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Abstract

Three matlab-based tools have been developed for the
convenient assessment of stability conditions for linear
and nonlinear systems. The first is a more helpful and
definitive version of nyquist, which has features of au-
tomatic zooming (to show all crossings of the real axis
and thus display the corresponding critical gain points)
and which displays on the real axis a numeral (‘0’, ‘1’
etc.) that represents the number of unstable (right-half
plane) poles that will occur in a closed-loop system with
feedback gain k if the point −1/k is located in that re-
gion. The second tool is built on this extended nyquist

command, and makes the application of the nonlinear
time-varying system Circle Criterion equally simple and
definitive. Finally, a Popov Criterion tool is included
to achieve better sector bounds for the nonlinear time-
invariant case. Examples are presented to show the
efficacy of these extensions within the matlab environ-
ment.

1 Introduction

Existing matlab commands for the stability analysis
of linear systems are not easy to interpret by the less-
than-expert user, and tools for assessing the stability
of nonlinear systems are nonexistent in matlab. In
the linear case, interpreting the usual matlab Nyquist
plot is not hard if the plant is stable and the W (jω)
locus is not complicated, but it may be confusing, es-
pecially if there are multiple real-axis crossings and/or
open-loop poles on the imaginary axis or in the right-
half plane (rhp). In the nonlinear case, none of the
classical absolute stability criteria are implemented in
matlab, and we have addressed that lack by creating
comparably user-friendly tools for the application of the
Circle Criterion for the time-varying case and the Popov
Criterion for time-invariant nonlinear systems[1, 2, 3].

2 Stability Criteria

In this section we state the linear and nonlinear sta-
bility criteria, emphasizing their classical geometric in-
terpretations. As a preliminary, the class of systems
considered is depicted in Fig. 1, where it is assumed
that the forward-path transfer function is expressed in
state-space form as:

W (s) = C(sI − A)−1B + D (1)

or in Laplace notation as a ratio of polynomials, with
the order of the numerator not exceeding that of the
denominator:

W (s) =
bmsm + . . . + b1s + b0

sn + an−1sn−1 + . . . a1s + a0

, m ≤ n (2)
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Figure 1: Closed-loop Linear/Nonlinear System

The Nyquist criterion states that the closed-loop system
in Fig. 1 with k in the feedback path will be stable if
the point −1/k is not in the W (s)-map of the right-
half of the s-plane (rhp). In the case of a stable plant
W (s), this map is simply that region to the right as one
traverses the Nyquist plot of W (jω). In the case of a
plant with q poles in the right-half plane, this map must
take into consideration q map layers due to excluding



these singularities by traversing a small circle around
each in the counter-clockwise sense, which results in a
large circle traversed in the clockwise sense for each. As
an example, consider the unstable plant:

W (s) =
s + 2

s2 − 4s − 5
(3)

Then the s-plane region being mapped is depicted in
Fig. 2 and the resulting complete Nyquist diagram is
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Figure 2: s-plane region mapped for Nyquist criterion

portrayed in Fig. 3. Observe that the only range of k
leading to stability is 4 < k < ∞; the corresponding
region for −1/k is shown with the numeral 0 on the real
axis to denote no closed-loop poles in the rhp. For 2.5 <
k < 4 there will be 2 unstable closed-loop poles, and for
the range −∞ < k < 2.5 there will be one; again, the
numerals on the real axis indicate these results.

The Circle Criterion [1, 3] states that the closed-loop
system in Fig. 1 with f( · , t) in the sector [F , F ], i.e.,

F ≤
f(σ, t)

σ
≤ F (4)

is absolutely stable (uniformly asymptotically stable in
the large – uasil) if one can draw a circle on the
W = U + jV plane whose diameter is defined by the
points V = 0,−1/F < U < −1/F and whose interior
has no points in common with the W (s)-map of the
right-half of the s-plane. In essence, this circle must lie
in a region of the Nyquist plane where there are zero
mapping layers in the sense of the Nyquist criterion
stated above. The case F < 0 < F is interesting in
that the “diameter” so defined passes through the point
∞ and the “inside” of the circle is actually what would
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Figure 3: W (s)-map for the Nyquist criterion

ordinarily be considered the outside (exterior points),
as shall be illustrated in the examples of Section 5.

The Popov Criterion [2, 3] states that the closed-loop
system in Fig. 1 with f( · ) in the sector [0 , F ], i.e.,

0 ≤
f(σ)

σ
≤ F (5)

is absolutely stable (uasil) if one can draw a line on the

Popov plot, i.e., polar plot of Ŵ = U + jV̂
4
= U + jωV ,

passing through the point −1/F such that the Popov
locus of W (jω) lies entirely to the right of the line.

