylor and
O’Donnell, 1990).

5. Find SIDF models for the nonlinear plant plus
nonlinear rate feedback.

6. Design a cascade nonlinear PI compensator using
an extension of the frequency-response mapping
technique described in (Taylor and Strobel, 1985a,
1985b).

7. Validate the design through simulation.

The resulting structure is shown in Fig. 1.

fpl

—Gr @ Noginea
fi—J i L

fri ot

Fig. 1: Nonlinear PI4+Tach Controller Structure

The software presented herein completely supports all
but items 1 and 7 above, namely, selection of the input
amplitudes and frequencies for SIDF model generation
and simulation to validate the design, which depend in
large part on the designer’s judgment and familiarity
with the system in question. The generation of SIDF
models can be done using the SIMNON-based soft-
ware described in (Taylor, 1985), or using the ACSL
macros described here. Item 3, the qualitative analysis
of SIDF models, is a current area of research, though
the MATLAB routines that have been developed to fa-
cilitate this analysis will be described briefly. Finally,



the MATLAB routines which implement the two de-
sign steps, items 4 and 6, will be discussed below in
detail.

ACSL SIDF GENERATION

The generation of sinusoidal-input describing function
models that provide an amplitude-dependent I/O char-
acterization for a nonlinear plant has been dealt with
in detail in (Taylor and Strobel, 1984; Taylor, 1985).
The two basic approaches to this—solving the nonlin-
ear algebraic equations derived from the principle of
harmonic balance and simulation coupled with Fourier
analysis—have been described in those works. Here we
focus on the latter approach.

The second technique is easier to implement, given
a good package for integrating nonlinear differential
equations, and avoids the need to justify the assump-
tion that the inputs of every nonlinearity are nearly
sinusoidal—there is no such assumption made using
simulation. The only assumption is that a frequency-
domain amplitude-dependent I/O model provides a
good representation of the behavior of a nonlinear
plant for control system design; that issue has been
discussed in (Taylor, 1983; Taylor and Strobel, 1984).
In our opinion, while SIDF models are not exact, a
set of SIDF models covering the range of input ampli-
tudes that will be encountered provides an excellent
basis for “robust design”, in the sense that the sensi-
tivity of the plant behavior to input amplitude is one
of the most important issues in robustness, and the
SIDF I/O model is the least conservative model that
accurately takes this factor into account.

As mentioned above, extensions to the nonlinear sim-
ulation package SIMNON for SIDF I/O model gener-
ation are discussed in (Taylor, 1985). The functional-
ity of that software has been reproduced with a set of
ACSL macros that can be included in an ACSL system
model to allow SIDF model generation. The discussion
that follows assumes some familiarity with the use of
ACSL for modeling and simulation.

There are four ACSL macros, each of which must be
included in a separate section of the model. These
are named DFINIT, DFFOUR, DFCHEK, and DFTERN; they
each use the same two arguments, i.e., the names of
the input and output variables of the ACSL model to
be used for SIDF I/O modeling.

The macro DFINIT is included as the first executable
statement of the INITIAL section of the ACSL sys-
tem model; it initializes the Fourier integrals before
each simulation run and provides the logic for making
multiple runs at different input amplitudes and fre-
quencies. It also provides set-up variables allowing the
user to specify the input amplitudes and frequencies
at which SIDF models will be generated at run time:
ALIST and WLIST allow a manual list of input ampli-
tudes and frequencies, respectively, while WINPUT al-
lows the definition of either a uniformly or logarith-

mically spaced range of input frequencies. Addition-
ally, in an extension to the SIMNON-based software
for SIDF generation, the macro DFINIT supplies the
set-up array CINPUT which allows the user to define a
set of ACSL communication intervals (one of the pa-
rameters ACSL uses to control integration step size) to
be used at different input frequencies. This allows the
user to adjust the integration step size for various fre-
quencies to obtain accurate yet economical simulation
throughout the run.

