PROCEEDINGS OF THE

26th IEEE CONFERENCE ON
DECISION AND CONTROL

DECEMBER 9-11, 1987
WESTIN CENTURY-PLAZA HOTEL
LOS ANGELES, CALIFORNIA

IEEE

Control

@ Systems
e Society

VOLUME 3 OF 3

87CH2505-6



The 26th IEEE Conference on Decision and Control
December 9-11, 1987

IEEE Control Systems Society
Sponsoring Organization

Cooperating Organizations
Society for Industrial and Applied Mathematics
Operations Research Society of America

OPERATING COMMITTEE

GENERAL CHAIRMAN PUBLICITY PROGRAM COMMITTEE

Professor William S |_evine

Mr. Melvyn Rimer

J Baillieul, Chairman

Department of Electrical Grumman Aircraft Systems P Bernhard
Engineering B. Bonnard
University of Maryland REGISTRATION CHAIRMAN P Crouch
College Park, MD 20742 Professor Fawzi Emad A Desrochers
(301) 454-6841 Electrical Engingering J. Grizzle
Department J Hollerbach
PROGRAM CHAIRMAN University of Maryland P. loannou

Professor John Baillieul
Aerospace/Mechanical
Engineering

College Park, MD 20742
(301) 454-8873

P P Khargonekar
A J. Krener (SIAM)
P 8. Krishnaprasad

Boston University EXHIBITS S. I, Marcus
110 Cummington Streat Mr. James H. Beggs C F Martin
Boston, MA 02215 Raobertshaw Controls M P Polis
(617) 353-9848 Company H. V. Poor
3000-D South Highland W. F. Powers
FINANCE Las Vegas, NV 89109 W. E Schmitendorf
Dr. David W. Porter (702) 733-8500 L Sennoti (ORSA)
Business & Technological P. B. Usoro
Systems, Inc LOCAL ARRANGEMENTS R. B. Washburn
Prof Mohinder Grewal W S, Wong

PUBLICATIONS
Dr Malcolm D. Shuster
Business & Technological
Systemns, Inc

Department of Eiectrical
Engineering
California State
University, Fullerton
Fullerton, CA 92634
(714) 773-3013

Gopyright and Reprint Permissions: Abstracting is permitied with credit to the source Libraries are permitied to photocopy beyond
the limits of U.S copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first
page, provided the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 29 Congress St, Salem, MA
01970 Instructors are permitted to photocopy isolated articles for noncommercial classroom use without fee. For other copying, reprint
or repubiication permission, write to Director, Publishing Services, IEEE, 345 East 47 Sireet, New York, NY 10017-2594 All rights
reserved Copyright © 1987 by The Institute of Electrical and Electronics Engineers, Inc

Library of Congress Catalog Card Number: 79-640961
IEEE Catalog Number: 87CH2505-6

Additional copies of this proceedings may be ordersd from thes IEEE Service Center, 445 Hoes Lane, P 0. Box 1331, Piscataway, NJ
(08854-1331, Telephone 201-981-1391



Procesdings of the 26th Conference
on Decisten and Contral
Las Angeles. CA = December 1987

FA11 - 9:45

RULE-BASED REAL-TIME CONTROL SYSTEMS

James H Taylor
GE Corporate R & D
Schenectady, NY 12345

ABSTRACT

The premise that one can obtain more effective con-
trol systems with less engineering effort, less technical
risk, and less cost via the use of artificial intelligence
techniques is explored in this paper In particular, we
discuss, develon, and illustrate the use of a rule-based
system for real-time control as a software environ-
ment that can be used for control system implementa-
tion; relieving the design engineer of much of the
burden of taking a basic contro! algorithm and making
it work in a real-world application

We show that the rule-based systems approach can be
used to provide substantial support for the above task
A r1ule-based system provides the environment in
which the designer can develop and test all of the
required heuristic logic and control, using a program-
ming language ( production rules) that is ideally suited
for the task. We develop the detailzs of such an imple-
mentation methodology, and illustrate its application
to failure detection and isclation