Unfortunately, some of the elegance of the Circle Cri-
terion is lost, due to this use of a modified frequency-
domain plot. In particular, the general finite-sector case
[F , F ] cannot be stated in graphical terms; rather, one
must resort to the finite-sector transform [3] to con-
vert the case [F , F ] to [0 , (F − F )] by applying the

above criterion to the transformed linear plant W̃ ,

W̃
4
=

W

1 + FW
(6)

which we do automatically in our tool1.

1While there is a Parabola Criterion for the general finite-
sector case [3], it is unattractive, due to it’s being more strict than
the Popov Criterion applied using the finite-sector transform.



3 Description of matlab Stabil-

ity Routines

Given the above problem definition, the following ex-
cerpts from the “help” displays constitute a concise
“users’ manual” for the routines newnyq, circle and
popov:

NEWNYQ(A,B,C,D) produces a Nyquist plot. The fre-
quency range, number of points and scaling are set au-
tomatically, and a “zoom” feature displays all real-axis
crossings. In addition, the k range(s) for closed-loop sta-
bility are reported, and the number of unstable closed-
loop poles for -1/k on various regions of the real axis
are displayed.

NEWNYQ(A,B,C,D,1) will cause the right-half plane
mapping of W (s) = C(sI −A)B +D to be indicated by
hatching.

NEWNYQ(NUM,DEN) and NEWNYQ(NUM,DEN,1) are corre-
sponding variants for W (s) provided in ratio of polyno-
mial form.

CIRCLE(A,B,C,D,Fmin,Fmax) will check if the CC
is satisfied for the sector-bounded nonlinearity and
W (s) = C(sI − A)B + D

CIRCLE(A,B,C,D,Fmin) will determine the maximum
value of Fmax (F ) for which the CC is satisfied.

CIRCLE(A,B,C,D,NaN,Fmax) will determine the mini-
mum value of Fmin (F ) for which the CC is satisfied.

CIRCLE(NUM,DEN,Fmin,Fmax) et cetera are correspond-
ing forms for W (s) provided in ratio of polynomial form.

[Fmin,Fmax]=CIRCLE(A,B,C,D,Fmin) et cetera will re-
turn the sector bounds for which the CC is satisfied
(even if, for example, Fmin,Fmax are supplied for which
the CC is NOT OK).

The command summaries for popov are identical to
those for circle.

4 Algorithm Overview

The Circle Criterion is implemented as follows: First,
the finite-sector transform (Eqn. 6) is applied to reduce
the criterion for uasil to requiring that the Nyquist lo-
cus of W̃ (jω) must lie to the right of a vertical line

passing through Ũ = −1/(F − F ). (With a zero
lower sector bound, the circle degenerates into a ver-
tical line.) Then we analytically solve the polynomial

equation corresponding to dŨ(jω)/dω = 0 using the
root command, and thus locate all local minima and

maxima of Ũ(jω)
4
= ReW̃ (jω). These are inspected

to determine the global minimum, i.e., the left-most
point on the Nyquist locus of W̃ (jω). Denoting the
real part of this left-most point as Rmin, the maxi-
mum upper sector bound permitted by the Circle Cri-
terion is given by F = F − 1/Rmin. This maximum
upper bound is reported to the user if only the lower
bound is given (circle(num,den,Fmin)), or it is used
to test the user’s upper bound if it is also provided
(circle(num,den,Fmin,Fmax)).

The algorithm for the Popov Criterion is also based on
the analysis of W̃ (jω). It is more complicated, since
the Popov line may have an arbitrary orientation (an-
gle with respect to the real axis). In essence, we de-
fine an auxiliary function F (θ) to be the difference be-
tween the two left-most points of the Popov locus ro-
tated by the angle θ and use the matlab function-
solver fzero to find θ∗ such that this difference is zero
– this is the slope of the Popov line. Once the slope
is known, the point where the Popov line crosses the
real axis is readily determined; denoting this point as
Rmin, the maximum upper sector bound permitted by
the Popov Criterion is again given by F = F − 1/Rmin.
This upper bound is reported to the user if only the
lower bound is given (popov(num,den,Fmin)), or it is
used to test the user’s upper bound if it is also provided
(popov(num,den,Fmin,Fmax)).

5 Examples

First we illustrate the use of newnyq and circle on a
relatively simple stable plant:

W (s) =
s + 1

s4 + 2s3 + 25s2 + 3s + 1
(7)

Note that the upper plot is similar to that produced by
the matlab nyquist command except for the numerals
on the real axis indicating the corresponding number
of unstable closed-loop poles. The lower plot in Fig. 4
illustrates the feature of automatic zooming (to show all
crossings of the real axis); the only manual operations
in producing this figure were the text commands to
document the problem (record num and den and the
stable k range). The report that newnyq provides after
it is invoked for this problem is:

>> newnyq(num,den)

stable k range

-1 < k < 43.17
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Figure 4: Nyquist Criterion Example (Stable Plant,
with Zooming)

Finally, the numerals 0, 1, 2 written on the real axis rep-
resent the number of right-half-plane closed-loop poles
that would result if −1/k were to lie in each region.

