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Abstract— Data reconciliation is a well-known method in on- A brief overview ofbR methods and algorithms is outlined
line process control engineering aimed at estimating the tre  jn section Il. In section Il the originaNDDR problem
values of corrupted measurements under constraints. Most 4,y 1ation and the solution strategy are outlined. Inisect

nonlinear dynamic data reconciliation methods have studie IV the basic th f hich i d
cases where the input variables are constant over relativel € basic theory OIANDDR, whICh IS proposed as an

long periods of time separated by simple step changes (e.g., ENhancement to the existingbDR approach, is presented.
set-point changes). While this scenario is not uncommon in Then, thiSANDDR algorithm is combined with a noveeD

process control, it imposes strong limitations on a method  and identification method, and an enhanced dynamic tracking
applicability. In this paper a novel adaptive nonlinear dynamic  fa 5116 is described which addresses cases where the input

data reconciliation algorithm is presented that extends tle . . . . .
method presented by Laylabadi and Taylor [1] to the cases variable is a ramp or sinusoid. In section V the results of the

where the input variables are ramps or slow sinusoidal fundbns imp_lementation and application_of the PTOPOS?d pac_kage on
or, for that matter, any slow, smooth variation. a simulatedcsTR model are depicted. Finally, in section VI

conclusions and future work are discussed.
I. INTRODUCTION

Data reconciliation Rr) is a well-known method in on- Il. DATA RECONCILIATION BACKGROUND
line process control engineering aimed at estimating the tr
values of corrupted measurements under constraints [R], [3 Thepr problem was first introduced by Kuehn and David-
[4], [5]- Most nonlinear dynamic data reconciliationi{DR)  son [6] for linear steady-state models. As far as engingerin
techniques today are based on two major assumptions: gescesses are concerned they often operate dynamically in
availability of known dynamic and statistical models, andyighly nonlinear regions where traditional methods such

2) gross-error-free measurements. These two assumptiois the Kalman filter or extended Kalman filter may be
limit the application of theseiDDR algorithms, as they are jpeffective [2].

often not true in reality. In this paper first a new gross error The necessity of developingobR methods was proposed

detection GED) and statistical model identification approachDy Liebman and Edgar [3], and the advantages of using
is developed and combined with the originglpr algorithm nonlinear programmingNLP) over traditional steady-state

to remove these be}rrlers. ) o . DR methods were demonstrated. In the next step Liebman
Next, the dynamic behavior of existingbDR algorithms o4 5 2] developed their mainDDR algorithm. Their ap-

is studied. MosDDR methods have been applied to caseg gach was based on simultaneous optimization and solution
where the input variables are comprised of simple step Sgfscpniques where efficient state estimation was performed.
point changes. In this paper, however, a novel adaptihere was nasep or identification included in theiDbR
nonlinear dynamic data reconciliatiomNDDR) algorithm — 555r04ch of Liebman et al. [2]; since then there have been
is presented that extends the applicability of the methogh e extensions which are capable of handling gross errors
presented by Laylabadi and Taylor [1] to the cases where the,re specifically, of detecting, identifying and editing o
input variables are ramps or slow sinusoids. The propos%%ss errors) as well. For instance, Soderstrom et al. [4]

package has been successfully applied to the continuougly,n,sed an approach to simultaneously tackle the problem
stirred tank reactordsTR) model cited commonly in the ¢ -5 and identification together witbr.

Ilte_ltﬁture. bined q togeth ith th Although several authors have stated the need for co-
€ COmDINEdANDDR and GED fogether wi € €N° variance estimation fobr, none of them has proved the

.ha”"‘?d dynamic tracking fgature produce a pqckage tr.‘@ﬁ‘ectiveness of using this matrix iDR except for Alici

IS sunablg for most chemical process applications. Thi ] who demonstrated its necessity and briefly discussed the

package is suggested for use in chemical process contr ects that covariance matrix estimation hasoen She also

in order to improve process monitoring and lessen Operatgﬁdressed the combination of dynamic model identification

load work. with NDDR. Finally, Laylabadi and Taylor [1] presented the
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1. PROBLEM FORMULATION AND SOLUTION

