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Abstract— Data reconciliation is a well-known method in on-
line process control engineering aimed at estimating the true
values of corrupted measurements under constraints. Most
nonlinear dynamic data reconciliation methods have studied
cases where the input variables are constant over relatively
long periods of time separated by simple step changes (e.g.,
set-point changes). While this scenario is not uncommon in
process control, it imposes strong limitations on a method’s
applicability. In this paper a novel adaptive nonlinear dynamic
data reconciliation algorithm is presented that extends the
method presented by Laylabadi and Taylor [1] to the cases
where the input variables are ramps or slow sinusoidal functions
or, for that matter, any slow, smooth variation.

I. INTRODUCTION

Data reconciliation (DR) is a well-known method in on-
line process control engineering aimed at estimating the true
values of corrupted measurements under constraints [2], [3],
[4], [5]. Most nonlinear dynamic data reconciliation (NDDR)
techniques today are based on two major assumptions: 1)
availability of known dynamic and statistical models, and
2) gross-error-free measurements. These two assumptions
limit the application of theseNDDR algorithms, as they are
often not true in reality. In this paper first a new gross error
detection (GED) and statistical model identification approach
is developed and combined with the originalNDDR algorithm
to remove these barriers.

Next, the dynamic behavior of existingNDDR algorithms
is studied. MostNDDR methods have been applied to cases
where the input variables are comprised of simple step set-
point changes. In this paper, however, a novel adaptive
nonlinear dynamic data reconciliation (ANDDR) algorithm
is presented that extends the applicability of the method
presented by Laylabadi and Taylor [1] to the cases where the
input variables are ramps or slow sinusoids. The proposed
package has been successfully applied to the continuously
stirred tank reactor (CSTR) model cited commonly in the
literature.

The combinedANDDR and GED together with the en-
hanced dynamic tracking feature produce a package that
is suitable for most chemical process applications. This
package is suggested for use in chemical process control,
in order to improve process monitoring and lessen operator
load work.
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A brief overview ofDR methods and algorithms is outlined
in section II. In section III the originalNDDR problem
formulation and the solution strategy are outlined. In section
IV the basic theory ofANDDR, which is proposed as an
enhancement to the existingNDDR approach, is presented.
Then, thisANDDR algorithm is combined with a novelGED

and identification method, and an enhanced dynamic tracking
feature is described which addresses cases where the input
variable is a ramp or sinusoid. In section V the results of the
implementation and application of the proposed package on
a simulatedCSTR model are depicted. Finally, in section VI
conclusions and future work are discussed.

II. DATA RECONCILIATION BACKGROUND

TheDR problem was first introduced by Kuehn and David-
son [6] for linear steady-state models. As far as engineering
processes are concerned they often operate dynamically in
highly nonlinear regions where traditional methods such
as the Kalman filter or extended Kalman filter may be
ineffective [2].

The necessity of developingNDDR methods was proposed
by Liebman and Edgar [3], and the advantages of using
nonlinear programming (NLP) over traditional steady-state
DR methods were demonstrated. In the next step Liebman
et al. [2] developed their mainNDDR algorithm. Their ap-
proach was based on simultaneous optimization and solution
techniques where efficient state estimation was performed.
There was noGED or identification included in theNDDR

approach of Liebman et al. [2]; since then there have been
some extensions which are capable of handling gross errors
(more specifically, of detecting, identifying and editing of
gross errors) as well. For instance, Soderstrom et al. [4]
proposed an approach to simultaneously tackle the problem
of GED and identification together withDR.

Although several authors have stated the need for co-
variance estimation forDR, none of them has proved the
effectiveness of using this matrix inDR except for Alici
[5] who demonstrated its necessity and briefly discussed the
effects that covariance matrix estimation has onDR. She also
addressed the combination of dynamic model identification
with NDDR. Finally, Laylabadi and Taylor [1] presented the
theory of ANDDR where they enhanced the originalNDDR

method for the cases where the statistical model is not
known. They also presented a novel smart tracking system
which tackles the problem of delay seen in the results of
NDDR estimations.



III. PROBLEM FORMULATION AND SOLUTION
STRATEGY

In this section first the originalNDDR problem is outlined.
Next, the solution strategy is presented.