The macros DFFOUR and DFCHEK are included in the
DYNAMIC section of the ACSL model. DFFOUR must be
within the DERIVATIVE subsection describing the con-
tinuous dynamics of the model, and DFCHEK is located
outside the DERIVATIVE subsection. DFFOUR sets up the
sinusoidal input to the system model, and then uses
the system’s output to generate the Fourier integrands
needed to define the SIDF model; ACSL will integrate
these during simulation along with the system states.
DFCHEK creates a DISCRETE section that is called at the
end of every cycle (via the ACSL SCHEDULE command)
to check for convergence of the Fourier integrals. The
convergence tests and parameters used are identical to
those used in the SIMNON-based software described
in (Taylor, 1985); refer to that paper for details. One
other small extension to the SIMNON-based software
incorporated in the DFCHEK macro is that it outputs a
summary each cycle of the convergence tests. In the
event that convergence fails, this summary can be used
to determine why.

Both the SIMNON and ACSL software are also ca-
pable of generating Fourier coefficients for the second
and third harmonics of the system’s output. This in-
formation can be used in initial runs to serve as a di-
agnostic aid in justifying the use of SIDF models for
the nonlinear plant; in later runs, the generation of
these higher-order coefficients can be disabled to save
computer time.

Finally, the DFTERM macro is placed in the terminal sec-
tion of the model. It outputs the SIDF model informa-
tion for each input amplitude and frequency at which
convergence is achieved, or displays an error message
if not. It then transfers control to the DFINIT macro
to run the next case (input amplitude/frequency), or
terminates if all cases have been done.

MATLAB ANALYSIS AND DESIGN

The MATLAB tools developed for the analysis and
design of nonlinear control systems can be divided into
three general categories:

1. SIDF frequency-response manipulation and dis-
play, including importing data from ACSL or
SIMNON SIDF model generation;

2. linear controller-set design algorithms; and

3. nonlinear controller synthesis via SIDF inversion.



For the procedure presented below and in (Taylor and
O’Donnell, 1990) there are two instances of linear
controller-set design algorithms (category 2), namely
rate feedback and PI cascade compensator design.

SIDF Model Manipulation and Display

The first, and most important, consideration in apply-
ing any nonlinear control design approach is to analyze
the system to make sure the approach is applicable.
Towards this end, various MATLAB functions were
written to allow the easy import, display, and manip-
ulation of SIDF frequency-response models.

The first step is to load the SIDF models generated
by either SIMNON or ACSL, and put them in a form
convenient for further analysis within MATLAB. The
function load df was written to take the name of the
SIDF output file(s) and load the data into a series of
MATLAB arrays. The information read in includes
the list of input amplitudes, frequencies, and DC off-
sets used for the SIDF generation, as well as the SIDF
models themselves. This function also creates a string
variable to be used in the title of all of the plots made
of this information.

A menu-driven MATLAB function, plot df, was writ-
ten to allow the display of the SIDF frequency-response
models. This function includes many options, allow-
ing plots in Bode, Nyquist, and Inverse Nyquist for-
mats. It also allows the display to be restricted to
various input amplitudes or frequencies, and includes
various other display and hardcopy options. A sam-
ple Bode phase plot from plot df is shown in Fig. 2.
Finally, there are other support functions that allow

Phase Plot From MOTOR Describing Function Data
-90

-100
-110 \
o~ T
§ 120 T
8
E —
5 10 e
8 ]
% -140 skt o
4
[
[
-160
-170
-180
100 10t 102 108

Frequency (radians/second)

Fig. 2: SIDF Model Phase Response

the SIDF frequency-response information to be con-
verted between different forms (e.g., magnitude in dB
or relative gain, phase in degrees or radians), and to
be combined in various ways with other frequency-
response matrices.

Rate-Feedback Controller-Set Design

The general objective in using inner-loop rate feedback
is stabilizing and increasing the damping the system, if

necessary, and reducing the sensitivity of the system to
disturbances and plant nonlinearities. We particularly
wish to design a nonlinear tachometer loop to desen-
sitize the inner-loop as much as possible with respect
to input amplitude.

