An Expert System Architecture for

%0.10 034

Computer-Aided Control Engineering

JAMES H TAYLOR, MEMBER, IEEE, AND DEAN K FREDERICK, MEMBER, IEEE

Invited Paper

We propose the development of a rule-based expert system to
create a third-generation man/machine environment for
computer-aided control engineering (CACE) The breadth of the
CACE problem is of particular concern, and provides a major
motivation for the use of artificial intelliigence This approach prom-
ises to provide a high-level design environment that is powerful
supportive, flexible. broad in scope, and readily accessible to non-
expert users.

We focus primarily on the high-level requirements for an im-
proved CACE environment, and on the expert system concepts and
structures that we have conceived to fulfill these needs Our chief
goal is to determine what artificial intelligence has to contribute to
such an environment, and to provide as definite and credible a
vision of an expert system for CACE as possible The main product
of this effort is an expert system architecture for CACE

. INTRODUCTION

To begin, we will develop the motivation for an ad-
vanced computer-aided control engineering (CACE) en-
vironment Primarily, this will involve defining the problem,
surveying the status of existing CACE software, and outlin-
ing what we perceive to be its significant shortcomings. To
a great extent, these deficiencies are caused by the very
broad scope of CACE The rest of the presentation will
address an approach to solving the deficiencies that we
have identified

To establish a context for discussing CACE environments,
we must first outline our definition of the “control en-
gineering problem.” We have enumerated in Table 1 2 set
of substantial tasks that we currently include in the scope
of control engineering. We are using the broad terminology
CACE rather than the more standard term computer-aided
control systemn design (CACSD) in order to highlight the
wide range of the problem under consideration

Having defined the problem in broad terms, we can
identify two phases of development or “generations” of
software for CACE. First-generation software, developed in
the 1960s and early 1970s, generally consisted of one or a
few single-purpose routines for the support of analysis and
design. Examples would be a program for generating Bode,
Nichols, or Nyquist plots for user-specified transfer function
modeis, a root locus routine, or software for finding the
eigenvaltues of a system dynamic matrix. Second-generation

Manuscript received March 30, 1984; revised June 20, 1984

)} H" Taylor is with General Electric Corporate Research and
Development, Schenectady, NY 12345, USA

D. K. Frederick is with Renssefaer Polytechnic Institute. Troy. NY
12181 USA

CACE software we will define to be comprised of packages
of more than a few routines, integrated into a more easily
used environment with a single database, and encompass-
ing a good portion of the analysis and design process A
pioneering development in this phase is the UMIST suite
(1] ' .

According to these definitions, the development of sec-
ond-generation software for CACE is well advanced at this
time Many powerful control system analysis and design
packages have been created; see, for example, [2}, [3] for
descriptions of CACE software and {4], [5] for an indication
of the present state of the art The package with the
broadest scope at this juncture is the General Electric
Federated System [6]; in fact, it is a “super-package’” com-
prised of four software systems for identification, simula-

Table1 Control Engineering Activities

1 Modeling the Plant to be Controiled

2 Determining the Characteristics of the Plant Model

3 Modifying the Configuration to Make the Plant More
Amenable to Control {e g, Moving or Adding
Actuators or Sensors) .

4 Formulating the Elements of the Design Problem

Checking to See that the Design Problem Is

Well-Posed; Especially. Determining the Realism of

Specifications in Light of the Given Plant Model

and Design Constraints

Executing Appropriate Design Procedures

Performing Design Tradeoffs. if Necessary

Validating the Design

Providing Complete Documentation of the Final

Design

10 Implementing the Final Design

w

O @

tion, frequency-domain design, and state-space design, with
a unified database and command-driven environment Gen-
erally speaking, creating software packages of this genera-
tion has reached such a state that we believe that the field
can be considered to be quite mature