STRATEGY Trl;e valu‘es ‘O h/;easur;:ment; +‘ Est;mates
In this section first the originalDDR problem is outlined. 5
Next, the solution strategy is presented.
O
A. NDDR G i Lo © i
eneral Formulation ] . e
1) Problem Statement: The generalNDDR problem de- gT O+ T * o
veloped by Liebman et al. [2] may be re-stated as follows = < o ° ° °
O
f o o
o D
min o(9,9;0) (1)
subject to:
dy(t : ;
79 5y = o @ z
dt
h(l}(t)) =0 (3) Fig. 1. History horizon fonDDR
9(4(t)) = 0 4)

is solved numerically over the window horizon ang
obtained by sampling this solution. Once the discretiratio
% implemented, equations (2) to (5) can be rewritten as the
(efgllowing NLP problem:

Here the corrupted measuremeptsnd reconciled estimates

7 include both state variables and input variables. The fir
constraint (2) represents the process dynamics (often f
mulated as‘fi—‘?:f(g)), the second constraint (3) may describ »

. . . ni+ns c ~ ~
energy and/or material balance, and the third (4) may impose min Z - Z (yij _yij)g
process variable limits. For more details one can refer¢o th = ’ o ’
paper by Liebman et al. [2]. i

For most applications the objective function is weightedsubject to:
least-square errom(LSE): dy

— —f(H) =0 ()

(6)

j=c—H

=0 h(j) =0 (8)
wherec is the current timeg; measured (corrupted) values

andg; the reconciled estimates at discrete titpeandV is

the .var|2ance—covar|ance matrix where each diagonal elemen g(5) >0 9)
Vi is o; .

2) Moving Horizon Window: The solution adopted by where f(j), h(j) and g(§) now represent the constraints
Liebman et al. [2] is a moving horizon window@dw) obtained through discretization,is a vector of weights and
approach. Figure 1 shows the basic idea of thew ap- n; andn, are the numbers of inputs and states (outputs),
proach forNDDR. In this method, after collecting the processrespectively.
measurements up tQ, ¢ is optimized over the horizon from  In the original NDDR algorithm, inputs over a moving
t. - H to t., the current time. Therj(¢.) is saved and the window were assumed to be constant [2], which caused
procedure is repeated at the next time step [2]. a significant delay in the estimation of responses to step

The MHW approach has the advantage of reduced optinputs; this also interferes with tracking in other casegreh
mization problem size together with giving the user onlyinputs vary continuously, as discussed here. The stepitigick
one tuning parameter, the window horizon H, compared tproblem was solved in [1] where Laylabadi and Taylor
other nonlinear approaches such as th& where more presented their smart tracking system with two input levels
tuning parameters need to be adjusted. Another advantameer the window instead of one. If there are no gross errors,
is its capability of handling constraints such as equalitiethen a change in a system input that exceeds three times the
and inequalities, whereas other approaches such askihe standard deviation of the noise is declared to be a step input
cannot handle the constraints [2]. change, and two input levels are adjusted in the optiminatio

In order to solve thenLP problem of equations (1) to procedure; the first level is used used up to the time of the
(4), we need to discretize the nonlinear model presenteiep change and the second level thereafter. When there are
as the first constraint (equation (2)). We chose the fourtlyross errors, then a modified procedure incorporates logic t
order Runge-Kutta method to simulate and discretize thaistinguish between isolated gross errors and step changes
model. In other words, for our applicatioé% = f(§) Results in both cases are presented in [1].



IV. ANDDR AND GED METHOD: BASIC THEORY  where the problem of the set-point change is tackled while
AND FORMULATION GED is performed.