As shown in D’Azzo and Houpis (1960), it is conve-
nient to work with inverse Nyquist plots of the plant
I/O model, i.e., to invert the SIDF frequency-response
information in complex-gain form and plot the result in
the complex plane. In the linear case, this allows us to
study the closed-inner-loop (CIL) frequency response
Gcrr(jw) in the inverse form

1 1+ Gw)H(jw) 1
Gerr(jw) G(jw) G(jw)
where the effect of H(jw) on 1/G¢rr(jw) is easily de-

termined, particularly when using rate feedback and
H(jw) = jwK;.

+H(jw) (2)

The inner-loop tach feedback design algorithm given
by D’Azzo and Houpis uses a construction amenable
to extension to nonlinear systems. For linear systems,
this algorithm is based on adding a tachometer and
external gain in order to adjust the inverse Nyquist
plot to be tangent to a given M-Circle at a selected
frequency. Referring to Fig. 3, the algorithm is ap-

Fig. 3: Tach Feedback Design Algorithm 2

plied as follows: The point corresponding to the de-
sired value of natural frequency w, is located, and the
projection of this point onto the real axis (point b)
is made the center of the scaled M-Circle (the origi-
nal M-Circle, of radius M, scaled by the external gain
A). The radius of this scaled M-Circle must be cho-
sen to make it tangent to the line defined by the angle
v. Next K, is determined to move the 1/G(jw) plot
to be tangent to this scaled M-Circle, giving the plot
1/Gerrn(jw) = 1/G(jw) + jw K;. The gain A can then
be determined by the distance to point b. Due to the
complicated geometry involved when actually imple-
menting this, some trial and error may be required;
the software is designed to support this.

This algorithm has been extended to the nonlinear
case, and is implemented by the MATLAB function
rfd2. This function takes as input the SIDF frequen-
cy-response information of the plant, along with the
desired M-Circle radius and natural frequency—these
can be chosen to achieve desired time response and
overshoot for the resultant system. For each input am-
plitude a;, a tachometer gain, K;;, and external gain
A; is found. At this point in the design, the A; values
are not used, since the external gain will be subsumed



in the cascade PI portion of the controller that is syn-
thesized as shown below.

The final step in rate feedback design is scaling the
original set of plant input amplitudes {a;} by the gain
of the plant and tachometer at the natural frequency
wy, in order to determine the corresponding amplitude
set {e;} at the input of the tachometer nonlinearity.
The set of tachometer input amplitudes and desired
tachometer gains K, ;(e;) can then be used to synthe-
size the tachometer nonlinearity (fr in Fig. 1), using
the nonlinearity synthesis routines described below.

Nonlinearity Synthesis via SIDF Inversion

For each value of e; the above algorithm specifies a lin-
ear rate-feedback gain K;. This information serves as
the basis for nonlinear controller synthesis, as follows.
Given the gain versus amplitude relation of the form
K;(e;) that is to be achieved by a single nonlinearity,
adjust the parameters of a specified piecewise-linear
nonlinear function f(e) so that the SIDF of f(e) pro-
vides the best fit to the gain/amplitude relation K;(e;)
in the minimum mean square error sense.

The nonlinear function used here is slightly more gen-
eral than that used in previous work (Taylor, 1985). It
is a piecewise-linear, odd, memoryless, static nonlin-
earity with an arbitrary number of linear segments and
discontinuities (optionally) at each breakpoint. It may
thus be adjusted to fit virtually any gain/amplitude
characteristic. (It is recommended that the user keep
the nonlinearity simple, with a small number of break-
points, to avoid over-fitting.)

A series of MATLAB functions have been developed
to allow the parameters of this nonlinearity to be ad-
Jjusted to fit the K;(e;) data as closely as possible. The
first, plot_nl, is used to plot both the K;(e;) informa-
tion and the gain/amplitude plot of the SIDF for the
latest iteration of the nonlinearity being found. At
the beginning of nonlinearity synthesis, the user can
view this plot to determine approximately how many
piecewise-linear segments are needed and to identify
regions of abrupt change in the gain/amplitude rela-
tionship where a discontinuity may be included.