There remains a great deal to be done, however, in terms
of providing a powerful, general environment for the less-
than-expert user. By the term “general,” we mean a CACE
environment that includes the full gamui of control system
design activities listed in Table 1 There are several factors
involved in the phrase “'less-than-expert user”: such a user
may not have had the experience required to synthesize
control theory into an effective design approach, may not

0018-9219,/84/1200-1795501 00 ©1984 1EEE

PROCEEDINGS OF THE IEEE VOL 72 NO 12 DECEMBER 1984

1793



be aware of recent developments in the field, and/or may
not be a frequeht practitioner of control system design or
iset of CACEsoftware In any case, most less-than-expert
users find that second-generation CACE software is difficult
to use effectively Specifically, the problems are:

1 Most CACE packages are specialized to one aspect of
the overall design process, to one “domain” ({time or
frequency), and often fo one particular synthesis or
design approach. Therefore, many designers will not
be able or willing to restrict themselves to the use of a
single package Software for nonlinear simulation, lin-
earization, linear analysis, and tinear controller design
is required as an absolute minimum for a realistic
approach to CACE[7]; even these capabilities are rarely
available in one package

2 The problem-solving environment provided by most
current packages is generally potent but rather low-
level. This consideration may even be compounded by
the first point, in the sense that a user may need to
know several hundred commands, perhaps in several
syntaxes, in order to be able to utilize a comprehen-
sive package or coilection of packages effectively

'3 Most packages provide little or no guidance The user
must formulate a meaningful model of the plant, pose
the design problem appropriately, know exactly what
procedures to execute, and have the experience and
practical feel for the complete contrel engineering
problem outlined above to be able to judge the
meaningfulness of the results obtained at each step
and know how to proceed.

4. Most packages provide little or no useful documenta-
tion of the design process The user must keep a
record of the design procedure and of tradeoff studies
and other considerations involved in arriving at the
final controller design.

5 Most packages provide little or no useful support in
validating and implementing the final design It is up
to the user to recognize the need for validation and to
know how to accomplish that vital step, and it is up to
the user to decide how to realize the theoretical
controller design in hardware

These considerations may not concern the expert, who
can formulate a well-posed problem with facility, who is
well versed in multivariable control system design, and who
is fluent in the use of available control design packages
However, for many real-world control system design prob-
lems the knowledge, comprehension, and attention to de-
tail required to keep on top of the design process in
existing CACE environments will surely tax many users The
end result of the deficiencies itemized above is generally
frustration, “wheel spinning,” and often an unwillingness
to expend the effort required to become a knowledgeable
software user or to maintain this skill

We believe that the problems outlined above are serious
in light of the current state of the art in control theory and
CACE In fact, there is good reason to believe that this
situation will worsen, as a result of the following trends:

1 New control system design approaches are constantly
being added to the control engineer’s repertoire, and
sofiware for their application is being developed

1796

2 More of the control engineering problem (Table 1) is
being carried out in CACE software environments

In support of the first factor, we can point to recent
developments in unifying classical and modern design [8],
in the algebraic function theoretic control design approach
[9], in the rational stable factorization method [10], and in
conceiving promising general approaches for the design of
controliers far nonlinear systems [11]-[12]—and this list is
not exhaustive by any means While these results are obvi-
ously welcome, they will inevitably complicate CACE for
the reasons mentioned above The nonlinear systems re-
search will particularly strengthen the need for a better
control system design environment, because the design
process for nonlinear conirols is substantially more com-
plicatedi than that for the tinear case [7]

The second point in our case for a growing need for a
better CACE environment again refers to the increasing
scope of the “control engineering problem ” The fact that
more aspects of the problem are now being included in the
realm of CACE is readily apparent in the literature {4}, [5]
The most recent major extension is in the area of software
development for controller implementation [13]-[15] In
comparison with this aspect of the control design problem,
many see conventional software for controller design as
treating only the “tip of the iceberg ” In addition, software
for model development [16], [17] should be considered to
be an integral part of CACE, not merely a precursor This
activity may also be a larger and more important effort than
the narrow problem of designing a compensator for a given
plant model Adding software for computer-aided con-
troller implementation and for modeling support will pro-
vide a strong impetus to the development of better CACE
environments,

