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Generating a linearized dynamic system model corresponding
to a nonlinear system at a specific operating point provides an
important bridge between nonlinear simulation and linear analysis
and design. Obtaining such a linearized model by numerical
means (taking finite differences) is by no means a simple task In
some cases obtaining an accurate estimate of the derivative of a
nonlinear function requires careful selection of the perturbation
used in taking finite differences; in other cases the derivative is
not defined and a simple numerical differentiation routine may
lead to totally meaningless results. In this article we present
numerical algorithms and heuristic logic for the accurate and
robust linearization of nonlinear dynamic system models. The
numerical algorithms deal with cases where the systern non-
linearities are differentiable (possess a Taylor series expansion),
and the logic handles a variety of anomalous situations.

This research in robust linearization methods has vielded new
conventional methods and algorithms for lincarization, as well
as anew expert system Lo aid the controls engineer in determining
linearized models for nonlinear systems. Some important aspects

of this work include: an approach to minimize the effects of

truncation and round-off errors incurred through numerical dif-
ferentiation, and techniques for accurately identifying certain
discontinuities in the mathematical description of a nonlinear
systems and other problems that make linearization difficult or
meaningless, We focus here on conventional methods and algo-

rithms, which incorporate the knowledge gained in the course of

this effort

Development of CACE Environments

A substantial research effort at GE CR&D has been focused
on the development of general environments for Compuier-
Aided Control Engineering (CACE), covering the traditional
span from nonlinear modeling and simulation of the system to
be controlled, through linear analysis and design, and culminat-
ing in nonlinear simulation of the controlled system [1]. This
included both conventional software development [2], [3] and
the investigation of expert system applications in a package
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referred to as CACE-111 [4]-{7] Throughout this work. lineariza-
tion has played a pivotal role in the functionality of the environ-
ment [1], [6], and much has been learned. The results presented
here represent the algorithmic and heuristic knowledge gained
during this research

Before beginning this work we surveyed the status of
linearization in standard CACE packages that existed at that time
(about 1983). ACSL [8] had a manual algorithm where the user
supplied vectors of perturbations &x and u; there was no safety
net to detect anomalous situations (discontinuities etc.). and one
could not individually choose perturbations that are best for each
nonlinearity in each state equation. The SystzmBuild algorithm
[9] allowed the user to supply only a single perturbation to be
used for every term in each state equation. Other nonlinear
simulation environments at that time did not include lineariza-
tion We concluded that betier support for linearization was
required, to reliably deal with both numerical problems and
anomalies. Other workers did, oo — for example. the results
described here have had a stong influence on the linearization
algorithms in Model-C [10] and Simulab [11] according to the
vendors’ representatives

The software package used for the development of lineariza-
tion techniques has been SIMNON, which suppors modeling
and simulation of nonlinear systems and has been extended with
routines for equilibrium finding and linearization [3]. SIMNON
[12] was developed by the Department of Automatic Control at
Lund Institute of Technology, Lund, Sweden, and is now a
commercial product of SSPA Systems, Gdteborg, Sweden; ver-
sions extended by the authors while at GE CR&D are herein
called SIMNON+, This package was incorporated both in the
Federated System [2] and in CACE-IIT The history of our studies
of linearization demonstrate how conventional and experi-sys-
tem software development can be synergistic — the first algo-
rithms were implemented conventionally in SIMNON+. then
“expert aided” in CACE-IIL then improved in SIMNON+ to
exploit the knowledge gained in expert system development
without the overhead of an ancillary expert system shell. Finally,
SIMNON+ has been made an integral part of MEAD [13] and
was again refined in the process.

The purpose of this work was to develop the most appropriate
linearized mode! for a nonlinear system at a given operating
point, and to-qualify that model in general terms (e.¢ . 1o establish
what types of nonlinearities exist and provide a measure of
validity of the linear model). This was motivated by the need to
handle large and complicated models, e.g , high-order nonlinear
models of aircraft and other systems where discontinuities and
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discontinuous derivatives are commonplace  One could augment
the concepts outlined here by adding distortion measures and
determining regions where the distortion measures are within
specified bounds [6]. Eventually, an even more versatile package
could be developed to include the use of describing function
techniques fo characterize certain system nonlinearities and to
form a base from which further, more extensive treatment can
proceed (e g , describing function synthesis methods, [14],[15]),
again, as outlined by Taylor and Frederick [6].