The key modification that we made for continuous inputs

is extended in order to include applications with ramp an .the way tha.t input variabl_es are estimated for each moving

sinusoidal inputs. The main purpose of thEDDR + GED window. In this paper the inputs are assumed to be ramps

approach is aimed for cases where the statistical model fBF SIOW Sinusoids. Therefore, the extendeddDR solution

noise is not given, or, in other words, the standard deviatid® obtained by assuming that the input over each moving

o or covariance matri®yy is unknown, and where outliers W,'”O!‘?W is a ramp. In this way,.the a'go“thm can b,e
significantly faster and smoother in tracking the dynamic

Here the method presented by Laylabadi and Taylor [1

may occur. . . , .
In this study GED is implemented first and gross errorthaVIor of a system with continuous inputs.
effects are removed, then a covariance matrix estimation V. CASE STUDY

method is applied. In this methodology the same idea of
a moving window approach is used andis estimated as
each measurement variable is processed. This nmovebr

+ GED can be described as follows: The moving windo
provides us with H measurements at each time step. Assu
that H > 10 in this discussion; if this is not true, then a

In this section the performance of the proposed algorithm
is demonstrated. The case studied in this paper is a simu-
VJated CcSTR model cited commonly in the literature. First,

mg situation where the inputs to the model are ramps is
considered. Then, in the next study the response of the

longer window should be used for estimating Since the system to sinusoidal inputs is considered and the tracking

measurement error is Gaussian and white (uncorrelated frQ p?b'tl'tﬁ for general slow and smoothly varying inputs is
sample-to-sample), and the true process variables charlgestrated.

slowly over a data window, we can assume we have & Ramp Function Tracking
Gaussian process and use the sample variance to estimatsv

o for each variable. It is known that the standard deviatio\r)v ith etrfgnssaltrji t;f;j;R &%ieglrizeda?gnl;:eetgrns]a\?aiezl. <[92x]ce ¢
of the sample variance for a Gaussian process is [7]: P P ' P

the input is a ramp function. The normalized model can be

IV .
oy = QE (10) presented as follows:
For H > 10 the estimate is adequate for a threshold test that a4 - Q(AO —A) — agkA (15)
is usually conservatively chosen, e.g., threshel8s . This v

is the basis of the estimation method which justifies using

= : dTr AH.A, UA
o= ﬁ in solving theANDDR problem. e g(TO —T)+ ay T kA — - V(T —T)
The noise standard deviatiof, is up-dated at each time v Pty Pep
\ o (16)
step, and can vary depending on the measurements stétistica
behavior. To perfornGeD, the differencei, ; is derived for B
each element ofj. (11), using the previous value of the k =k exp(_ A) (17)
mean, (13), for each time step, and it is compared with the TT,

previousd, d.-1., (14). If | d. ;| exceeds the threshold, aswhere the input stream feed concentratich,, and feed
defined in (12), then the algorithm detects the existence oftamperature;[y, are input variables and the concentration,
gross error and removes it by replacing it with the previou8, and temperaturel, are output variables. There are two

estimatej._1. simple constraints on both input and output variables as
follows:
dei = Yeyi — Me—1,i (11)
0<A Ay <20.0 (18)
IF |deci| > 36.-1,, THEN g, is an outlier (12)
0<T,Ty <10.0 (19)
¢ The values of other constants are provided in [2].
S — Yi.j ) (13) 1) Gross-Error-Free Ramp Tracking: In this case study
Me,i (H . .
e H both the two inputs and two states (outputs) are estimated,

assuming that no gross errors exist. Measurements were
. - - simulated by creating measurement noise which is assumed
Z ((yi,j - mc,i)Q) (14) to be Gaussian withr equal to 0.05 and zero mean [2]. The
H-1 time step is assumed to be 2 seconds and the simulation is run
for 100 samples with window width of H = 10. Obviously,
Since in this study the input to the model is assumed to bethe first estimates are obtained at time step 10 where the first
ramp, sinusoid or other smooth function, the difficulty of se window of measurements is available. The first inpdg, is
point change detection does not exist. One can refer to [Aksumed to be a ramp starting from 6.5 and increasing to 8.5,

Oc,i =

j=c—H



as shown in Fig. 2, and the second ingli, is assumed to
be constant at 3.5.
Figures 2 to 5 demonstrate the successful implementati

of the ANDDR approach for the ramp function. The solid 85 ‘ )
. . . . |

lines in these figures show the true values, circles show tl 0 Comamon measuremens

corrupted measurements, and plus signs mark the propos +  ANDDR estimates

ANDDR estimation results. There is a significant noise reduc
tions in both input and output estimation.