For the above reasons, we believe that the need for an
improved CACE environment is quite clear In particular, we
have in mind an environment that treats the “whole prob-
lem,” that allows the user to work al a high level, that
provides guidance and support to the less-than-expert user,
and that provides access to a wide variety of analysis and
design methods without the necessity of mastering a large
ensemble of low-level commands. This need has led us to
consider the use of a rule-based expert system as a way to
address the deficiencies identified in the preceeding discus-
sion We believe that the resulting software concept goes
well beyond the second-generation phase of CACE men-
tioned previously; for this reason, we consider it to be a
third-generation environment which we thus refer 1o as
CACE-Ill It is based on a “model” of a human expert’s
approach to engineering design, which proceeds systemati-
cally through the steps outlined in Table 1 Because this
model and approach are general, the resulting architecture
should have generic value in the area of developing expert
systems for engineering design {18}

In the remainder of this paper, we discuss an expert
system approach to CACE, present the architecture of a
third-generation environment that is currently under devel-
opment, and outline (in functional terms) substantial por-
tions of the rule base. We also treat some essential feaiures
of a rule-based expert system for engineering design We
then close with a brief status report, summary, observations,
and conclusions

PROCEEDINGS OF THE IEEE VOL 72 NO 12 DECEMBER 1984



Il AN EXPERT SvsTem APPROACH TO CACE

Expert or knowledge-based systems are software environ-
ments designed to aid in solving problems that require high
levels of expertise, “reasoning” (inference), and heuristics
Such problems are generally complicated and broad in
scope, and are not amenable to clear-cut well-posed solu-
tions. Controt system design, in the broad sense outlined in
Table 1, is such a task. For a more detailed discussion on
the subjeci of expert systems, or for additional background
reading in the area, refer to [19], [20]. Alternatively, one may
refer to [27] for a brief overview of expert systems and a
more extensive bibliography than that provided here A
short presentation of selected rule-based expert system
concepts, to illustrate how one can endow software with
expertise and inference capability and to discuss relevant
environmental issues, is given in Section 1V

One way to visualize CACE-Hl] is to describe the resulting
environment as a “shell” for existing conventional CACE
software This shell would support control system design by
performing or helping to perform the functions listed in
Table 1 The real key to this environment is that it should
create an agreeable interface for the less-than-expert and
non-everyday user.

Based on Table 1, it is clear that the major prerequisites
for this development are:

1 an overall approach to CACE, in high-level conceptual
terms,

2 a comprehensive coflection of control system analysis
and design methodologies,

3. high-qguality conventional CACE software, and

4. a clear understanding of the use and limitations of this
approach and software

The overall approach to CACE outlined in this paper is
our enunciation of a rather traditional systematic plan of
attack applied to the problem defined in Table 1 This will
be developed in Section It as a basis for the CACE-Il
architecture. The collection of design methodologies may
be characterized as algorithmic formulations of classical
and modern control system design approaches The knowl-
edge or rule base of CACE-lli is thus comprised of this
systematic plan of attack, plus rules that embody “good
control engineering practice” and the heuristics (“rules of
thumb”) used by expert control engineers in the complete
control engineering effort, plus knowledge of the proper
selection and execution of the appropriate analysis and
design methodologies

Our concept for an improved environment for CACE is
thus a synthesis of classical and modern control theory and
artificial intelligénce Therefore, it may be pertinent to ask:
what exactly does the expert system approach have to offer
in the context of CACE? We have alluded to some of the
considerations that have led us to use this approach, but we
would like to detail the more important factors in our case
in more explicit terms

The main issue in this context is that it is difficult to add
expertise and support features to conventional software,
especially where judgment, heurnistics, and inference capa-
bilities are involved. A high-level environment for design
must incorporate such knowledge, in recognition of the
fact that engineering design is not just “numbes crunching

These issues are central to the problems identified in Sec-
tion 1.