Linearization Definition and Principles

We begin with a formal definition of the linearization problem
and an overview of some of the principles involved in numerical
differentiation [1]. Details of SIMNON+'s linearization algo-
rithm follow in the next section, including numerical properties
and heuristic logic. This discussion is strictly limited to the
conventional implementation of linearization, although it is
based on lessons learned in developing an expert-system rule
base for extracting linearized models.

Problem Statement

SIMNON+ addresses the following linearization problem:
Consider a system in the form:

x = flx, u) (1)

y=hix,u) A
where x represents the state vector of dimension n, u denotes the
input vector of dimension m, and y is the output vector of
dimension p. Both functions f and k are nonlinear in general

Finding the system equilibrium corresponding to a given
constant input value uy, is usually the first step:
Uyg—>xg : floxg, ug) =0 3)
Then the output at this equilibrium is given by:
Yo = h(xm 1) “®

The linearized model about the operating point (xo, uo) is defined
as follows:

Sx=Adx + Bdu (s)

dy = Cx + Ddu ()]

where 8x =x - xp, du = u - up, and §y =¥ -yo. The matrices A,
B, C, D are defined by:

| _[]
A ‘[ax] B {au |
t‘o.‘ HU JIU “0 (7)
o _[on
c =|:axl ’ D#[au]
o "o Yo Mo (&)

This linearized model is valid for limited variations in the states
and inputs about the equilibrium, provided that the above partials
exist The appropriate range of variation of the states and inputs
depends on how nonlinear the system is at xg, up. This process
is sometimes called small-signal linearization.

Linearization by Numerical Differentiation
The derivative of a function f{x} at a point x; is defined by
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provided that the derivative at xp exists A sufficient condition
ensuring the validity of (9) is that f{x) should have a Taylor-series
expansion about the point xo. (Note that the notation here and
below is simplified by confining the discussion 1o a scalar
function of cne variable — the extension to the general case,
equations (1) and (2), is obvious. Also, the symbols x and & are
used quite freely throughout to signify a value and perturbation
in either a state or an input )

One way to compute an estimate of the derivative of a
function is to calculate a finite central difference:

Df® =
f 25 (10)

Complete accuracy would require the perturbation to be
infinitesimal and the number of significant figures in the function
evaluations to be infinite,

From a theoretical standpoint, any error incurred in using (10)
is an indication of the curvature of the nonlinearity. If the
nonlinear function can be represented by a Taylor-series expan-
sion, then it is easily seen that the accuracy of (10) depends (in
part) on how dominant the constant, linear, and quadratic terms
are in relation to higher-order terms in the expansion: the central-
difference calculation yields an exact result only for quadratic
functions (see Appendix) Error arises through neglecting the
higher-order nonlinear terms of f{x), or truncation of its Taylor-
series expansion. Such error is thus calted truncation error. Since
truncation error increases with perturbation size, the obvious
remedy is to use the smallest perturbation possible.

Another source of error devolves from the fact thai computers
have limited precision. Specifying an arbitrarily small perturba-
tion generally does not work, as the quantities f{x + &) and flx -
8} become nearly equal. When this happens the central difference
loses accuracy; results are said to be dominated by round-off
error, It is difficult to say what perturbation size introduces
round-off error, since this depends on the particular problem
under analysis. However, the deleterious effects of round-off
error can be greatly reduced by performing calculations with
higher precision. Doing computations in double precision as
opposed to single precision can have a dramatic impact on the
significance of round-off error. Calculations are performed with
single precision in SIMNON and other nonlinear simuiators,
however, so round-off ervor is a valid concem. In addition, the
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Fig 1. Conceptual relation between linearization error and pertur-
bation size. -
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use of double precision is not a panacea — highly curved non-
linearities or an unfortunate choice of units can still make round-
off error a significant factor to be guarded against.

Thus the tradeoff between truncation and round-off effects
must be considered in specifying the proper perturbation size for
linearization. The curvature of the nonlinear function to be
linearized plus the magnitude (or units) of the variables and of
the function near the point of linearization together with machine
precision define the problem.

