From Proc. 34th IEEE Conference on Decision and Control, New Orleans, LA, December 1995. ©IEEE

Modeling and Simulation of Hybrid Systems

James H. Taylor & Dawit Kebede
Department of Electrical Engineering
University of New Brunswick
Fredericton, NB CANADA E3B 5A3

Internet: jtaylor@unb.ca

Abstract

Previous research in the area of modeling and simula-
tion of hybrid systems led to the development of a gen-
eral hybrid systems modeling language (HSML), part of
which was implemented in a preliminary way by extend-
ing MATLAB. This paper describes the second phase of
algorithmic implementation of the HSML ideas and lan-
guage constructs for dealing with state-event handling
and model structural changes in continuous-time system
components. Specifically, the standard MATLAB model
framework and integration algorithms are extended to
support these phenomena. An example is presented to
show the efficacy of these extensions within the MATLAB
environment.

1 Introduction

The HSML language [1, 2] was designed to support a
broad definition of a hybrid system, which we may ex-
press informally as being an arbitrary interconnection of
components that are arbitrary instances of continuous-
time, discrete-time and logic-based systems. Require-
ments for HSML focused particularly on rigorous char-
acterization and execution of “events”, both discrete-
and continuous-time, that cause discontinuous changes
in system trajectories and/or the model structure itself.
In this respect, there is much commonality between the
HSML project and recent developments by Cellier et al.
in the area of object-oriented modeling [3]; for a detailed
view of state-event handling see especially [4, 5].

This paper outlines the completion of the first phase in
implementing a subset of the HSML concept in a work-
ing modeling and simulation environment, MATLAB [6].
Preliminary steps are documented more completely in
[7]. Here we again focus narrowly on the issues sur-
rounding state-event handling in continuous-time com-
ponents (cTcs) and provide an illustrative example to
demonstrate the efficacy of the approach.

Here we consider ¢Tcs that may be represented as!:

1The specific class of cTc that can be modeled de-

:L;c = fC(IC7UC1ud7m7t)

yc == hc($61uc7ud7m7t)

where z. is the state vector, y. is the output vector,
uc and ug are numeric input signals (continuous- and
discrete-time, respectively), m is comprised of a finite
alphabet of numeric or symbolic input variables that
characterizes the “mode” of the model, and ¢ is the
time; in general u.,uq and m are vectors. There are
implicit “zero-order holds” operating on the elements
of ug and m, 1.e., these inputs remain constant between
those times when they change instantaneously. Of par-
ticular importance to the present exposition, the mode
input m is included to provide means of controlling the
model’s structure and coordinating its behavior with the
numerical integration process in state-event handling, as

described below.

State events are characterized by zero-crossings,
S(ze,m,t) =0 (1)

where S is a general expression involving the state, time
and perhaps the mode of the cTCc model. An arbitrary
state change in the ¢TC model can be classified as a
negative-going event (i.e., one in which S becomes
negative), an on-event situation (S remains equal to
zero for a time interval), or a positive-going event.
Note that this framework provides support for models
that undergo structural changes (e.g., changes in the
definition or number of state variables) [9]; e.g., in the
case of mechanical subsystems engaging, the number
of states decreases. Finally, we include provision for
instantaneous reset of the model state variables at an
event, according to

rf = wo(th) = r(wc(ty), m,17) (2)

e

pends on the simulator’s integration methods; MATLAB
cannot handle differential algebraic equations (DAEs),
so we restrict ourselves to ordinary differential equa-
tions and simplify the variable types in comparison with

1,2, 7.

where r is also an arbitrary expression and f. is the
event time. This feature is useful in resetting velocities
after engagement to conserve momentum, for example.

Given the above problem definition, the correct han-
dling of state events is as follows:

1. The model should not be allowed to switch during
a numerical integration step. Integrate as usual as
long as the variable S does not change sign; each
integration point is treated as a “trial” point until
the sign condition is checked; if no sign change has
occurred, the point becomes “accepted”.

2. When a sign change is detected, the trial point is
discarded and an iterative procedure is initiated
(within the simulator) to find the time step A* such
that S has just passed zero, e.g., for a positive-going
event S € (0,¢). The model does not switch during
this procedure.

3. The integrator produces an accepted point on the
switching curve (Eqn. 1) and then signals the model
to switch (e.g., by changing mode from — 1 to 0 or
+1 depending on the nature of the event).

4. States are reset, if needed, and normal integration
proceeds from that point.

This requires coordination between the model and sim-
ulation package, as illustrated below using MATLAB ex-
tensions.

2 Extended Model Schema

One significant extension needed in MATLAB for mod-
eling and simulating state events in ¢TCs is in the in-
put/output structure of the model. The existing and
extended schema are depicted in Fig. 1:

x = £(x,t)

(a) Standard MATLAB model schema

— . >
X x = f(x,t,mode) X
mode —> S = S(x,t,mode) — S
+
x. = r(x,t,mode)
t —> c —> X¢

(b) Extended MATLAB model schema

Figure 1: MATLAB model input/output structure

The additional outputs are the state-event signal S
(Eqn. 1) and the state-reset vector zI (Eqn. 2); the

new input mode allows the numerical integration routine
to request that the model switch according to the state
event just detected. Again, note that S and m (mode)
may be vectors, to support multiple state events and
switching boundaries.