Other issues are more subjective and perhaps open to
debate, because they depend on the expert system ap-
proach and environment, which is not standardized at this
time [19]-[22] However, it is our experience that a rule-
based expert system can be endowed with greater flexibility
than conventional software, because of its knowledge base,
inference capability, and more natural interaction with the
user. Also, it appears that expert systems are inherently able
to deal effectively with broad-scope procedures such as
CACE, while conventional software tends to become un-
wieldy. Finally, an expert system is easier to expand than a
conventional program, in the sense that the mechanics of
adding rules that embody “new expertise” is straightfor-
ward, especially if the knowledge is “modular” Some en-
vironmental issues that have a bearing on these considera-
tions are discussed in Section IV-D,

In summary, we enumerate the following areas of CACE
where we believe artificial intelligence (Al) can provide
useful contributions: the types of expertise that are required
for CACE are diagnosing the plant model, setting up a
realistic design problem, selecting appropriate design meth-
ods, performing tradeoffs, validating the design, implement-
ing the controller, and using conventional CACE software
(The use of a synthesis technique may lessen the require-
ment for judgment and inference somewhat; in true design,
however, these capabilities generally play a very substantial
role ) Heuristics are certainly a major factor in a human
expert’s ability to formulate a well-posed design problem
Reasoning capability will prove to be highly advantageous
for directing and keeping track of the design process as it
progresses Since these considerations are at the heart of
many of the problems we identified in the context of
existing CACE software (Section 1), we beliave that there is
ample motivation for considering developing a rule-based
expert system for CACE

Il AN EXPERT SYSTEM ARCHITECTURE FOR CACE

We will develop the structure of CACE-ifi by considering
a fundamental question: how might an expert control en-
gineer accomplish the tasks listed in Table 12 We find it
convenient to address this question in two stages, involving
concepts we call the problem frame and the solution
frame '

A The Problem Frame

A central consideration in the control system design
process is obtaining a complete, well-posed problem for-
mulation, This may be represented by a “list of facts” or, in
artificial intefligence (Al) terminology, “frame” The infor-
mation in this frame may be organized or partitioned into
three categories, which can be illustrated by posing the
following questions:

T Plant Characteristics: 1s the plant that is to be con-
trolled linear or nonlinear? How nonlinear is it? Can it
be linearized? Is it stable or unstable? Are theare any
right-half-plane zeros? Are there resonances? Is the
plant controllable and observable?

2 Constraints: What are the limitations with respect to
controller implementation (analog or digital), complex-

TAYLOR AND FREDERICK: SYSTEM ARCHITECTURE FOR COMPUTER-AIDED COMNTROL ENGINEERING 1797



ity (order), structure (e g, decentralization), data rates
or sampling time (if digitai)?

3. Specifications: How must the control system behave or
perform? Common indications or measures of perfor-
mance include rise time, bandwidih, percent over-
shoot, pole position, gain margin, phase margin,
quadratic performance indices, sensitivity, and robust-
ness

The answers to these and similar questions make up the
knowledge required for the problem frame partitioning
portrayed in Fig 1.

PRCBLEM FRAME
PLANT MCODEL COMPCNENT:

POLES
Instabilities
Resonances

ZERCES

NONLINEARITY
CONTROLLABILITY &
OBSERVABILITY

CONSTRAINT COMPONENT:
ANALOG OR DIGITAL
ORDER
DATA RATE (IF DIGITAL)

-

SPECIFICATION COMPONENT.
BANDWIDTH
PERCENT OVERSHOOT
RISE TIME
POLE LOCATION

PERFORMANCE INDEX
H
-

Fig 1 Partitidning of the problem frame

Such a frame is a major focal point for CACE, as can be
observed from the fact that the first five functions in Table
1 relate to this information. Therefore, developing the list of
facts that comprises the problem frame must be a central
activity of CACE-IIN This is accomplished via the interaction
of the user and the expert system

