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ABSTRACT

Applying the modern systems approach to studying the '"quality of life" often en-
tails developing and using complicated dynamic medels (high-order, highly noniin-
ear differential equations). Dealing with mathematical models of this sort can be
difficult., In some instamnces, however, these models can be effectively studied us-
ing recent advances in describing function theory. These methods are described and
illustrated in this paper.
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TNTRODUCT TON

The complexity of problems facing medern society is rapidly outstripping man's capa-
bility to manage them on the basis of "intuition" and the old "rules of thumb" that
have been successful in the past. The systems theoretic answer to this difficulty is
to develop analytical models (usually dynamic) that account for the complexity of the
system, and study the resulting model behavior via analytical methods or simulation.
Analysis and simulation are the usual bases for both validating the model (determin-
ing if the model is realistic) and for problem solving (determining how to control
the system or modify the system so that it behaves more appropriately).

Many models that result from such activity are differential equations that are of
high order (having many state variables) and nonlinear. 1In some circumstances, the
nonlinearity can be neglected, and well-established linear system analysis and design
methods can be used for predicting system behavior and for problem solving. Often,
however, nonlinearity cannot be neglected and the systems engineer feels forced to
rely solely on simulation as a tool for performance evaluation and design.

The last decade has seen substantial progress in extending quasi~-linearization or
describing function techniques to permit the analytic study of high-order highly nomn-
linear dynamic systems models. Three areas are especially noteworthy:

+ Limit Cycle Analysis - Until recently, nonlinear systems that exhibit




limit cycle (oscillatory) behavior could not be analyzed unless they
were low-order or contained only one dominant nonlinearity. New ex-
tensions of sinusoidal-imput describing function (SIDF) theory (Tay-
lor, 1975, 1980; Hanmebrink, Lee, Weinstock and Hedrick, 1977) per-
mits systems of any order, with any number of nonlinear effects, to

be treated analytically,

* Sinusoidal Input Response Analysis - The same generalized SIDF ap-
proach allows the direct determination of the response of compli-
cated nonlinear systems to sinusoidal inputs (Taylor and Mohan,

19803},

* Random Input Response Analysis - Many systems are driven by random
inputs (e.g. first-order Markov processes or white noise) or have
random parameters. The response or performance of such a system
is generally described statistically (e.g. rms vibration levels may
provide a measure of ride quality im a train or bus)., The statis—
tical behavior of high-order nonlinear systems can now be deter-
mined by an analytic technique (Kazakov, 1965: Gelb and Warren
1973) that combines covariance analysis with random-input describ-
ing functions (RIDF's); this method has been prover to be much
more effective than monte carlo simulation in many instances.

A1l of the relevant describinmg function techniques are outlined im this paper.

QUASTLINFARIZATION /DESCRIBING FINCTION METHODS

DF Definitions

Fhe basic idea of the describimg function (DF) approach for studying nonlinear
system behavior is to replace each system nonlinearity with a linear term whose
"gain" is a function of "input amplitude", where the type of imput signal is
agsumed in advance; this concept is dealt with very thoroughly in Gelb and Vander
Velde (1968} and Atherton (1975). 1In this paper, two cases are considered:

Sinusoidal-Tnput Describing Functions (SIDF's)

(b + a sin wt) = fo(a,b) + ns(a,b)'° a sin wt (1

Random—Taput Describing Funétions_(RIDF's)

flm+ 1) 5 £(m,0) + nr(m,d) -1, r ~ N (0,0) (2)
[m is the mean value of the input, r is a zero-mean gaussian
random variable with standard deviation or rms value o.]

Ihe DF elements (f , n ox f, n_) are mathematically formulated to minimize the ap-
proximation error Pn (1) and (2§. 1he usefulness of DF methods lies im the subseg-
uent treatment of the resulting quasi-linear model using linear system analytic
techmiques, which are well established and usually very straightforward to apply.
The power of DF methods is derived from the amplitude-dependence of the DF elements,
which accounts for one of the basic effects of nonlinearity. Standard linearization
(small-signal or Taylor series linearization) fails to capture this essential pro-
perty of nonlinear phenomena. A wide variety of DF's, both sinuscidal- and random-
input, are catalogued in Gelb and VanderVelde (1968) and Atherton (1975), so we will

not consider that aspect of DF theory further.