The next function, init_nl, is then called to make an
initial guess at the nonlinearity parameters. The user
is prompted for the number of linear segments to use;
init nl then sets the initial values of the nonlinear-
ity parameters based on the gain/amplitude relation-
ship being fitted. Areas of slope change, identified by
the local maxima and minima of the gain/amplitude
data, are used to set the initial values for the slope
and breakpoint parameters of the nonlinearity. Once
the initial values of the parameters are set, inv_nl is
called to determine the nonlinearity’s parameters so
that the K;(e;) data is fit by the nonlinearity’s SIDF
as closely as possible. It does this by setting up a call
to a MATLAB MEX function, sidfx, which in turn
calls a MINPACK subroutine to minimize the mean
square error of the fit.

Once the nonlinearity has been found, plot nl can
be used to check the quality of the fit that has been
achieved, and perhaps to determine where the fit can
be improved. The user has the ability to change pa-
rameters manually, and also to fix certain parameters
so that they will not be adjusted by MINPACK. In
fact, all of the discontinuity parameters are fixed at
zero when the nonlinearity is initialized; init_nl re-
lies on the judgment of the user to identify where dis-
continuities are needed and free the corresponding dis-
continuity parameters.

The final function used for generating a controller non-
linearity is write_nl, which is used when the user is
satisfied with the nonlinearity fitted to K;(e;). This
function writes either a SIMNON continuous system
file which implements the controller nonlinearity and
can then be connected into a SIMNON system descrip-
tion, or an ACSL command file which will set the pa-
rameters of the controller nonlinearity previously in-
cluded in the system model.

Cascade PI Controller Design

Referring back to Fig. 1 and to the design strategy out-
lined above, the final step in the complete controller
design is generating the nonlinear cascade PI compen-
sator. The general idea is to first generate SIDF mod-
els for the nonlinear plant with nonlinear rate feedback
over the range of input amplitudes and frequencies of
interest, using the ACSL or SIMNON-based software
described above. This information forms a frequency-
response map as a function of both input amplitude
and frequency. Linear PI controllers are then found
for each amplitude so that the compensated open-loop
system satisfies specified frequency-domain objectives
and is as insensitive to input amplitude as possible.
The set of PI compensator gains at various amplitudes
is then used to synthesize a nonlinear PI compensator
via SIDF inversion. This last step is facilitated by the
fact that the nonlinearity synthesis functions described
in the previous section can be used to directly obtain
the PI controller nonlinearities and to create an ACSL
or SIMNON description of them.

More specifically, given SIDF models for the nonlin-
ear plant with nonlinear rate feedback, a single nomi-
nal input amplitude is selected, a*, and a linear com-
pensator is found for G(jw;a*). The selection of a*
and compensation of G(jw;a*) is based on standard
considerations of robust design, e.g., select a* so that
G(jw; a*) has minimum gain margin and then synthe-
size C(jw) to achieve desired bandwidth, gain margin
and steady-state error. The resulting linear compen-
sator is placed in series with the nonlinear plant and
simulated with amplitude a* to calculate the corre-
sponding desired open-loop I/O model CG*(jw;a*),
the frequency-domain objective function. Then, at each
input amplitude a; a least-squares algorithm is used
to adjust the parameters of the linear PI compen-
sator, Kpi(a;) and Kj i(a;), to minimize the differ-
ence between the resulting frequency response found
using the linear compensator and interpolating on the



SIDF frequency-response map, and CG*(jw;a*), as
described in (Taylor and Strobel, 1985). The nonlinear
PI compensator is then obtained by synthesizing the
nonlinearities fp and f; in Fig. 1 by SIDF inversion as
described in the previous section.