A. NDDR General Formulation

1) Problem Statement: The generalNDDR problem de-
veloped by Liebman et al. [2] may be re-stated as follows:

min
ŷ

φ(ỹ, ŷ; σ) (1)

subject to:

f(
dŷ(t)

dt
, ŷ(t)) = 0 (2)

h(ŷ(t)) = 0 (3)

g(ŷ(t)) ≥ 0 (4)

Here the corrupted measurementsỹ and reconciled estimates
ŷ include both state variables and input variables. The first
constraint (2) represents the process dynamics (often for-
mulated asdŷ

dt
=f (ŷ)), the second constraint (3) may describe

energy and/or material balance, and the third (4) may impose
process variable limits. For more details one can refer to the
paper by Liebman et al. [2].

For most applications the objective function is weighted
least-square error (WLSE):

φ(ỹ, ŷ; σ) =

c
∑

j=0

1

2
(ŷ(tj) − ỹj)

T V −1(ŷ(tj) − ỹj), (5)

wherec is the current time,̃yj measured (corrupted) values
and ŷj the reconciled estimates at discrete timetj , andV is
the variance-covariance matrix where each diagonal element
Vii is σ2

i .
2) Moving Horizon Window: The solution adopted by

Liebman et al. [2] is a moving horizon window (MHW)
approach. Figure 1 shows the basic idea of theMHW ap-
proach forNDDR. In this method, after collecting the process
measurements up totc, φ is optimized over the horizon from
tc - H to tc, the current time. Then̂y(tc) is saved and the
procedure is repeated at the next time step [2].

The MHW approach has the advantage of reduced opti-
mization problem size together with giving the user only
one tuning parameter, the window horizon H, compared to
other nonlinear approaches such as theEKF where more
tuning parameters need to be adjusted. Another advantage
is its capability of handling constraints such as equalities
and inequalities, whereas other approaches such as theEKF

cannot handle the constraints [2].
In order to solve theNLP problem of equations (1) to

(4), we need to discretize the nonlinear model presented
as the first constraint (equation (2)). We chose the fourth-
order Runge-Kutta method to simulate and discretize the
model. In other words, for our applicationdŷ

dt
= f(ŷ)

tc − H tc

True values Measurements Estimates

Fig. 1. History horizon forNDDR

is solved numerically over the window horizon and̂yj

obtained by sampling this solution. Once the discretization
is implemented, equations (2) to (5) can be rewritten as the
following NLP problem:

min
ŷ

ni+ns
∑

i=0

ηi

c
∑

j=c−H

(
ŷij − ỹij

σi

)2, (6)

subject to:
dŷ

dt
− f(ŷ) = 0 (7)

h(ŷ) = 0 (8)

g(ŷ) ≥ 0 (9)

where f(ŷ), h(ŷ) and g(ŷ) now represent the constraints
obtained through discretization,η is a vector of weights and
ni and ns are the numbers of inputs and states (outputs),
respectively.

In the original NDDR algorithm, inputs over a moving
window were assumed to be constant [2], which caused
a significant delay in the estimation of responses to step
inputs; this also interferes with tracking in other cases where
inputs vary continuously, as discussed here. The step tracking
problem was solved in [1] where Laylabadi and Taylor
presented their smart tracking system with two input levels
over the window instead of one. If there are no gross errors,
then a change in a system input that exceeds three times the
standard deviation of the noise is declared to be a step input
change, and two input levels are adjusted in the optimization
procedure; the first level is used used up to the time of the
step change and the second level thereafter. When there are
gross errors, then a modified procedure incorporates logic to
distinguish between isolated gross errors and step changes.
Results in both cases are presented in [1].



IV. ANDDR AND GED METHOD: BASIC THEORY
AND FORMULATION

Here the method presented by Laylabadi and Taylor [1]
is extended in order to include applications with ramp and
sinusoidal inputs. The main purpose of theANDDR + GED

approach is aimed for cases where the statistical model for
noise is not given, or, in other words, the standard deviation
σ or covariance matrixV is unknown, and where outliers
may occur.