In most applications minimum total error is obtained over a
rather wide range of perturbation sizes, rather than by a unique
value A typical plot of linearization error versus perturbation
size would thus have the form of a “valley” region of minimal
error for some range of 8: on either side error rises, as iltustrated
in Fig 1. The truncation-error region is generally rather smooth,
with an initial trend that is dominated by the first neglected term
in the Taylor series expansion at x;; for larger values of & the
higher-order terms begin 1o show their influence. The jagged
nature of the curve in the round-off region is an indication of the
“random” behavior in the computation of the central difference
For this range of 8, the value of Ax + 8) - f{x - &) seems to vary
erratically; however, there is an underlying error growth that is
inversely proportional to 8 (due to the denominator of (10)). For
calculations performed with double precision, the region of
minimal error may be many orders of magnitude (in perturbation
size) broader and the error would generally be much less over
this range; nevertheless, the same valley-shaped curve governs
the relation between linearization error and & Finally, observe
that an optimal & must be found for each partial derivative, r.e.,
for each element in the system matrices A, B, C, and I; therefore,
it is necessary to determine an optimum marrix [8; A correspond-
ing to each system matrix

SIMNON+ Linearization Algorithm

SIMNON+ does not simply compute a single central dif-
ference estimate (equation (10)) with some fixed  to determine
an approximation to the desired derivative. In general terms, it
calculates one estimate based on perturbation §. denoted by Df '
and another estimate based on perturbation 28, denoted by Df“ )
compares these values for error control to determine an optimal
value of 8. and finally rerurns a weighted combination of the
central difference estimates for that optimat 8:

Bf@ = [4Df® .. DA /3 (11)
This calculation is an extension of Richardson extrapolation ([1];
cf Dahiqvist and Bjorck [161). (Note. the equarions in this paper
are written for conceptual clarity . and are not recommended for
implementanon of computer algorithms. For example care nmist
be taken 1o wvoid unnecessary round-off errors that would be
incurred if these formulas were coded literally )

In the Appendix # is shown that (11) eliminates truncation
error in all terms up to (not including) the fifth power in any
nonlinear function expressible in a Taylor series expansion. The
linearization error from such a combination of derivative es-
timates still exhibits the general behavior shown in Fig 1 as the
perturbation § varies, but the magnitude of the error in the
optimal region is smaller and the “valley™ is not so broad . Fig 2
shows a comparison of the linearization error incurred in estimat-

ing the derivative of © about X = 2 with Df(& {cune l)and
Df(s) (curve 2) over a range of perturbation sizes. The wend in
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Fig. 2 Linearization error for Df @ (1) and Df (d {2} in g
example.

round-off is still inversely proportional to 8, but the behawor at
the onset of truncation error dominance is govemned by &%, as this
is the lowest-order term in the error Note that the curves are
plotted on a log-log scale,

The perturbation used in the calculation of the final derivative
estimate per (11) is obtained via a routine that examines the
tradeoff between truncation and round-off error in an effort to
select a & yielding lowest overall error. The characterization of
linearization error is an important point in this analysis and
procedure. It is necessary to estimate the amount of error incurred
by using a particular §, and to be able to classify such error (for
example, is the error dominated by truncation or round-off)

The available measure of linearization error is based on
comparing the finite-difference linearization estimates calcu-
lated using perturbations 8 and 28. The analysis in the Appendix
demonstrates that the error m (10) at the onset of truncation is
dominated by

i
® = 1| ppas) _ ps®)
e®==|Df - Dfé)| 2

By a similar analzsns the error in (11) at the onset of truncation

is dominated by e®, given by:
2® =1 | Ded) - pyd)|

5 (13)
The above error estimates are based on the assumption that the
linearization error is dominated by truncation effects Note,
however, that these estimates are themselves finite differences,
and thus also subject to round-off error as 8 becomes small and
truncation error for large 8. This effect has not been analyzed,
but it is noteworthy that the estimated hneanzanon error &%
tracks the actual linearization error for Df{ " very closely
throughout the round-off region, as well as during truncation.
This is illustrated in Fig. 3. which shows these calculations for

the derivative of 1¥ about 10 = %2’ The same observation holds

for the derivative estimate D}‘“S) and error estimaie e(s) {Agree-
ment is excellent in the truncation-error region, and there is
respectable tracking during round-off. with an appreciable offset
of about one order of magnitude in the round-off region in this
case)

We note that Richardson extrapolation can be carried further,
t0 develop numerical differentiation formulae with even higher-
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Fig 3. Error estimate & {‘I') and acrual error (‘2’) for Df'fs), %?
example.

order error behavior. We feel, based on the trade-off between
truncation and round-off errors and the fact that the truncation
error characteristic becomes very steep for high-order formulae,
that it is not wise to go beyond the above fifth-order algorithm
{equation (11)).