B. An Expert System Structure for Problem Frame
Development

The above considerations lead directly to an architecture
for an expert system to support the process of problem
formulation. Such a structure is depicted in Fig. 2 The two
rule bases (RBs) shown there serve the following purposes:

1 RB1 governs interactions among the design engineer,
plant modefls (both nonlinear and linear), and the
model and constraint components of the problem
frame . This rule base provides support in model devel-
opment and supplies the facts required to characterize
the plant model and design constraints in the problem
frame Meodel development support might include: di-
rection in the use of identification procedures [23],
suggesting modifications to correct deficiencies such
as a lack of controllabitity and/or observability, and
making recommendations .concerning the numerical
tractability of the model. These functions are a major
part of the “diagnostic” capability of CACE-NII An

1798

example of model descripter “facts” in the problem
frame is provided in Section IV (Table 3)

2 RB2 governs interactions between the design engineer
and the specification component of the problem
frame. These rules guide the user in entering design
specifications and checks those specifications for con-
sistency, completeness, and workability. The rules
governing realism are based mainly on determining
what is achievable for the closed-loop system given
the data in the model and constraint components of
the problem frame; therefore, the user will not be
allowed to specify without having the latter informa-
tion in the list of facts

The goal of these two rule bases is to have a well-for-
mulated problem, thus ensuring a reasonable probability of
success in the design phase.

. The Solution Frame

In the second part of the execution of a control engineer-
ing problem, we see the human expert developing and
working in a parallel constfuct, which in CACE-Ill we cail
the solution frame We implement this in the form of a
second list of facts which serves as a “scratch pad” where
the expert system keeps track of what has been done and
what needs to be done, and where information required for
decisions about the selection of design procedures and
tradeoff analysis resides. A sketch of this part of the knowl-
edge base is provided in Fig 3. The relative lack of detail
{compared to the problem frame) is due in large part to the
fact that a set of automated design procedures has not yet
been established

D. The Complete Expert System Architecture

According to our scenario, the human expert control
system designer continues the design process by com-
pleting the remaining tasks outlined in Table 1, working in
an information framework analogous to the solution frame
A complete expert system for CACE must mechanize these
functions, as well as those shown in Fig. 2, and must know
how to use conventional CACE software packages to per-
form the appropriate tasks

The line of thought provided by the above summary of
the activities of a human expert has given rise to a complete
functional structure of CACE-IlI that is depicted in Fig 4 In
particular, we have created a construct in which the rule
base is partitioned into six parts, as shown The functions of
rufe bases RB3 through RB6 may be outlined as follows:

1 RB3 governs interactions between the problem frame
and the solution frame These rules deal with specifi-
cations, constraints, and plant characieristics, and set
up or modify the list of facts in the soluiion frame
describing what needs to be done to achieve design
goals An example of the role of this rule base is as
foltows: given a steady-state error specification, RB3
would initiate the evaluation of the low-frequency
gain G{O) of the linearized plant model, and de-
termine whether or not it is necessary to increase the
low-frequency open-loop gain.

2 RB4 governs interactions between the solution frame
and the available design procedures For example, if
RB3 determined that the low-frequency open-loop