In this study GED is implemented first and gross error
effects are removed, then a covariance matrix estimation
method is applied. In this methodology the same idea of
a moving window approach is used andσ is estimated as
each measurement variable is processed. This novelANDDR

+ GED can be described as follows: The moving window
provides us with H measurements at each time step. Assume
that H ≥ 10 in this discussion; if this is not true, then a
longer window should be used for estimatingσ. Since the
measurement error is Gaussian and white (uncorrelated from
sample-to-sample), and the true process variables change
slowly over a data window, we can assume we have a
Gaussian process and use the sample variance to estimate
σ for each variable. It is known that the standard deviation
of the sample variance for a Gaussian process is [7]:

σ
V̂

=

√

2
V

H
(10)

For H≥ 10 the estimate is adequate for a threshold test that
is usually conservatively chosen, e.g., threshold= 3σ̂ . This
is the basis of theσ estimation method which justifies using
σ̂ =

√

V̂ in solving theANDDR problem.
The noise standard deviation,σ̂, is up-dated at each time

step, and can vary depending on the measurements statistical
behavior. To performGED, the differencedc,i is derived for
each element of̃yc (11), using the previous value of the
mean, (13), for each time step, and it is compared with the
previousσ̂, σ̂c−1,i, (14). If | dc,i | exceeds the threshold, as
defined in (12), then the algorithm detects the existence of a
gross error and removes it by replacing it with the previous
estimate,̂yc−1.

dc,i = ỹc,i − m̂c−1,i (11)

IF | dc,i | > 3σ̂c−1,i THEN ỹc,i is an outlier (12)

m̂c,i =

c
∑

j=c−H

(
ỹi,j

H
) (13)

σ̂c,i =

√

√

√

√

c
∑

j=c−H

(
(ỹi,j − m̂c,i)2

H − 1
) (14)

Since in this study the input to the model is assumed to be a
ramp, sinusoid or other smooth function, the difficulty of set-
point change detection does not exist. One can refer to [1]

where the problem of the set-point change is tackled while
GED is performed.

The key modification that we made for continuous inputs
is the way that input variables are estimated for each moving
window. In this paper the inputs are assumed to be ramps
or slow sinusoids. Therefore, the extendedANDDR solution
is obtained by assuming that the input over each moving
window is a ramp. In this way, the algorithm can be
significantly faster and smoother in tracking the dynamic
behavior of a system with continuous inputs.

V. CASE STUDY

In this section the performance of the proposed algorithm
is demonstrated. The case studied in this paper is a simu-
lated CSTR model cited commonly in the literature. First,
the situation where the inputs to the model are ramps is
considered. Then, in the next study the response of the
system to sinusoidal inputs is considered and the tracking
capability for general slow and smoothly varying inputs is
illustrated.

A. Ramp Function Tracking

We consider theCSTR model used by Liebman et al. [2]
with the same assumptions and parameters values, except
the input is a ramp function. The normalized model can be
presented as follows:

dA

dt
=

q

v
(A0 − A) − αdkA (15)

dT

dt
=

q

v
(T0 − T ) + αd

∆HrAr

ρCpTp

kA −
UA

ρCpV
(T − Tc)

(16)

k = k0 exp(
−EA

TTr

) (17)

where the input stream feed concentration,A0, and feed
temperature,T0, are input variables and the concentration,
A, and temperature,T, are output variables. There are two
simple constraints on both input and output variables as
follows:

0 ≤ A, A0 ≤ 20.0 (18)

0 ≤ T, T0 ≤ 10.0 (19)

The values of other constants are provided in [2].
1) Gross-Error-Free Ramp Tracking: In this case study

both the two inputs and two states (outputs) are estimated,
assuming that no gross errors exist. Measurements were
simulated by creating measurement noise which is assumed
to be Gaussian withσ equal to 0.05 and zero mean [2]. The
time step is assumed to be 2 seconds and the simulation is run
for 100 samples with window width of H = 10. Obviously,
the first estimates are obtained at time step 10 where the first
window of measurements is available. The first input,A0, is
assumed to be a ramp starting from 6.5 and increasing to 8.5,



as shown in Fig. 2, and the second input,T0, is assumed to
be constant at 3.5.

Figures 2 to 5 demonstrate the successful implementation
of the ANDDR approach for the ramp function. The solid
lines in these figures show the true values, circles show the
corrupted measurements, and plus signs mark the proposed
ANDDR estimation results. There is a significant noise reduc-
tions in both input and output estimation.

To demonstrate the successfulσ estimation feature of the
ANDDR algorithm, the values of̂σi for one input variable
(T0) and one output variable (T ) are depicted in figures 6 and
7 knowing that the trueσ is 0.05. Observe that the variation
in σ̂ for each variable is in the order of± 40% in each
case, which is much less than the threshold defined in this
methodology (3̂σ).