3 Extended Integration Schema

A second significant extension must be made in the
MATLAB numerical integration algorithms: neither those
in MATLAB, i.e., ode23 and ode45, nor those in
SIMULINK, i.e., gear, rk23 and rk45, can handle state
events in the desired fashion. There are three features
needed to permit the MATLAB integration routines to
deal with state events:

1. the numerical integrator must coordinate with the
extended model to set the initial value of mode,

2. 1t must continuously test for the occurrence of the
event by watching for zero crossings in the flag
variable(s), and

3. the routine should permit state variables to be reset
at a state event, in a rigorously prescribed manner.

MATLAB code for such an integrator is omitted, to meet
space limitations.

4 Example Application

The example used in testing the above integration ap-
proach is an extension of that in [7]. We have two un-
coupled systems of the form:

I‘.l = o

—sign(z1) (3)

Ty =
and similarly for x3, x4, with state events defined by
Si=z1; Sy=uz3 (4)

and a reset definition akin to the bounce of a ball with
coeflicient of restitution 0.8,

z(tF) = col[z1 () 0.8 x z2(t2) x3(tS) 0.8 x za(t])]

(5)
Figure 2 depicts the results of running a 6.36396-second
simulation with initial condition z(0) = [0.25 ; 0
; 0 ; 0.8 1] using an implementation of the above
scheme with trapezoidal integration and state-event
handling that is much more powerful than that reported
in [7]. This artificial but challenging test case has the
property that the time between switching in subsys-
tem (1, £2) becomes zero at 6.363961 seconds, so inte-
grating correctly to t; = 6.36396 is noteworthy. Note
that we cannot compare integration times with stan-
dard MATLAB integrators in this example as we did in
[7], because they cannot handle this problem at all.

twin_ball_mode (two "relays" with state reset)

X(t)

T

— X(1) &x(2); _ _x(3) &x(4)

date = 15-Aug-95

T T T

0.4

-1 | | | | | |
0 1 2 3 4 5 6 7
time
trapezoidal method, v. 5 = FZERO-based state—event handler
1 T T T T T T
_ x(2)vs x(1) /(r\\\\“\
0.5 N
g Vs -7 - N
= of ()]
) ~ L/
< ~ -
-0.51 b
- __X(4) vs x(3)
-1 | | | | | |
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
x(1), x(3)

Figure 2: Numerical Integration Example

5 Conclusion

The methodology presented above provides a simple but
compelling demonstration of HSML in general and of the
the concept of state-event handling and its value for
modeling and simulating switching systems in particu-
lar. The algorithms have been extended from [7] in sev-
eral ways, i.e., they have been inserted into more sophis-
ticated models and integration routines (like ode45),
and they now support vector modes and switching func-
tions for defining multiple state events in one model,
including simultaneous ones. In addition, provision for
state resetting at state events has been implemented.

References

[1] Taylor, J. H. “Toward a Modeling Language Stan-
dard for Hybrid Dynamical Systems”, Proc. 32nd
IEEE Conference on Decision and Control, San An-
tonio, TX, December 1993.

Taylor, J. H. “A Modeling Language for Hy-
brid Systems”, Proc. IEEE/IFAC Symposium on

Computer-Aided Control System Design, Tucson,
AZ, March 1994.

Elmqvist, H., Cellier, F. E. and Otter, M., “Object-
Oriented Modeling of Power-Electronic Circuits

Using Dymola”, Proc. CISS’94 (First Joint Confer-
ence of International Simulation Societies), Zurich,
Switzerland, August 1994.

Cellier, F. E., Elmqvist, H., Otter, M. and Taylor,
J. H., “Guidelines for Modeling and Simulation of
Hybrid Systems”, Proc. iIFAC World Congress, Syd-
ney Australia, 18-23 July 1993.

Cellier, F. E., Otter, M. and Elmqvist, H., “Bond
Graph Modeling of Variable Structure Systems”,
Proc. ICBGM’95 (Second International Conference
on Bond Graph Modeling and Simulation), Las Ve-
gas, Nevada, January 1995.

MATLAB User’s Guide, The MathWorks, Inc., Nat-
ick, MA 01760.

Taylor, J. H. “Rigorous Handling of State Events
in MATLAB”, Proc. {th (1IEEE Conference on Con-
trol Applications, Albany, NY, September 1995.

SIMULINK User’s Guide, The MathWorks, Inc.,
Natick, MA 01760.

Taylor, J. H. A Rigorous Modeling and Simula-
tion Package for Hybrid Systems, US National Sci-
ence Foundation SBIR Report, Award No. III-
9361232, Odyssey Research Associates, Inc., June
1994 (available only from the author).