Bases for a Linearization Heuristic

This section begins with an overview of a heuristic approach
10 the linearization problem. The ad hoc approach is based on
concepts from [6], and justified by results obtained from the
analysis of several general types of nonlinear functions. Then the
logic in the SIMNON+ linearization routine OPT DELTA is
presented in the section that follows.

Before proceeding to find an optimal perturbation, several
tests should be made to ensure the function f{x) is in fact differen-
tiable at the point x, Certain tests have been devised, based on
a number of observations concerning the distinctively different
ermor estimate behaviors exhibited by functions that are differen-
tiable at x,, discontinuous at that point, or have a discontinuous
or infinite derivative at xy. To demonstrate these behaviors, we
define four examples:

Example 1 (Differentiable Function):

fi=+ (14
Example 2 (Disconrinuous Function):
f+=x"+05u(x - xp) (15)
where the unit step «(x - xp) is:
w(x—xg) = {0 ifx< l"9
1 otherwise (16)
Example 3 (Funcrion with Infinite Derivative}:
fo= O+ 0.5m(x - xp) (17}
where the “tool functon r#( - xo) Is:
i = {-ﬂ;—xgr itx<xp
lx— xpl otherwise (18)
Example 4 | Function with Discontinuous Slope).
fo=x"+05rx- 3 (19
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where the ramp function r(x - xp) is:

0 ifx<x

x— XO) = {X - X otherwise 20

Note that the common element %” in these examples and the

operating point xo= 2 were purposely “pulled out of the air”,
to avoid picking a function that might have special or non-
generic properties.

Cuwis showing the variation in the error estimates & (curve
‘1"yand £® (curve *2') versus the perturbation size for Examples
1 and 2 are shown in Figs 4 and 6. A study of these data reveals
the impo‘{tance of an indicator called the error estimate ratio,
ie, POV e(ﬁ}; these metrics are portrayed in Figs. 5 and 7. These
plots are discussed below:

1) Differentiable Functions (Example I) . The plotsin Fig 4
depict the eror estimate behavior, as discussed above. The errot
estimate ratio, Fig. 5, shows that this metric attains a maximum
at a value of & that is very nearly optimal with respect to the

2(8) errar curve It is also seen from these figures that all values
of & such that the error estimate ratio is greater than 100 are near
or within the optimal region of 8 This behavior is typical of
differentiable functions.

2) “Infinite Derivative ' Functions {Examples 2, 3). The plots
in Fig. 6 show the behavior of the error estimates for a discon-
tinuous function. and Fig 7 portrays the corresponding lineariza-
tion error estimate ratio. The “smooth-but-infinite-derivative”™

Loy Estimated Error
o
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Log Perturbation Size

Fig 4. Error estimates € ) (1) andga {2°) in example I
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Fig. 5 Ratio of the error estimates &8/e® in example 1.
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D ‘S}IDj{ Y 2')in example 2.

characteristic in Example 3 produces similar resulis. Note the
virtual disappearance of round-off effects in the curves for this
and the other undifferentiable function (including Exarnple 4).
As mentioned previously, round-off error occurs in the central
difference estimate when f{x + 8) and f{x - &) are nearly equal —
this does not occur for discontinncus functions, and for functions
such as the ‘root” rr{x) and ramp r{x) this difference does not
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approach zero fast enough for round-off effects to dominate. Also
note that for the “infinite derivative” functions the error estimate
ratio curves are constant for small perturbation sizes These
properties readily distinguish these types of undifferentiable
functions from other cases