1. INTRODUCTION

Obtaining better control systems with less effort, cost,
and technical risk using artificial intelligence (AI)
technigues hag become the focus of considerable
tesearch activity in recent years One approach is to
use a rule-based system as an appropriate software
environment for real-time control system implementa-
tion, taking advantage of the built-in heuristic logic
and/or reasoning capability to facilitate control system
realization and validation This promises to relieve
the design engineer of much of the burden of taking
an “academic design” (basic control algorithm) and
making it work in a real-world application. Another
potentially useful application of this methodology is
aiding a human operator in dealing with excessively
difficult control sitnations, or even eliminating the
need for operator “loop-closing” by implementing the
human control strategy as an expert system

The specific problem addressed in the first case is the
well-known fact that obtaining a contrel algorithm is
often a small part of the control engineer’s responsi-
bility, making it work in terms of system interfaces,
initialization procedures, exception-handling, cperator
interface, ete. is ususzlly more difficult and time-
consuming. This problem is especially important
when dealing with advanced systems designs where
estimation r1outines, adaptive algorithms, failure
detection and isolation schemes, parameter identifica-
tion, ete are included in the control system software

CH2505-6/37/0000-1923$1.00 © 1987 IEEE

Richard W Gerhardt
General Motors Corp
Warren, Mich 48060

1923

E Craig Luce
Kearfott Div Singer Co
Little Falls, NT 07424

The second application involves situations where Al-
based appréaches can be used fto alleviate problems
that presently arise from closing or supervising contro}
loops via the actions of human operators. The prob-
lems solved by expert systems or other Al techniques
in this case include excessive operator work-load,
reqguirements for speed of response that stress or
exceed human capability, human sensory or decision-
making overload in the case of emergencies in compli-
cated systems, etc We have primarily considered
problems associated with implementation, as outlined
above, although the same methodology should be
applicable in both situations

There is often no systematic approach available for
the implementation part of the control system design
effort using standard programming methods; rather,
the engineer often has to resort to a “fix and tune”
strategy, adding heuristic logic to the controller
software and testing the control system until it works
in the 1eal plant and operating environment The
resulting logic and algorithmic modifications often
becomes a large and unwieldy mass of patch-work or
“spaghetti software” that is difficult to implement,
document, and maintain and which greatly exceeded
original cost estimates

The rule-based sysfems approach can be used to pro-
vide a great deal of support for the control system
implementation task, resulting in a more flexible sys-
tem realization with less designey iteration and frus-
tration and greater likelihood of suceess than can usu-
ally be achieved by traditional means In essence, the
rule-based systemn provides the environment in which
the designer can develop and test all of the required
heuristic logic and control, using a “programming
language” (rule writing) that is ideally suited for the
task and mechanisms (e g, “inference engines™ that
carry out the requived control strategy

The resulting rule-based real-time control system may
actually be implemented as a 1ule-based system, or it
may be “compiled” or translated into a lower-level
language if the flexibility of the rule-based environ-
ment is no longer needed in the target application
Either way, the design task has been greatly
simplified, and the full control system software
definition can be maintained and documented in the
rule-based form

The balance of this paper is organized as follows: Sec-
tion 2 deals with a candidate general architecture for
rule-based real-time control; Section 3 treats “inter-
nal” considerations such =2s expert system structures



and mechanisms for efficiency, truth maintenance,
and reasoning with time-valued information; Section 4
outlines the application used as the vehicle for this
research; and Section 5 provides a discussion of our
findings and conclusions

2. GENERAL ARCHITECTURE FOR RULE-~
BASED REAL-TIME CONTROL

Our 1esearch in expert systems for control has
focussed on the proper role of Al in real-time control
systems implementation, architectures for rule-based
1eal-time control systems, and customizing the rule-
based system environment fo achieve the best possi-
ble convenience and performance. This section and
the next summarize our findings

There are various models for the combination of
expert systems and control technology Our concept
is a rule-based real-time control system having:

+ sensors (monitors) to determine the state of the
plant in terms of “signals”, & g, sensor outputs,

« pattern recognizers or feature extractors to pro-
cess signals and create “symbols” or linguistic
representations of the information (eg,
SENSOR_NO_1 VALUE . HIGH),

» low- and intermediate-level conventional controll-
ers, with interfaces that permit the inttoduction of
commands for gain-setting, reconfiguration, ete,

« rule bases that contain the knowledge of the con-
trol system designer and of the overall control
strategy for all 1egimes, and

« an inference engine that exercises the highest
level control (“meta-control”) of the system.