Limit Cycle Analysis

To illustrate the fundamentals of limit cycle analysis, consider the following
autonomous nonlinear differential equation:

Xt 9% + [2% + sgn(3)] + [3x + x°] = 0 (3)

The two nonlinearities are quasilinearized as follows: Assume that x = a sin ot,

implying that x = aw cos wt. Then (Atherton, 1975)

x3 = §-a2 * a sin ot
&7
sgn (%) = - i ot an cos at

The quasilinearized system then has the characteristic equation

4
a = 2+ :
53 + 232 +as+B =0, iaw (%)
i@

Twe roots of this equation are in the 1mag1nar.y axis —— as demanded by the limit
cycle assumption —— if

20 =8B (5
and the corresponding natural frequency is

w=v B/2 (6)
Combining (4) to (6) gives the limit cycle condition to be

2 1/2 2 13/2
4 3 a
[—(1+ )] +E_[2 (1+-Z)] (N

1f a value or values of a can be found that satisfies (7), them SIDF theory pre-
dicts that a limit cycle of amplitude a and frequency ® given by (6) exists; the
single solution ig a = 1.63, @ = 1.58,

IhlS example illustrates the following most gemneral limit cycle conditions (Taylor,
1975): Given

x = £(z,u) . (8)

when x is an n-dimensional state vecter and u is an m-dimensional input vector.
Assumlng that u is a vector of constants, denoted u, it is desired to determine

if (8) may exhibit LC behavier.

As before, we assume thalt the state variables are nearly siousoidal,

X = x_+Rela exp (jur)] (9)




where a is a complex amplitude vector and x is the state vector center value
(which is not a singularity, ot solution to £ (x_, u ) = 0 unless the nonlinear-
ities satisfy certain stringent symmetry conditions with respect to 50)” Then

we again neglect higher harmonics, to make the approximation

flxu) = EaE(ECJE,EO) + Re[Fp(x ,3,u ) a exp (jwt) ] (10)

The real vector f_ .. and the matrix F are obtained by taking the fourier expan-—

sions of the elements of £(x + Re a exp (jut), EO) as illustrated asbove, and

provide the quasi-linear or_%escribing function répresentation of the nonlinear

dynamic relation. The assumed limit cycle exists for u=u if x_ and a can be
r=u, . g

found so that

(1) £,

fppx,an) =0

- an
(ii) [jeI - Fpp(x_,a,u)la =0, 2 #0

(FDF has a pair of pure imaginary eigenvalues, and
a is the corresponding eigenvector.)

The nonlinear algebraic equations (11) are often difficult to solve. An iterat-
ive method, based on successlve approximation, can be used successfully for more
complicated problems such as the highly complex aircraft performance analysis prob-
lem (9 state variables) described in Taylor (1980).

Frequency Response Analysis

The system model is the same as (8), except u is a vector of sinusoidal imputs,

u=u + Re(g_eJMt)u Then x(t) has the form indicated in (9), and we gquasilinear—

ize f(x,n) as follows:

jot wt
_£(§C +Re(_av.'eJ ), u + Re(g'eJ ¥)

ejmt]

Nz

£, (%23 8,0+ Re[F . (x_, 2, v, c) 2

AUty (12)

+

RelGp, (2., 2, 4, [
Applying the same conditions of harmonic balance that underlie the limit cycle con-
dition (11), it is possible to solve for X, and a using

£y (G 8 Uy O =0

(13

-1
F> G

a = (juI - F op &

D
These 2n nonlinear algebraic equations (n of which are complex-valued) c:n readily
be solved using standard computer routines. In this case, one should be careful

to ensure that F does not have eigenvalues on or very close to the imaginary axis;
otherwise limit cycles may exist, in contradiction to the assumption underlying (9).
More examples and details of this approach to frequency respeonse analysis are avail-
able in Iaylor and Mohan (1980).