2) Gross Errors and Ramp Tracking: With the same as-
sumptions made as for the previous case, random gross errors
are added to the measurements of each input and output
variable in this second study. There are four random gross
errors for each variable with different amplitudes. Figures
8 and 9 demonstrate the successfulGED algorithm results
for one input (A0 and one output (T ). These figures show
the comparison of the situation whereGED was implemented
along withANDDR, and whereANDDR is individually imple-
mented. The solid lines in these figures show the true values,
circles show the corrupted measurements, stars present the
proposedANDDR + GED estimation results and plus signs
mark theANDDR data withoutGED. As the figures show, the
gross errors have been detected and successfully removed,
and the estimation has not been corrupted. Observe that the
outliers cause significant corruption of the estimates from
ANDDR alone; the use of the algorithm withGED eliminates
this problem. Note that the method is applicable where many
gross errors may exist in the measurements, whether they are
successive or isolated, since the algorithm can detect and
identify them without the need to distinguish outliers from
step changes.

B. Sinusoidal Input Tracking

In this section the performance of the algorithm for
sinusoidal inputs is studied. The previousCSTR model with
the same parameters and assumptions is used. The feed
concentration,A0, is a slow sinusoidal function as follows:

A0 = sin(
π

100
t) + 6.5, (20)

and the feed temperature,T0, is constant with the same value
of 3.5.

1) Gross-Error-Free Sinusoidal Input Tracking: First we
consider the measurements are not corrupted by gross errors
and only contain the same zero-mean Gaussian noise defined
in section V-A.1. As Figures 10 and 11 demonstrate, the
ANDDR algorithm has successfully tracked the sinusoidal
behavior of the model, for both input and output estimates.
A slight delay is seen in the estimation of the feed concen-
tration, A0. One suggestion to reduce this delay would be
to assume two different slopes for the input estimation in
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Fig. 2. First input,A0, estimation (gross-error-free).
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Fig. 3. Second input,T0, estimation (gross-error-free).
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Fig. 4. First output,A, estimation (gross-error-free).
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Fig. 5. Second output,T , estimation (gross-error-free).
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Fig. 6. σ estimates obtained for the second input,T0
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Fig. 7. σ estimates obtained for the second output,T

each moving window. This modification would significantly
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Fig. 8. First input,A0, estimation (with gross errors).
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Fig. 9. Second output,T , estimation (with gross errors).

reduce the delay seen in the estimates of feed concentration,
but increase complexity and solution time.

2) Gross Errors and Sinusoidal Input Tracking: To prove
the performance of the proposedGED algorithm, we consider
the existence of gross errors. There are four random outliers
added to each input and output variable measurement, and
the proposedANDDR + GED is implemented. Figures 12
and 13 show the successful detection of outliers and make
comparison studies of the two cases ofANDDR andANDDR

+ GED implementations. It is clear that withoutGED the
estimates become seriously corrupted.

VI. CONCLUSIONS AND FUTURE WORKS

The ANDDR + GED algorithm was successfully imple-
mented and tested on the simulatedCSTR model of Liebman
et al. [2] when the inputs are ramps or sinusoids. In both
cases the estimates are satisfactory. A very slight delay exists
in sinusoidal input tracking; however, we believe it can be
reduced further by another simple extension (using two input
slopes over the window, as mentioned).



10 20 30 40 50 60 70 80 90 100
5

5.5

6

6.5

7

7.5

8

Time step

In
tp

ut
 c

on
ce

nt
ra

tio
n,

 A
0

True values
Corrupted measurements
ANDDR estimates

Fig. 10. First input,A0, estimation (gross-error-free).
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Fig. 11. Second output,T , estimation (gross-error-free).

Note that in all estimation results presented here for
ANDDR + GED the assumption was made that the statistical
model,σ, was not available. All the results demonstrate that
the use of the estimatedσ was successful and no accuracy
degradation was observed in the mainNLP problem solution.

This package with its dynamic tracking features, statistical
model identification and gross error elimination is suggested
for use in industrial process control applications in order
to improve process monitoring and lessen operator work
load. Adding a dynamic model identification feature to the
proposed approach is suggested as possible future work.
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Fig. 12. First input,A0, estimation (with gross errors).
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