A rule-based real-time control system configuration
that incorporates these elements is depicted in Fig 1

Ptant

Sensot Data

Expert System:

¢ Monitor
¢ Diagnose
& "Meta-Control™:

> Select Control
Strategy

> Define Details
{Gains, Set Pts, ...)

Meta-Control
Commands

Heconfigurable
Controller

Conventional
Control Loop

Figure 1. Rule-Based Real-Time Control Architectire

1924

This architecture results in a hierarchical econtrol
scheme that, at the highest or expert system level
embeds the expertise of the experienced system
designer {or, in some contexts, a capable human
operator) while making the best possible use of con-
ventional control technology This general concept is
quite similar to other approaches; ef . [1,2]

3. EXPERT SYSTEM INTERNAL STRUCTURE

The direct application of the overall architecture
described above may present several problems:
inefficiency (including inability to work in 1eal time),
lack of truth maintenance (e g, inability to eliminats
“gtale” information from the knowledge base), and
incorrect or ineffective reasoning with time-valued
information. We have partitioned the rule-based real-
time system into three paits, to manage and reduce
the impact of these difficulties The real-time expert
system is divided into an input processor, a main
inference unit or “supervisor”, and an output proces-
so1 BEach part is an independent rule-based system,
using a knowledge base and inference strategy or stra-
tegies best suited to its 10le.

This partitioning iz based on the premise that there
are two essentially different types of data The input
and output processors deal solely with “volatile infor-
mation” or data that is valid only from one sample
point (%) to the next (#.,). The supervisor performs
higher-level 1easoning based on the input from the
input processor and delivers the resulting conclusions
to the output processor; the information processed in
the supsrvisor module is of longer-term value (“non-
volatile”) and is carefully maintained to preserve its
validity { “truth”) and time-value.

In our implementation, the primary functions of the
input processor are simple signal-to-signal transforma-
tion (e.g., testing a sensor output to see if it is “low",
“nominal”, or ‘high” and writing the corresponding
fact into the knowledge base) and passing incremental
volatile data (only that volatile data that has changed
from the previous sample time) to the supervisor
The only inference mechanism in this part of our sys-
tem is the data-driven or “forward chaining” mode. It
is designed to be as simple and efficient as possible;
it's primary function is to intelligently manage o1
“filter” the potentially large input data stream and sup-
ply the supservisor with just the information required
for meta~-control at an acceptable data rate.

The supervisor accepts incremental volatile data from
the input processor and updates its knowledge base
The functions of this unit in our system include ini-
tialization, input mapping, diagnosis, meta-control,
and “interfacing” {controlling its input and output
interfaces). This 1ule-based system may use both
goal-driven {“backward chaining”} inference for
overall objective management, plus forward chaining
to update its knowledge base. Input mapping involves



the translation of incremental velatile data into the
long-term facts in its knowledge base, and determin-
ing if the overall state of the system has actually
changed. If no meaningful change is detected, then
forward chaining stops; otherwise, the new data is
used to update the diagnosis of the controlled process
{plant) via further forward chaining. If the diagnosis
is unchanged, then forward chaining stops; otherwise,
the new diagnosis is used to update the control stia-
tegy (meta-control) Whenever this chair of reason-
ing is terminated, the interfacing rule is exscuted to
output a change in meta~control (if any) and prepare
to accept new input,

In this architecture, time-valued information manage-
ment and truth maintenance are isolated within the
supervisor. The input data stream is reduced and pro-
cessed to provide symbolic input to the supervisor
with clearly designated time-value Within the super-
visor, these functions are handled “manually”, i e, are
specifically performed via procedures in the super-
visory rule base For example, time history data is
managed in sequential form, with rudimentary
knowledge of dynamic behavior in the form of rules
for determining when a data sequence corresponds to
transient or steady-state conditions In the future, we
believe that use of higher level expert system
mechanisms such as frames (with slots for time-
valued information and demons or inheritance proper-
ties that automatically manage such data) will provide
a higher-level framework for this functionality

