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Abstract

Several model-order deduction algorithms (MoDAs)
have been developed to coordinate the synthesis of
lumped (finite-dimensional), linear system models, of
accetable order, that accurately characterize the be-
havior of a system over a frequency range of interest
(FROI) [Wmin,Wmaz|. The most recent of these tech-
niques considers the frequency response of the model as

the “performance metric” and systematically increases
model complexity until the frequency response over a
FROI has converged to within a user-specifice tolerance.

The linear MODA algorithm based on frequency response
is being extended to support the synthesis of models
of nonlinear systems. This technique follows a proce-
dure similar to the linear frequency-domain algorithm,
but uses a describing-function approach to develop an
amplitude-dependent characterization of the nonlinear
system frequency response. The extended algorithm
synthesizes models that are also of low order; in ad-
dition, they include only those nonlinear effects that
influence the frequency response significantly over the
FROI and for an amplitude range of interest. This sig-
nificantly extends the class of systems to which model-
order deduction can be applied.

1. Introduction

Modelers face a number of decisions when developing
a lumped model of some physical device. These deci-
sions include choosing the appropriate model order, the
effects to include in the model, and how to treat the
nonlinearities inherent in the physical process.

While a general technique for solving this problem is not
available, a number of model-order-deduction algorithms
(MoDAs) for determining an acceptable model order do
exist for the linear case. The original MODA, described
in Wilson and Stein [14, 15], parses a set of components,
each of which has one or more possible submodels asso-
ciated with it, and coordinates the synthesis of a low-
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order lumped-parameter model that includes all the sys-
tem eigenvalues within a specified spectral radius, i.e.,
[Ail € [0,wWmaz]. More recently, an extension of MODA
has been proposed in which this eigenvalue-based model
performance metric is replaced with a requirement that
the frequency response must have converged over the
frequency range of interest (FroI) [17]. Tt is argued in
[17] that the frequency-domain version of MoDA (called
FD-MODA) is a better tool for developing models for
controls analysis and design.

A limitation of MODA and its extensions is their inability
to handle systems with nonlinear behavior. However,
describing functions (DFs) provide a means of quasi-
linearizing a model, and a MODA can then be applied.
The combination of DFs and MODA to synthesize nonlin-
ear models with “eigenvalues” within a spectral radius
produced a preliminary algorithm, called model-order-
deduction algorithm for nonlinear systems (MODANS)
[16], which demonstrated the overall approach. Here we
focus on the analogous extension of FD-MODA to create
FD-MODANS, a DF- and frequency-domain-based tech-
nique for nonlinear system modeling. We believe this
to be a major advancement over earlier approaches.

1.1. Parameter Lumping

Parameter lumping refers to the process by which con-
tinuous elements are modeled with a finite (usually low)
number of discrete elements. Cannon [2], Dorny [3] and
Huston [6] provide a thorough discussion of the process.
As these sources indicate, parameter lumping requires a
decision regarding the most appropriate representation
(model) of continuous elements, i.e., the proper number
of inertial and compliant elements.

1.2. Describing Function Methods

The basic idea of the describing function approach is to
replace a nonlinear component with a quasilinear term
whose “gain” is a function of “input amplitude”, where
the form of input signal is assumed in advance and the
amplitude-dependence of the gain is based on that as-
sumption plus an approximation-error criterion. In this



work, the signals are assumed to be sinusoidal, so we use
a sinusoidal-input describing function (SIDF) method.
The associated approximation-error criterion is mini-
mization of mean square error. This technique is dealt
with thoroughly in [1, 5] for the case of a single nonlin-
earity; for systems with more than one nonlinearity in
arbitrary configurations, the most general extensions of
the sIDF approach are described in [9].

Modern sSIDF approaches have been used for two pur-
poses: limit-cycle analysis and characterizing the in-
put/output (10) behavior of a nonlinear plant (e.g.,
[9, 10]). The latter application serves as the basis for
the method presented here. There are two techniques
for generating SIDF 10 models for nonlinear systems:

1. Develop a state-space model of the system in
which every nonlinear element is replaced analyt-
ically by the corresponding scalar SIDF, formulate
the equations of harmonic balance, select an in-
put amplitude a (u(t) = asin(wt)), solve for the
unknown amplitudes of the state variables and
scalar sIDF values, and compute the 10 model as
G(jw,a) = C(a)[jwl — A(a)]~* B(a) + D(a) (note
that all arrays in the quasilinear model may de-
pend on the input amplitude @). This approach
was used in [16] in developing MODANS; refer to
[10] for further details.