3) Discontinuous Functions (Example 2). The plots in Fig 8
show the behavior of central difference ratios based on deriva-
tive estimates Df{ﬁm, Df(a), and DjQS’ for a discontinuous func-
tion involving the step function u(x - xp). It is easily seen (make
a simple sketch or refer to [6]) that, for small &, the value of Df
halves as the perturbation doubles in such cases. Thus we expect
the ratio of Df‘m to Dj('s) to approach 0.5 as the perturbation size
approaches zero, as shown in Fig. 8. If the function has a
component with smooth-but-infinite derivative, as in Example
3, then this ratio does not converge to 0.5,

4) Functions with Discontinuous Derivatives (Example 4} Tt
is also important to determine if the derivative of a function is
discontinuous at the point of differentiation. This can be done by
considering the right and left derivative estimates, defined ac-
cording to:

5 @n
and
D J‘f” =ﬂxo) —fixg—8)
' d (22)

If the derivative of f is not continuous at xp, then the right and
left derivative estimates will not, in general, converge to the
central difference estimate as the perturbation decreases. Ex-

ample 4 with the ramp imposed at x = 7] exemplifies this type
of nonlinear function

The above observations provide the basis for testing and
characterizing each nonlinearity in the model. This information
is central to the development of the robust algornithsn and logic
in SIMNON-+, as well as the rule-based systern described else-
where [6].

The SIMNON+ Routine OPTDELTA

The heuristic logic outlined below addresses the problem of
robustly differentiating a scalar function of one vartable, f{v), at
a point x, The extension to the general problem of linearizing
vector functions of several variables. f (x, &) k(x, u) {(¢quations
{1} and (2)) about an operating point is straightforward

1) Start with an initial 8; = 0.01. unless the user specifies
another value. Since the appropriate v alue of d is dependent upon
units and scaling, the user should be prepared 1o supply at least
a reasonable default starting value. especially if 0.01 15 blatantly
inappropriate.

2) Determine if f is a constant. linear, or piecewise-linear
function. In particular, we must distinguish between the linear
and piecewise-linear case This is done by comparing several
derivative estimates over a wide range of perturbation sizes To
determine if fis linear evaluate and compare

Df‘él()@ﬁu) Df}m&o) Dféﬁu)
DfEIOOGD] szma&) Df;;_(su)

The following three tests are performed:
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« If these six estimates are zero to within a tolerance based
on machine precision, then declare the function to be constant
(with respect to the variable under consideration). The derivative
estimate is sett0 00

+ Tf these six estimates are the same to within a tolerance
based on machine precision, then fhas no curvature over a wide

range and it is declared to be a lmear function of x. The value of

&, is returned for use in calculating Df(s) (equation (11)).

« If the right estimates are the same, and the lefi estimaies are
the same, but the right estimates differ from the left estimates by
more than a user-supplied tolerance (percentage), then it is
concluded that f is a piecewise linear function with a break-point
atx, (This is a special case of having a discontinuous derivative
— see Step 4 below ) The value of &, is returned for use in

calculating fo? W and ng o, and the ‘diagnosis’ is reported to the

user, who can then decide which derivative estimate to employ
(right, left, or average).

3) Check that a derivative exists at the point of differentiation
x,. For example. f may be discontinuous, or its derivative may
be infinite at.x;. In such instances round-oft 1s almost nonexistent
in the computation of derivative estimates, as mentioned above.
Therefore, in checking for this condition, we consider error
estimates for a very small perturbation size. Furthermore, it has
been established (cf Fig. 7) that the ratio of the error estirnates

(S)Ie(s) is constant for small values of perturbatton snze Thus.

taking & = 3,100, compare the ratios e
the difference between these ratios is not within a given
tolerance, then we conclude that f does not have an infinite
derivative at x,. If the ratios are the same to within the specified
tolerance, then verify this result by taking & = /1000 and
repeating the above calculation. Now if the difference between

all four of these ratios is within tolerance we check the ratio of

the central difference with perturbation 8 to that with perturba-
tion &/2. If this value is within some neighborhood of 0.5, then
we conclude that fis discontinuous at x, and report this finding
to the user

4) Compare the right and left derivative estimates at.x, using
perturbations of /100 and &,/1000. If the difference is not
within some specified tolerance (percentage), then we conclude
that the derivative of fis discontinuous at xy, and inform the user.
who would again decide which derivative estimate to accept
(right left, or average).