The output processor provides the interface between
meta-control decisions from the supervisor and the
reconfiguiable controller. The controller is a tradi-
tional digital control sysfem, with an appropriate
degree of programmability to accept the required
meta-control commands This may be as simple as
accepting a 1evised set of control gains, or as compli-
cated as performing a complete controller
reconfiguration, depending on the application The
output processor's task is to convert meta-control
from symbolic form t¢ parameters and/or boolean
variables to pass on to the process controller

4. APPLICATION

The primary emphasis in this study was on the real-
time rule-based system activity within the supervisor,
especially, the efficient interface between the symbolic
manipulation and data streams from the controlled
system, truth maintenance, and reasoning about the
time-dependence of symbolic information from the
input processor The following simulated application
[7] was devised on the basis of these considerations.

4,1 Experimental Environment

‘We arrived at the results summoarized in Sections 2
and 3 by assembling a “rapid prototype” of the rule-
based real-time control environment outlined above

1825

We created this study environment by interfacing the
GE expert system shell Delphi (see [3] for an over-
view of the capabilities and knowledge representation
of Delphi) with the nonlinear simulation environment
SIMNON [4] This was done using a simple protoco}
for cooidinating the SIMNON simulation with the
rufe-based system symbolic processing and meta-
control via a minor modification of the mailbox /
handshake file scheme developed in earlier efforts to
apply expert systems to {acilitate computer-aided con-
trol engineering {CACE) analysis and design called
CACE-IIT {3,5,8]

Our “non-real-time simulation” of a rule-based control
system thus proceeds as follows: Initialization (of both
the expert system and the plant and controller simula-
tion) is cartied out by Delphi, then the “clock” started
for a simulation from ¢ == ¢, to ¥ = #,, the first meta-
control “sample time” (which may be different from -
usually longer than - the sample time of the conven-
tional controller) At the first meta-sample time, sen-
sor data is made available to the input processor, and
an inference cycle (input processor / supervisor / out-
put processor) carried out Meta-control, if required,
is performed as the final task of the expert system
(e g, 1evised contioller gains are passed to the con-
troller simulation model}, and control passes back to
SIMNON for simulation over the next interval
(t; < ¢t < {;) This cycle of events continues until
the simulation run is complete. Note that the infer-
ence activity in a real-time system would take place
simultaneously with process dynamical behavior,
finishing (it is hoped!) before the next meta-sample;
non-real-time simulations (even of conventional
sampled-data systems) do not reflect that property

The required input processor signal-to-symbol
transformations were actually hard-wired into the
SIMNON simulation models, i e, the simulation eode
included statements to write facts in a form intelligible
to Delphi The input processor then only had to
determine the incremental volatile data and pass that
information to the supervisor. The output processor
was designed to accept symbolic information for meta-
control, and to command the corresponding changes
to the contreller by writing SIMNON commands to
change parameters in the controller model The “pro-
grammability” of the controller was thus based on
parameter changes and required the conitroller model
to be written accordingly

4,2 Application Overview

Our first application of rule-based real-time confrol
involved a rule-based system implementation of a
recently-developed failure detection and isolation
(FDI) methodology [8]. We originally intended to
add confroller reconfiguration to accommodate
failures, but have not done so The FDI application
met our study goals, demonstrating to our satisfaction
the interplay befween conventional control algorithms




and Al A brief overview of the method and the
results of this study are summarized below.

4.21 FDI Problem Formulation: Given a linear time-
invariant plant as depicted in Fig. 2, described by the
p X m transfer function matrix P(s) Let ug be the
desired o1 correct contiol input command and z be
the actual plant input (output of the actuators). The
difference between u and u, is denoted by the addi-
tive signal a{t), which could be set to a(t) = ao to
model 2 bias error, a{f) = 2o — u4(t) to model being
“stuck” at a constant value 2o, a{t) = (K - 1) u{t)
to model a gain error, ete Similarly, let y; be the
actual output of the plant (correct sensor output) and
y t be the actual output of the sensor with error
modeled by the additive signal s(¢) that may be sef to
model various errors in a similar fashion The vari-
ables uy and y are “extarnal” o1 available for FDI; u
and y,; are “internal” or inaccessible