2. Apply a sinusoidal signal to the nonlinear sys-
tem model, perform direct Fourier integration of
the system output in parallel with simulating the
model’s response to the sinusoidal input, and sim-
ulate until steady-state is achieved to obtain the
dynamic or frequency-domain SIDF G(jw, a) [13].

To elaborate on the second method and illustrate its use
in the MODA context, we specify a range of input ampli-
tudes [@min, @maz] to cover the expected operating range
of the system and frequencies [Wmin, Wmaxz] to span the
FROI. Then specific sets of values {a;} € [amin, @max]
and {w;} € [Wmin,Wmaz] are selected for generating
G(jw;,a;). The system model is augmented by adding
new “states” corresponding to the Fourier integrals

we  [EFDT
] / y(t) sin(w;t)dt

RG(GK(jw]', al)) =

wa; JKT
we [EFDT
Im(Gg (Jjwj,a;)) = 7;'/I(T y(t) cos(w;t)dt

where Re(-) and Im(-) are real and imaginary parts of
the SIDF G(jw;,a;), T = 2w /w;, and y(t) is the output
of the nonlinear system. Achieving steady state for a
given a; and w; is guaranteed by setting certain toler-
ances and convergence criteria on the magnitude and
phase of G where K corresponds to the number of cy-
cles simulated; the integration is interrupted at the end
of each cycle and the convergence criteria checked to see

if the results are within tolerance so that the simulation
could be stopped and G(jw;, a;) reported. For further
detail, refer to [12, 13].

2. Frequency-Domain Method for Nonlinear
Model-Order Deduction

2.1. Class of Systems to be Modeled

The work presented here and in the earlier MODA
papers has all been done in the context of serially-
connected unidimensional electro-mechanical systems.
By “serially-connected” we signify simply that the me-
chanical components that comprise the system are con-
nected so that each component follows another. The
term “unidimensional” means that each component may
undergo one-dimensional rotational or translational mo-
tion, but not both. (Of course, a system may have some
components that are translational and others that are
rotational, e.g., a rack-and-pinion assembly.)

The MoDA approach in general and the FD-MODANS
technique in particular have substantially broader appli-
cability. These algorithms can coordinate the synthesis
of finite-dimensional, time-invarient, and (in the case of
MODANS and FD-MODANS ) nonlinear systems. The al-
gorithms have been applied to serially-connected, unidi-
mensional electro-mechanical systems because (i) these
help to demonstrate the algorithms and (ii) the rest of
the automated modeling tools available are subject to
these restrictions.

2.2. Objective
The required input and the desired output specify the
functionality of the algorithm. Inputs include:

e a system, &, of the class defined in Section 2.1,
eg., 8 = {c1,c3,¢a,c3,c5...} where ¢; denotes
various types of electro-mechanical components,

e an input-amplitude range of interest, [amin, @maz),

e a frequency range of interest, [Wimin,Wmas], and

e a frequency-response convergence tolerance, TOL.
The output of FD-MODANS is the set of ranks of the
components (“rank” specifies the complexity of a com-
ponent submodel, see [14, 15] for details) of S, i.e.,

R = {ry,r3,ry,r3,r5...}, and the set of nonlinearity
indices, V = {v1,vs, Vs, V3, Vs...}, which contain 1 for

nonlinearities to be included in the model, 0 for those
to be neglected. These sets satisfy two conditions:

1. the frequency response over [Wmin,Wmas| Pre-
dicted by a model synthesized based on R and
V has converged within TOL,

2. the sum of the ranks, )", r;, is not excessive and
only nonlinear effects that influence G(jw, a) sig-
nificantly are included.



This provides a (non)linear system model that is of ap-
propriate complexity given the specification that the fre-
quency response should be accurate over the FRO1 and
for input amplitudes in the AROI.

2.3. Model Order Deduction Procedure

1. Initialize

(a) Set all ranks to zero (r; = 0) and all nonlin-
earity indices to zero (v; = 0)

(b) Specify: a tolerance TOL, a frequency range
of interest [Wimin,Wmas], an input-amplitude
range of interest [amin, @max)

(c) Create a grid of K frequency points, wy €
[Wmin, Wmas], pick a set of L input-amplitude
values, a; € [@min, Tmaz)

(d) Synthesize a system model &, based on cur-
rent ranks and nonlinearity index vectors

(e) Set G*(jw) = G(jw) for w € {wi},
2. Determine most rank-sensitive component

(a) dGpar =0
(b) Cycle over the components ¢;:

1. Increase rank of ¢;

1. Synthesize system model, based on cur-
rent ranks

iii. Compute G(jw) for all wp — G(jws)