To demonstrate the successéukstimation feature of the
ANDDR algorithm, the values of; for one input variable
(T,) and one output variabld) are depicted in figures 6 and
7 knowing that the true is 0.05. Observe that the variation
in & for each variable is in the order of 40% in each
case, which is much less than the threshold defined in tt
methodology (3).

2) Gross Errors and Ramp Tracking: With the same as-
sumptions made as for the previous case, random gross err %% 20 3 40 50 60 70 8 9 100
are added to the measurements of each input and outj Time step
variable in this second study. There are four random gross
errors for each variable with different amplitudes. Figure
8 and 9 demonstrate the successfED algorithm results 37 ‘ ‘
for one input @, and one outputX). These figures show o e astrements
the comparison of the situation wheseb was implemented 365 *+ _ ANDDR estimates 1
along withANDDR, and whereaNDDR is individually imple-
mented. The solid lines in these figures show the true value
circles show the corrupted measurements, stars present
proposedANDDR + GED estimation results and plus signs
mark theANDDR data withoutGED. As the figures show, the
gross errors have been detected and successfully remov
and the estimation has not been corrupted. Observe that |
outliers cause significant corruption of the estimates fror
ANDDR alone; the use of the algorithm witheD eliminates
this problem. Note that the method is applicable where mar
gross errors may exist in the measurements, whether they 835 0T 20 30 40 50 0 70 80 90 100
successive or isolated, since the algorithm can detect a Time step
identify them without the need to distinguish outliers from
step changes.

Intput concentration, AO

Fig. 2. First input,Ag, estimation (gross-error-free).

Intput temperature, T(J

Fig. 3. Second input]p, estimation (gross-error-free).

0.3 T T
True values
o) O  Corrupted measurements

In this section the performance of the algorithm for 0.25¢ +  ANDDR estimates 1
sinusoidal inputs is studied. The previoosTR model with
the same parameters and assumptions is used. The f
concentrationAg, is a slow sinusoidal function as follows:

B. Snusoidal Input Tracking

. ™
A = Sm(lOOt) + 6.5, (20)
and the feed temperaturg;, is constant with the same value
of 3.5.
1) Gross-Error-Free Snusoidal Input Tracking: First we
consider the measurements are not corrupted by gross err

and only contain the same zero-mean Gaussian noise defir ~ -o.0s ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 90 100

Output concentration, A

in section V-A.1. As Figures 10 and 11 demonstrate, th Time step
ANDDR algorithm has successfully tracked the sinusoidal
behavior of the model, for both input and output estimates. Fig. 4. First output,A, estimation (gross-error-free).

A slight delay is seen in the estimation of the feed concen-
tration, Ag. One suggestion to reduce this delay would be
to assume two different slopes for the input estimation in
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reduce the delay seen in the estimates of feed concentration
but increase complexity and solution time.

2) Gross Errors and Snusoidal Input Tracking: To prove
the performance of the proposeéb algorithm, we consider
the existence of gross errors. There are four random ositlier
added to each input and output variable measurement, and
the proposedANDDR + GED is implemented. Figures 12
and 13 show the successful detection of outliers and make
comparison studies of the two casesaofbDR and ANDDR
+ GED implementations. It is clear that witho®ED the
estimates become seriously corrupted.

VI. CONCLUSIONS AND FUTURE WORKS

The ANDDR + GED algorithm was successfully imple-
mented and tested on the simulatesirr model of Liebman
et al. [2] when the inputs are ramps or sinusoids. In both
cases the estimates are satisfactory. A very slight delisysex
in sinusoidal input tracking; however, we believe it can be
reduced further by another simple extension (using twotinpu

each moving window. This modification would significantlyslopes over the window, as mentioned).
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