Actuator Sensor
error error
alt) s(f)
+ +
O

O

Uqg +

Figure 2. System and Failure Models

4 8.2 Denvaiton of the Parfly Vector Relation: In noi-
mal operating conditions (no failures) we have

y(s) = P(s) uys) (41)

where ¢ and 4y are p X 1 output and m X 1 input vec-
tors respectively P(2) is the system transfer function
matiix which can always be expressed in teims of a
right stable coprime factorization (D, N} or left stable
coprime factorization (D, N) [9] as:

P(s) = N(s) D~Ys) = D (s) N(s) (42)

The generalized parity vector { GPV) [8] can be defined
directly from (4 1) and {4 2) as

p(s) = Dy - Nug; (43)

this vector. is said to exist in the generalized parity
space (GPS) Substituting (4.2) into (4 1) and multi-
plying by D shows that the GPV is a p-dimensional
vector of rational functions (where p is the numbex of
sensors) which is zero under ideal conditions, ie,
when the plant is linear, noise-free, and there are no
sengor or actuator failuzes TUnder normal operating
conditions, p(s) is a time-varying function of small
magnitude due to the presence of noise and modeling
errors arising from linearization and oxder reduction
However, when failures occur, p(s) takes on a rela-
tively large magnitude representing inconsistencies
among the actuator inputs and sensor outputs with
respect to the unfailed model. Different failuies pro-
duce parity vectors with different characteristics
Thus, the generalized parity vector p may be used as

1926

a signature-carrying residual for FDI  We note that it
was shown in [8] that the GPV-based method is
equivalent to FDI using failure detection filtex
methods (see [8] for citations), in the sense that 2
failure detection filter can be designed so that its outr
put is identical with the GPV (4 3)

4.2.3 Faifure Isolation based on GPV Direction: The
basic idea is that each actuator or sensor failure
results in “activity” of the GPV aleng certain axes or
in certain subspaces of the GPS This information
can be used to isolate the failure

Actuator FDI - We first consider i® actuator failures
modeled by an additive ertor vector a via

¥ = g+ a(t); aft) 5% 0,8, =0,75#1 (44)
Substituting (44) into (48), and noting that
Dy — Nug; = 0, we get

poi(3) = = N'aft) {45)

where N' denotes the i column of N
Sensor FDI - Suppose the 1P sensor has failed, as

above Following the same procedure, we obtain
pof8) = D' s{ 1)

where ]5" denotes the i column of D .

(486)

The domain of the activity of the parity vector under
the assumption that the ™ actuator or sensor has
failed depends on the number of non-zero elements
in N' or D', 1espectively The GFPV algorithm can
always be designed so that the GPV lies along a vector
or in a plene or higher-dimensional subspace of the
GPS [8]; this information can be used for failure iso-
lation by projecting the parity vector onfo the
appropriate subspaces as shown in Section 6 of {8]

4.3 Application to the GE-21 Turbine Engine

The generalized parity space (GPS) approach was used
to formulate two failure detection and isolation algo-
rithms for the GE-21 engine [8]. A single-failute
detection filter was designed using the stable factoriza-
tion approach to generate the generalized parity vec-
tor. Detection was carried out by monitoring the
magnitude of the parity vector, and isolation was
based -on parity vector direction in the GP3. In both
algorithms, actuator fajlure isolation was accomplished
by the steady-state GPV direction method; sensor
failure isolation was carried out using the steady-state
GPV direction method for the bias error case and by
the GPV subspace projection method when the errors
are time-varying These approaches are based on the
developments of [8] outlined above.

The general description and stable factorization model
of the QE-21 engine were given in Section 3 of [g]
The engine model portrayed in schematic form in Fig
3 is three-input/threc-output; it was linearized to
obtain & model in the form (4 1), and the above FDI



scheme used to to detect and identify failures in 6
components: 3 actuators and 3 sensors The three
sensors measure the variables N2 (low-pressure rofor
speed), N25 (high-pressure rotor speed), and PS3
(compressor discharge pressure); the three actuator
servo outputs are WF36 (fuel flow), STP48 (low-
pressure turbine stator position), and A8 (outer noz-
zle area) The actuator servo loops and sensors are
assumed to be instantaneous in this study.