This basic algorithm for PI design has been improved
and extended in comparison with (Taylor and Strobel,
1985), to facilitate its use in a more general setting.
The original implementation included no mechanism
for adjusting the compensator parameter fit to empha-
size or deemphasize specified frequency ranges. It used
a PID controller, which has three channels covering
low, medium, and high frequencies, so this ability was
not necessary. However, we now wish to use a PI cas-
cade compensator, and in general don’t wish to assume
that the compensator will affect all frequency ranges
equally, so the ability to weight the different frequen-
cies is needed. Additionally, because different input
amplitudes may produce effects that are predominant
over different frequency regions (e.g., in the application
in (Taylor and O’Donnell, 1990) large input amplitudes
produce major differences in the high-frequency part
of the transient response while small input amplitudes
give rise to low-frequency effects), it is useful to pro-
vide different frequency weights at each input ampli-
tude. The ability to specify various frequency ranges
to be weighted at different amplitudes to achieve de-
sired closed-loop time-domain objectives has thus been
added in a very flexible framework.

The algorithm described above is implemented in a
single MATLAB function design which in turn sets
up a call to the MEX function pides. This function
then calls a MINPACK subroutine which performs the
least-squares procedure outlined above in order to set
the parameters {Kp;(ai)}, {Kr.i(ai)} of the PI com-
pensators in order to fit the frequency-response objec-
tive function as closely as possible according to the
specified frequency-domain weighting function. The
design function also provides a convenient way to set
the weighting matrix, by allowing the user to easily
select which range of frequencies to emphasize at each
input amplitude. As mentioned previously, nonlinear
PI synthesis is completed by using SIDF inversion to
obtain the nonlinearities fp and f; in Fig. 1.

SUMMARY AND CONCLUSIONS

The algorithms and software outlined above are a spe-
cific realization of the basic concept of using SIDF I/0O
models as the basis for nonlinear compensator design
proposed in (Taylor, 1982, 1983). We believe that this
approach shows considerable promise in dealing with
one of the more difficult problems in nonlinear systems
design—the design of controllers to compensate for the
amplitude-dependence of nonlinear plants. Developing
software tools that function in a very integrated fash-
ion, supporting them by a nonlinear simulation pack-
age (ACSL or SIMNON), and programming all other
functions within MATLAB, results in a flexible and ex-
tensible framework for the design of nonlinear control

systems.

REFERENCES

[D’Azzo and Houpis, 1960] D’Azzo, J. J. and Houpis,
C. H. (1960). Feedback Control System Analysis and
Synthesis. McGraw-Hill Book Company, New York.

[Nanke-Bruce and Atherton, 1990] Nanke-Bruce, O.
and Atherton, D. P. (1990). Design of nonlinear
controllers for nonlinear plants. In Proceedings of
1990 IFAC World Congress, Tailinn.

[Taylor, 1982] Taylor, J. H. (1982). Robust computer-
aided control system design for nonlinear plants. In

Application of Multivariable Systems Theory, Man-
adon, Plymouth, UK.

[Taylor, 1983] Taylor, J. H. (1983). A systematic non-
linear controller design approach based on quasilin-
ear system models. In Proceedings of the 1983 Amer-
ican Control Conference, San Francisco, CA.

[Taylor, 1985] Taylor, J. H. (1985). Computer-aided
control engineering environment for nonlinear sys-
tems analysis and design. In Proceedings of the 3rd
IFAC Symposium on CAD in Control and Engineer-
ing Systems, Lyngby, Denmark.

[Taylor and O’Donnell, Jr., 1990] Taylor, J. H. and
O’Donnell, Jr., J. R. (1990). Synthesis of nonlin-
ear controllers with rate feedback via SIDF meth-
ods. In Proceedings of the 1990 American Control
Conference, San Diego, CA.

[Taylor and Strobel, 1984] Taylor, J. H. and Strobel,
K. L. (1984). Applications of a nonlinear controller
design approach based on quasilinear system mod-
els. In Proceedings of the 1984 American Control
Conference, San Diego, CA.

[Taylor and Strobel, 1985a] Taylor, J. H. and Strobel,
K. L. (1985a). Nonlinear compensator synthesis via
sinusoidal-input describing functions. In Proceedings
of the 1985 American Control Conference, Boston,
MA.

[Taylor and Strobel, 1985b] Taylor, J. H. and Strobel,
K. L. (1985b). Nonlinear control system design
based on quasilinear system models. In Proceedings
of Control ’85, Cambridge.