Once the Nyquist plot has been viewed, one may request
that the cc be applied to the same W (jω) and a lower
sector bound of Fmin = 2.5. The cc locus is shown on
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Figure 5: Circle Criterion Example (Stable Plant)

the Nyquist plot (Fig. 5), and the report that circle

provides after it is invoked for this problem is:

>> circle(num,den,2.5)

stable k range

-1 < k < 43.17

circle criterion is satisfied

maximum sector bound F_max = 11.59

(note that it includes the newnyq report, as shown
above). Again – the only manual steps in preparing
Fig. 5 were the documentation num = , den = , F min

= etc. defining the problem and the result. The inter-
pretation of this result is that f( · , t) in Fig. 1 must lie
in the sector [ 2.5 , 11.59 ], i.e.,

2.5 ≤
f(σ, t)

σ
≤ 11.59 (8)

in order to guarantee absolute stability.

We conclude this example by illustrating the observa-
tion in Section 2 that the “interior” of the CC circle
may include the point ∞ by taking Fmin = −0.5 for the
above plant. The result is shown in the following report
and Fig. 6:

>> circle(num,den,-0.5)

stable k range

-1 < k < 43.17

circle criterion is satisfied

maximum sector bound F_max = 0.6897
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Second CC Study of a Stable Plant − Negative F_min
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Figure 6: Circle Criterion Result for Negative F min

Next, we provide the matlab plots obtained applying
newnyq and circle to the unstable plant in Eqn. 3.
The resulting “new Nyquist” plot is depicted in Fig.
7; note that it is similar to Fig. 3 except that the
“large (infinite) circle” arising from the exclusion of the
right-half-plane singularity is not shown (to avoid un-
necessary clutter); that circle is, however, the basis for
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Figure 7: Nyquist Criterion Example (Unstable Plant)

the numeral 1 at the far left on the real axis (mean-
ing that any k such that −1/k < −0.4 will result in a
closed-loop system with one unstable pole). The region
−0.25 < −1/k < 0 on the real axis has the numeral 0,
because the points are to the left of the W (jω) locus
meaning that points there are no longer in the right-
half-plane map of W (s). In light of this, the report that
newnyq provides in this case is:

>> newnyq(num,den)

stable k range

4 < k < Inf
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Figure 8: Circle Criterion Example (Unstable Plant)

To illustrate the application of the Circle Criterion tool
to the same unstable plant, we specify a lower bound of
F = 5, which is in the Nyquist range as required, and
the report that circle provides for this problem is:

>> circle(num,den,5)

stable k range

4 < k < Inf

circle criterion is satisfied

maximum sector bound F_max = 27.83

Again, we note that the corresponding circle in the
Nyquist plane lies completely within the “no mapping”
portion of the plot.

Another feature of circle allows us to specify the upper
bound (Fmax) and obtain the minimum corresponding
lower bound that guarantees uasil. To demonstrate
this we issue the command circle(num,den,NaN,100)

for the above unstable plant. We receive the following
report and plot:

>> circle(num,den,NaN,100)

stable k range

4 < k < Inf

circle criterion is satisfied

minimum sector bound F_min = 5.392
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Figure 9: Circle Criterion Result, Upper Bound Given

Finally, we apply the Popov Criterion tool to the same
stable plant W (s) as before, first for the case when F =
0, so the Popov locus is rendered for the same W (jω) as
shown in Fig. 4: The report for this case is as follows:
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Figure 10: Popov Criterion Example (Stable Plant, F
= 0)

>> popov(num,den,0)

popov criterion is satisfied

minimum sector bound F_min = 0 ->

maximum sector bound F_max = 8.4706

Now, the same tool is applied to the case F = 2.5,
which may be compared directly with the CC exam-
ple depicted in Fig. 5: The report for this case is as
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Figure 11: Popov Criterion Example (Stable Plant, F
= 2.5)

follows:

>> popov(num,den,2.5)

popov criterion is satisfied

minimum sector bound F_min = 2.5 ->

maximum sector bound F_max = 25.019

The CC gave the substantially smaller upper sector
bound F max = 11.59, which is not surprising consid-
ering that the CC guarantees uasil for nonlinear time-

varying systems while the Popov Criterion requires that
f be time invariant. In fact, the CC upper sector bound
may be obtained by drawing a vertical line that just
touches the Popov locus in Fig. 11, since the left-most
extent of the Popov and Nyquist loci are the same since
the abscissa for both plots is the same (U = Re[W (jω)]).

6 Conclusion

These tools provide a simple environment for the deter-
mination of stability conditions for linear and nonlinear
plants. The convenience and added support they sup-
ply can be readily appreciated from the examples pre-
sented in Section 4. We have installed these routines on
our web page, url = http://www.ee.unb.ca/jtaylor/ for
your access. A copy of this paper is also available there,
to serve as a small “User’s Guide”.
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