5)If. by the above tests, f is found to be nonlinear, continuous.
and to have a finite continuous derivative, the following proce-
dure is used to determine an optimun 8 to estimate its derivative:
First. take 8, = 8,/1000 and assume that the derivative estimates
are then domm.ited by round-off error. Then for each iieration

increase &, by a factor of 2. until the ratio 8(6)/ e®is greater than
100 or unul amaximum number of iterations has been exceeded
It was seen that when this ratio becomes greater than 100 & is
5\'105}3 tooptimal (cf. Figs 4., 5), sothat value is used in calculating
D% if such a value of & cannot be found, then the user is
prompted to supply a new initial guess for the perturbation

Note that the procedure for choosing the optimum delta once
it is determined that the derivative is well-conditioned is based
on a doubling strategy We avoided the use of gradient methods.
as the error characteristic has very anomalous behavior in the
region where round-off begins to dominate, which is near the
optimum delta.
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General Algorithms and Heuristics
Required

Generat algorithms and heuristics for robust numerical dif-
ferentiation are required for using linear analysis and design
methods on nonkinear systems. These have been obtained by
developing and refining the linearization routine of SIMNON+
in parallel with the creation of rule-based systems for expert-
aided modeling. As a result of this rescarch, SIMNON+ now
possesses a powerful routine to *diagnose’ the types of nontlinear
relations in a system and then (when a function is found to be
differentiable) to minimize the effects of truncation and round-
off error incurred through the numerical differentiation process.

The error in estimating a derivative by computing a central
difference is a function of the perturbation used. By measuring
and comparing such errors for different perturbations, the SIM-
NON+ routine searches for the minimum of this function. In
addition, a scheme for detecting discontinuities, discontinuous
partial derivatives, and infinite partial derivatives has been im-
plemented in SIMNON+. Tests have shown that the performance
of the resulting SIMNON+ linearization routine is robust. We
would like to acknowledge, however, that this combination of
numerical algorithms and heuristic logic does not necessarily
provide the “last word™ to the problem of robust linearization -
more comprehensive and perhaps “smarter” testing and algo-
rithms could be developed.

Appendix

It is shown here that a derivative estimate obtained by
Richardson extrapolation {equation (11); [1], {16]) eliminates
truncation error through the fourth-order term of a nonlinear
function expressible in a Taylor series about the point of differen-
tiation In addition, it is shown that the difference of twoceniral-
difference derivative estimates is a useful measure of the
truncation error in the derivative estimates. Such a measure is
indispensable for error control in the linearization process.

Consider the Taylor-series expansion for f{x) about the point
%, = 0 (with no loss in generality):

flYy=ag+ax+ alxl + a3.1'3 + a4.\"' + - (23)

Consider, then, the following two estimates of the derivative of
fivvatxp=0

Df® :J@)_—ﬂ:@
28 (24)

48 (25)

Result. The derivative estimate of equation (i1) eliminates
runcation error through the fourth-order term in the Taylor series
of fix).

Proof. By direct substitution, a central-difference derivative
estimate for f{x) with perturbation size A {equation {10)) gives:

Df®) =g, + a N +aght + a A%+
Letting £ denote the truncation error in the centrul dif-
ference above, it is evident that:

‘We therefore have two Instances of interest:
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8{5) = 0382 + 0584 + 0766 +- (26)

8(25) = 4&352 + 16&584 + 64(1756 + X))
A

From equations (26) and (27} the truncation error in Dj{s) (equa-

tion (11)) is:

A 4.5 1
(8) = Zpld) _ Zp(28) = 4, 85— 2 6_ .
€ 3E 3€ asd* — 20a,8 28)

Equation (28) reveals that the truncation error in Bf_&) is governed
only by terms of order five or greater in the Taylor-series expan-
sion of flx). QED.

i1 is now shown that the following error measure,

® == 1| pp® _ p2dy
€73 | f ~Df | (29)
is a good indicator of the actual truncation error in Df(s) when the
perturbation size is small. We see from equations (20) and (27)
that:

e® = % ’ ~3a,8* ~ 15a58* - 634,88 - l

F‘orﬁsma]l values of & the lowest order term dominates, so e®
a3d”, which (by equations (26)) is approximately the actual
truncation error in D
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