Top: Turbojet mode
Supersonic cruise/Climb/Accel

Vanablte- Variable-geometry SUWT STP 48: HPT A Outer
fg;ﬂme ¥ HP compressor cﬁf; Stator-vane nozzle

Augmentor it

Plug retracted
at takeoff,
extended for
Shrond  crpise
retracted

QOuter bypass
open

Augmentor not lit

Main-burner
fue! flow

O : Sensor outputs

O : Actuator inputs

Bettem: High-bypass mode
takeoff and subsonic cruise

Figure 3. Inputs and Outputs in the GE-21 FEngine

4.9 1 Generelized Parily Relation for the GE-21
Engine: In the GE-21 example [8] we used an
extended parity relation similar to (46}, ie,

ple} = J(s)[ D(s)ul(s) ~ N(s)uye)] (47)

where J(g) is any stable, raticnal, proper matrix of
transfer functions introduced simply to add another
“degree of freedom” so that the parity vector form
(and thus failure isolation) can be simplified A solu-
tion for J was determined in [8] so that the following
failure signatures are obtained:

a Suppose a failure occurs in the i™ actuator Then
the GPV generated due to this failure lies along a
distinctive vector in the GPS

b Suppose a failure occurs in the ™ sensor. Then
the GPV genetated due to this failure lies in a
distinctive plane  (Note: the GPS iz 3-
dimensional; alse, it happens that the engine
model has a particular form that causes the GFPV
for sensor three failures to lie zlong a vector )

Projecting the GPV onto vectors or planes to isoclate
its domain of activity unambiguously isolates single
sensor o1 actuator failures

1927

Shroud extended

4.8 2 Simulation Results: In all of the FDI studies
performed, we induced failures in the nonlinear simu-
lation model that correspond to sensor or actuator
failures as defined in Fig 2 (represented by s(¢) or
a,t) tespectively} In some cases the actual input
signals to the engine actuator loops were constant and
the engine initial conditions were chosen fo
correspond to steady state; therefore, if there was no
failure, the state variables and sensor outputs were
also constant In other cases, sinusoidal inputs were
applied to the system The failures introduced via the
actuator or sensor error signals were of two types: The
“standard fault” was a bias error that ramped up to a
steady-state value over a one-second interval The
steady-state bias value was determined by teking a
fixed percentage of the nominat (unfailed) value, e g,
10 o1 15 percent The second fault considered was
the injection of a sinusoidal error signal having a
period (2 seconds) that is considerably longer than the
time constants of the engine (about 04 seconds).
This variety of faults allowed us to study FDI
methods using several GPV-based algorithms. The
results are summarized in [8]

These error models were used to generate measure-
ment and input data for the FDI algorithms presented
above The FDI algorithm was coded in SIMNON so
that its outputs were the magnitude of the GPV (used
for error detection) and six angles indicating the align-
ment of the GPV with the reference directions for
actuator failures and the failure of sensor 3 or refer-
ence planes for the failure of sensor 1 or 2 This data
was interfaced to the rule-based r1eal-time system
input processor, for interpretation by the supervisor

A 1epresentative case is portrayed in Fig 4 This
simulation corresponds to a sinuscidal error in actuat-
ing the fue} flow (actuator 1; see time history plot 1 in
the upper left panel) starting at £ = 05 sec The
rule-based system c¢yeled every quarter of a second
(meta-sample interval = 0.25 sec.) The GPV magni-
tude (lower left pane! of Fig 4) rose rapidly, resulting
in a failure detection at £ = 075 sec The angle sig-
nals (determining the alignment of the GPV with the
vector or plane corresponding to each possible actua-
tor o1 sensor fault) are declared to be in a transient
condition at ¢ == 075 sec, and to have reached
steady-state at ¢ = 1 0 sec. The dirgnosis { that actua-
tor 1 has clearly failed) is made at the second steady-
state meta-sample, £ == 1 25 sec

5. SUMMARY AND CONCLUSION

In executing this research project, we developed a
definition of a rule-based real-time contiol implemen-
tation environment (rule-based system capabilities and
architecture), and thereby determined specific useful
roles that expert systems technology can play in com-
bination with conventional contro} technology includ-
ing failure detection and isolation algorithms and