Statistical Performance Analysis of Stochastic Systems

The dynamics of a nonlinear continuous-time stochastic system can often be repre-
sented by a first-order vector differential equatdon in which x(t) is the system
state vector and w(t) is a foreing fumction vector,

x(t) = £(x,t) + 6(c) w(t) (14)

The state vector is composed of any set of variables sufficient to desecribe the
behavior of the system completely. The foreing function vector w(t) represents
disturbances as well as comntrol inputs that may act upon the system. In what
follows, w(t} is assumed to be composed of a mean or deterministic value Eﬁt)

and a random input u(t), the latter being comprised of elements which are uncor-
related in time; that is, u(t) is a white noise process having the spectral demsity
matrix Q(t)., Similarly, the state vector has a deterministic component m{t) and a
random part r{t}; for simplicity, m(t) will usually be called the mean vector.

Thus the state vector x(t) is described statistically by its mear vector and co-

variance matrix, S(i).

The differential equations that govern the propagation of the mean vector and co-
variance matrix for the system described by (14) can be derived directly, as dem—

onstrated in Jazwinski (1970), to be

m=E [£(,0)] + 6D
: £'+ e(ek (15)
é=Eff£1+E[rf1+ect)qc<t> NS + SN + GQG"

The equation for S has been put inte a form analogous to the covariance equatiomns
corresponding to f beipng linear, by defining the auxiliary matrix N as above.

-~

The quantities fand N defined in (15) must be determined before ome can proceed to
solve for m and S, Evaluating the indicated expected values requires knowledge of L
the joint probability density function (joint pdf) of the state variables., While

it is possible, in principle, to evolve the n-dimensional joint pdf p(x,t) for a
nonlinear system with random inputs by solving a set of partial differential equa-
tions known as the Fokker~Planck equation or the forward equation of Kolmogorov
(Jazwinski, 1970), this procedure is generally mot feasible from a practical point

of view, The fdct that the pdf is not available precludes the exact solution of (15).

One procedure for obtaining an approximate solution to (13) is to assume the form
of the joint probability density function of the state variables in order to eval—
uate f and N. Although it is possible to use any joint pdf, all work to date has
been baged on the assumption that the state variables are jointly normal; the
choice was made because it is both reasonable and convenient. The justifications
of this approximation are given more fully in Iaylor, lece, Siegel and Gelb (1980}.
The outcome. is that f and N are evaluated by using RIDF's, as in (2}, and the
numerical integration of (15) can be accomplished readily.

The following problem exemplifies the above RIDF/covariance analysis method of
stochastic system performance assessment: Given

K+ 2%+ x +‘x3 =w, w - N(O,q)




The zero-mean RIDF for x3 is 3311 where $11 is the variance of x (Athertomn,

1975); defining the state vector to be §F = [x %] gives us the following RIDF

matrix for use in (15):
0 1

-(1 + 3s =2

ll)
Equation (15} then expands to yield the following differential equations for the
elements of 5:

s =12 s

11 12
S19 = Spp = (L+3s19) 547 - 25y,
Spoy = -2 (2 49 + (1 + 3 sll} 312) + q

initial conditions, these differential equations can be integrated

Given sultable
The steady-state value of S5 can be obtained direct-

easily on a digital computex .
ly by setting 5 = 0:

JITF 3 -1 ”
et s 0

SS q
0 W

More examples and detailed discussions of the theory and use of this technique
are given in Taylor, Price, Siegel and Gelb (1980).

Summary and Conclusions

Before the foregoing recent advances in DF theory were made, it was generally
conceded that direct simulation of highly nonlinear, high-order differential
equations was the only available approach for studying their behavior. Unless

a very large mumber of simulations are performed (with many initial conditions
and input functions, for simulation time intervals long enough to allow tran-
sients to die away, etc.), the information gained by simulation is often spotty
and of questionablé value. The analysis tools outlined in this paper have
proven to be of great value in supplementing and complementing direct simulation
for understanding the behavior of nonlinear systems.
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