1v. (SGk = (G*(_](.u‘k) - G(jwk))/G*(]wk)

v. If (|| 6Gk ||oo= maxg |Gk |) > dG s
then: dGumar = || 0Gk ||co, ©* = i

vi. Decrease rank of component c;
3. Evaluate need to increase rank

(a) If dG gy > TOL then:
1. Augment model order by increasing rank
of the 1*th component

ii. Synthesize system model, based on cur-
rent ranks

iii. Compute G(jw) for all w;
iv. G*(jw) = G(jw)
v. go to 2
(b) else set G*(jwi, a;) = G*(jw) for all a;, and
continue below

4. Determine most sensitive nonlinearity

(a) dG ez = 0

(b) Cycle over the ‘0’ places in each component’s
nonlinearity index vector v;:

i. Set the m** place in v; to 1

1. Synthesize system model, based on es-
tablished ranks and current nonlinearity
index vectors

iii. Compute G(jwy, a;) for all wy and q

iv. Compute || G ||co= maxg | max; (1 -
G(jwr, a)/G* (jur, ar) ) |

v. If || §Gk ||eo> dG ey then: dGpar =
|| 0Gk ||co, ©* =1, m* =m

vi. Reset m** place in v; to 0
5. Evaluate need to add nonlinear effect

(a) Tf dG gy > TOL then:

1. Increase model complexity by setting the
m*th place in v;+ to 1.

ii. Synthesize system model, based on es-
tablished ranks and current nonlinearity
index vectors

iii. Compute G(jw, a) for all wy and
iv. G*(jwg, @) = G(jw, a)
v. goto 4

(b) else, continue below
6. Output results

(a) Output component ranks and nonlinearity
index vectors

(b) Output (non)linear system model

3. IHlustration of the Algorithm

To demonstrate FD-MODANS, we modeled and obtained
frequency-domain “transfer functions” G(jw, a) for the
ATB1000, a “benchmark” problem that has received
considerable study [7]. This electro-mechanical pointing
system (a surrogate gun-turret testbed) consists of two
subsystems: a drive subsystem, including a DC motor
(with coulomb friction), a gear train (with backlash),
and a compliant shaft; and a wheel/barrel subsystem,
including an inertial wheel (also with nonlinear friction)
and a flexible gun barrel. The drive subsystem dynam-
ics are governed by two sets of differential equations,
depending on whether the gears are engaged or not.
When the gears are not engaged, we have two decou-
pled second-order differential equations:

Jmém = Tm_ mf (1)
Ty = —T, (2)

where 6, and 6, are the angles of the driving gear
and driven gear, respectively. J,, and J, are the in-
ertias of the motor and compliant shaft assemblies;
Tm 1s the mechanical torque produced by the motor,
T = Tmosin(wt); Ty is the coulomb friction torque



on the motor, T,¢ = by, sgn(fm); and T is the reactive
torque of the compliant shaft,

Ty = ky(0y — 0;) + by (05 — 6;) (3)

where ks and b, are spring and viscous friction con-
stants respectively and #; is the inertial wheel yaw an-
gle. When the two gears are engaged, the differential
equation governing the dynamics of 8 is

(Jom + Jo)06 = Ty — Ts — Tins (4)

We note that there is a “jump” in the states 0, and
fy at the moment the two gears become engaged; if we
neglect the compliance of the gear material, then by
conservation of angular momentum we have

: : Jmﬁm to) + Jbéb to
i (1) = (1) = Tl lleL 4 Tblle)

c

(5)

The conditions for engagement and disengagement are
(i) contact and (ii) individual component angular ac-
celerations achieving values that permit separation, re-
spectively. This is modeled and simulated rigorously,
using a new integration algorithm that exactly captures
these “state events” [11].

The gun barrel is a distributed-parameter system that
can be approximated by a lumped-parameter model
obtained using a modal expansion approach. The
wheel /barrel subsystem is then described by a state-
space model of the following form:

2+ D+ Kz = B(T,—Ty) (6)
y = Czx (7)

where z € R™ is the subsystem state vector (vector
of modal coordinates) and y© = [6; B:ip] is the out-
put vector; f; is the inertial-wheel angle and 6;;;, is the
gun-barrel tip-angle; 7;; combines viscous and coulomb
effects; and matrices D, K, C' and B are of appropriate
dimensions. For parameter values, see [7].