Actnator failure angles

) ' | ) 12 2
A/ : M
Q8r 40
L . L \
tIe—y— =3 —— o 17 2.1.__-a__1

GPV magnitude

Engine input sigrals

_ Sensor fzilure angles

0 02} 80 fl !
[ ) -9 —— P —A
001r 40 I
. N : 0 L L .
0 [ 2 0 2

Figure 4. Simulated Rule-Based Failure Diagnosis

other  traditional  algorithms  for estimation,
identification, adaptation, etec. This set of concepts
(Sections 2 and 3), we believe, together with the illus-
trative oxample presented in Section 4, provides
further substantiation for the now-familiar claims that
Al technology can be of substantial value in real-time
control applications

{t is our position that the rule-based system methodol-
ogy represents a high-level programming environment
in which heuristic logic and “reasoning” can be imple-
mented in a natural manner. This facilitates the
development of rule-based systems that are modular,
extensible, flexible, maintainable, etc - as long as
suitable discipline is followed Heuristic logic has long
been an integral part of working control systems: this
methodology thus complements conventional control
technology to make control system implementation
less difficult and time-consuming.

Some of the standard misgivings regarding the use of
rule-based systems in real-time control applications
are not as fundamental as they are sometimes por-
trayed to be. For example, very complicated control
systems with a preponderance of logic (including
heuristics in most cases) have been fielded for several
decades Whether or not they may be rule-based, the
contro] engineer must be concerned with the system’s
ability to 1un in zeal time, to finish data processing in
time to accept the next input data sample, and to do
the right thing in every circumstance; this is not an
easy task in any case. At most, the difference
between a conventional implementation and an expert
systemn appears to be quantitative, not qualitative in
these respects Therefore, for example, it is no more
reasonable to demand a “proof of stability” fo1 a rule-
‘based r1eal-time control system than is is to demand
the same for a comparably complex conventional one

1928

Several extensions to the methodology described
above have been considered. The use of fuzzy logic
to achieve better decision-making in the face of
uncertainty has been explored in a preliminary fashion
[8]. The use of higher-level knowledge representa-
tions compared with production rules - for example,
frame-based systems - would seem to provide a better
way to treat reasoning about time and causality; we
have not experimented with this idea. Much remains
to be done and learned in this research area.

Acknowledgement: The third author (ECL) wishes to
acknowledge financial support received from the GE
Corporate R & D Control Technology Branch during
the period of this investigation.

REFERENCES

1 K. 7 Asttom and T J Anton, “Expert Control”,
Proc IFAC World Congress, Budapest, 1984

2 K T Astrom, “Adaptation, Auto-Tuning, and
Smart Controls”, Proc. Chemical Process Control
IIT, Asilomar, CA, 1986

3 ] R. James, ] H Taylor, and D. K. Frederick,
“An Expert System Architecture for Coping with
Complexity in  Computer-Aided  Control
Engineering”, Pro¢c Third IFAC Sympesium on
Computer-Aided Design tn Control and Engineering
Systems, Lyngby, Denmark, August 1985,

4. H FElmgqvist, “SIMNON - An Interactive Simula-
tion Program for Nonlinear Systems”, Proc Stmu-
fation '77, Montreux, 1977

5 7 H Taylor and D K Frederick, “An Expert
System Architecture for Computer-Aided Control
Engineering”, Proc. of the IEEE, December 1984

6 J R. James, D K Frederick, and J H. Taylor,
“On the Application of Expert Systems Program-
ming Techniques to the Design of Lead / Lag
Precompensators”, Proe. Conirol 85, Cambridge,
UK, July 1985; to appear in IEE Proceedings D.
Control Theory and Applications, 1987

7 R W Gethardt, “An FExpert System {or Real-
Time Control”, MSc Thesis, RPI, Troy NY, May
1986

8 N Viswanadham, J H Taylor, E. C. Luce, “A
Frequency-Domain Approach to Failute Detec
tion and Isolation with Application to GE-21 Tur-
bine Engine Control Systems”, Control Theory and
Advanced Technology, Mar 1987

9 Vidyasagar, M, Control Sysiem Synthesfs: A Fac-
torization Approach, MIT Press, Cambridge, MA,
1985