We chose this problem because it is a benchmark, and
has exactly the desired characteristics. It is too complex
to explore exhaustively in this paper, so we will show
results that demonstrate the procedures and issues dis-
cussed in the previous sections. First, in Fig. 1 we illus-
trate the process of determining one value of G(jw, a),
i.e., for a = Tio = 2 volts, w = 10 radians/sec. The
effects of backlash are evident for this small amplitude
excitation; one sees the separation and re-engagement
of the gears and the associated velocity reset at each
point of re-engagement. The routine for checking the
convergence of G(jw, a) after each cycle stopped after
the second cycle, because the tolerance is quite relaxed
(on magnitude it’s 1 dB, and on phase 5 degrees; sim-
ulation continues until the difference from one cycle to
the next is within tolerance).

ATB1000 model, rank O (rigid body wheel/barrel assy model)
0.15 T T T T T T T

0.1
2 0.05

Th_m, Th

|
-0.05f
-0.1

time

22-Jul-95 —- uses GGEN_SEH to obtain G(jw,a)
T T

N
T

dTh_m, dTh_b

time

Figure 1: Obtaining G(jw, a) by Simulation

An executive based on this routine was used to gener-
ate frequency response plots for various amplitudes and
conditions. In Fig. 2 we see the standard Bode represen-
tation for G(jw, a) determined for two amplitudes (a =
2, 10) and for rank = 0, 1, 2. We note simply that the
nonlinear effects are definitely important over the am-
plitude range of interest a € [2, 10], as is the inclusion
of the first mode of the flexible member. The second
mode is at w, = 138 rad/sec., so it can be safely ne-
glected over the frequency range of interest w € [2, 50]
rad/sec, as you may barely discern the difference.

G(jw,a) for Rank = 0, 1, 2 obtained by simulation + Fourier analysis
10 T

[}
8,
£10 E
g
a=[2,10]--24-Jul-95 \ Rank=1,2
1072k _ _denotes a=10 ‘ Rank=0 1
10° 10" 10?
frequency (rad/sec)
Obtained with GWEXEC which invokes GGEN_SEH to generate G(jw,a)
—100F T —
-2001 J
L7
=
® Rank =0
@ -300F B
= m_tol=1dB, p_tol =5 deg
-4001 _ _denotes a =10 Rank=1,2 4
| |
10° 10" 10°

frequency (rad/sec)
Figure 2: G(jw, a) for a € [2,10], Rank = 0, 1, 2

A more formal exploration of the nonlinear effects 1s
summarized in Table 1. The following cases were con-
sidered for w = 5 rad/sec, a low frequency where the
amplitude-dependency 1s quite evident in Fig. 2: Case
A is nominal (fully nonlinear), case B has no nonlineari-



ties, case C has backlash only, case D has motor coulomb
friction only, and case E has wheel coulomb friction only.
We note significantly less variation for a = 10, as would
be expected by the nature of the effects (backlash and
coulomb friction dominate at small amplitudes). Fo-
cussing on @ = 2, the motor coulomb friction is clearly
the most substantive, then wheel coulomb friction, and
finally backlash seems to be the least important.

Case a=2 a=10
Magn. | Phase | Magn. | Phase
A 0.1359 | -128.13 | 0.1875 | -135.88
B 0.1988 | -138.84 | 0.1988 | -138.84
C 0.1993 | -138.87 | 0.1989 | -138.85
D 0.1509 | -125.27 | 0.1892 | -136.41
E 0.1902 | -136.18 | 0.1971 | -138.30

Table 1: Exploration of Nonlinear Effects

Whether or not one may safely ignore the amplitude
dependencies shown above depends on the usage of the
resulting model. The nonlinear effects are significant
at small amplitude, as one might expect — the differ-
ence in magnitude at lower frequencies is about 3 dB.
One may conclude that a large-amplitude model (which
will approach the linear model) is “safe” for designing
controllers, for example; however, it will not accurately
predict the 10 behavior of the ATB1000 for small am-
plitudes.

4. Discussion

This paper presents an approach that coordinates the
synthesis of a nonlinear, state-space system model based
on a high-level physical description of a system belong-
ing to the class outlined in Section 2.1. This algo-
rithm, FD-MODANS, employs a two-staged process. The
first stage determines the appropriate order of the sys-
tem model by augmenting the rank of component mod-
els that have the most significant affect on G(jw, a);
this continues until any subsequent increase results in a
change to the frequency response that is less than a user-
specified tolerance. The second stage of the algorithm
works in a similar fashion to determine which compo-
nent nonlinearity produces the largest change in fre-
quency response when it is added to the system model,;
this too proceeds until adding nonlinear effects leads
only to a negligibly small change in frequency response.

There are several major improvements embodied in FD-
MODANS compared with MODANS [16]. FD-MODANS has
been extended to determine not only an acceptable low
order for the model, but the nonlinearities that should
be included to ensure that the specified accuracy is ob-
tained. The new model performance metric, i.e., the

frequency response of the nonlinear system over a FROI,
is much more suitable than the spectral radius metric
used in MODANS. Finally, the change from the ana-
lytic DF-based technique for determining G (jw, a) used
in MODANS to the simulation-based method outlined in
Section 1.2 removes some of the barriers to treating ar-
bitrarily complicated systems in terms of the number
and types of nonlinearities. In essence, if an electro-
mechanical system with sinusoidal inputs can be simu-
lated, then this approach may be applied.

4.1. Effect of Amplitude on Frequency Response
Both the frequency and the amplitude of the input sig-
nal affect the response characteristics of the quasilin-
ear model G(jw, a). Depending on the input signal
and the particular nonlinearities present in the model,
response characteristics may asymptotically approach
those of the equivalent linear model as amplitude be-
comes small (e.g., this would be true for effects such
as saturation), or this may happen as input amplitudes
become large (as is the case for coulomb friction and
backlash, as shown in the previous section). The FD-
MODANS approach systematically sorts these issues out,
for the conditions specified by the user’s FROI and AROI.

4.2. Side-Effects

FD-MODANS provides a means of systematically select-
ing the required complexity of component submodels
within a larger system model. FD-MODANS is intended
to be used in an automated-modeling program, with
which a user is expected to provide a system configura-
tion description, a desired FROI, a specific input am-
plitude range AROI, and a tolerance defining the re-
quired model accuracy. The program would then use
FD-MODANS to build the system model.

The intermediate models obtained during this synthesis
process contain useful design information. When FD-
MODANS identifies a rank-sensitive component, this 1s
often an indication that this part causes the next mode
(generally a structural resonance) in a system model. TIf
the modal frequency caused by this component is too
low, an engineer can make the appropriate changes to
this component, e.g., alter the material or a physical di-
mension so that the modal frequency is increased. Sim-
ilar information is provided during the identification of
significant nonlinear effects: If variations in frequency
response caused by a specific component nonlinearity is
excessive, then the engineer may decide to use a differ-
ent type of bearing or gear train to alleviate the prob-
lem, for example.

4.3. Open Questions

The MoDA approach in general represents a heuristic
search strategy for determining an acceptably-accurate,
suitably-low-order model of a system. We define “ac-
ceptable” in terms of a specific performance metric:
frequency response having converged to within a user-
defined tolerance. We do not guarantee accuracy in any



absolute sense, since we assume that a high-order “truth
model” is not available or is too difficult to produce, and
thus we lack reference data for comparison.

We also do not guarantee that a lower-order model can-
not be found to meet the same accuracy specification
that the FD-MODANS-produced model satisfied. While
augmenting the order of the model, FD-MODANS in-
creases components’ ranks by identifying the compo-
nent that causes the largest change in the frequency
response. Once the algorithm has committed to increas-
ing the rank of a component, it will not backtrack and
decrease it later. Thus, FD-MODANS does not conduct
an exhaustive search. Conceivably, later increases in
other components’ ranks might make the rank of some
component unnecessarily high. We do not have an ex-
ample of this, but as yet lack a conclusive proof of the
ability of FD-MODANS to synthesize minimal-order sys-
tem models. Lacking such a proof, one might make a
check at the end of the component-rank iterations by
reducing the rank of each component to see if the fre-
quency response remains within tolerance; however this
would seem to be overly cautious.

Finally, we acknowledge that there may be cases where
adding a set of significant nonlinearities to a system
model might change the appropriate component ranks
needed to satisfy the accuracy metric being used in the
two searches. For example, the existence of significant
stiction may exacerbate the resonant behavior of a flex-
ible shaft, necessitating the use of a higher-rank sub-
model for that component. One way to address this
problem would be to repeat the algorithm in Section 2
except for reversing the order of the two searches (de-
termine “significant nonlinearities” first). If the results
are the same, then we would be substantially more con-
fident (but still not sure) that the resulting model is
“acceptably-accurate, suitably-low-complexity”. If the
results are different, then we might suggest using the
maximum component ranks and the union of the set of
nonlinearities identified as needed in the two exercises.

Despite these open questions and lack of definitive an-
swers, we feel confident that MODAs in general and FD-
MODANS in particular represent a powerful, systematic
attack on the difficult problem of producing accurate,
low-complexity models. While we cannot guarantee
“optimality”, such an approach should be a valuable
addition to an engineer’s repertoire of techniques or to
an automated modeling environment.
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