PROCEEDINGS OF THE IEEE VOL 72 NO 12 DECEMEER 1984



Fig. 2

Fig. 3

AP1 AP2 AP3 AP4 e
FIND LINEAR- FIND FIND
EQUI- IZE POLES | |2EROES
LIBRIA
EXPERT CONVENTIONAL
SYSTEM
PLANT
MODELS
: L
/ MODEL P
R rF
PERFORMANCE 9 g
REQUIREMENTS CONSTRAINTS B A
L wm
\ E g SOFTWARE
specs M
CONSTRAINTS RULES
d RB2
e ‘ \\
AP14 AP15
«+ [OPEN-LOOP ROOT [ eee
) POLE LOCUS
KEY: APn = Analysis Procedure n CENTROID
RBn = Rule Base n
Expert system structure for problem formulation
change in the open-loop transfer function (e g, ad-
SOLUTION FRAME
ditional gain or dynamic compensator block). This rule
NEEDS: base will also supervise tradeoff analysis by selecting
LOW-FREQUENCY GAIN specifications to be relaxed and modn‘ylng the prob-
GAIN MARGIN I
m frame appropriately if the original specifications
PHASE MARGIN © b pprop Y g P
ROBUSTNESS MARGIN cannot be met ”
) . 4 RB6 governs the final control system validation process
: and conversion from idealized controller desagn to
STATUS: practical implementation. Validation would consist
BANDWIDTH SPEC MET primarily of analysis and simulation to ensure that the
ONE STAGE LEAD COMP design requirements had been achieved. In performing
STE?J?::IATE ERROR SPEC this step, the most realistic model of the plant would
' . be combined with a detailed representatlon of the
: controller, and the performance of the systern de-
OTHER. termined Implementation, in  the present micro-
FREQUENCY - DOMAIN DESIGN processor age, generally means that the ultimate out-
METHODS SUGGESTED put of CACE-IIt will be a code to be downfoaded to a
: read-only memory (ROM) that will’ provide the actual
. controller mechanization Software to permit this final
T step is currently under development (cf [13]-{15))
Partitioning of the solution frame :

gain needs to be raised, then RB4 may invoke a design
procedure to increase the static gain in the forward
path or to design a lag compensator, as appropriate

RB5> governs interactions between design procedures
and the problem and solution frames Every time a
design procedure is executed, the solution frame must
be updated to reflect the corresponding  addition/

RB3 serves primarily to

‘initialize” the list of facts that

makes up the solution frame, or to modify that list it
performance tradeoffs must be conmdered Observe that
RB4 and RB5 represent an iterative “loop”; these rule bases
are cycled through untii all specifications are satisfied or

until

it has been determined that the specifications cannot

be met. The former rule base decides what rieeds to be
done, while RB5S keeps an account of the status of the

TAYLOR AND FREDERICK: SYSTEM ARCHITECTURE FOR COMPUTER-AIDED COMTROL ENGINEERING

1799



AMNALYSIS
PROCEDURES

PROCEDURES

DESIGN

AN /

AN

;N

N

/ RULES RULES RULES
pLANT ||
MODELS RB\: / RBS\\ RB4
t s
MODEL P NEEDS o
Rof L F RULES
0 r u B
CONSTRAINTS 8 a STATUS T oA ™ -
t M oM RBES
\ E E o E
SPECS M OTHER N

RULES RULES
EXPERT SYSTEM
RB2 R83 CACE - It
\ .
\ ' /
ANALYSIS
PRCCEDURES

Fig 4. Complete functional structure of CACE-II

solution as it is being obtained. This latter rule base may
cause RB2 and RB3 to modify the problem frame if it is
necessary to relax specifications or perform tradeoffs

In the context of developing RB4 and R85, we must
observe that most design procedures are not readily avail-
able in algorithmic form To some extent; this may be due
to the difficulty of reducing engineering judgment to al-
gorithms; to some extent this may be due to the fact that
control theotists have left this step up to engineers in
industry It is true that industrial practitioners have obvi-
ously succeeded in bringing theory to practice—but their
specific approaches or “algorithms” are undocumented and
thus this expertise is difficult to access We have explored
this issue in some detail, by developing a rule base that
mechanizes a classical control design approach to synthe-
sizing a lead /lag compensator for a single-input single-out-
put plant [24] We selected this problem area because the
classical control design approaches are the most “intuitive”
and least well-codified compared with more recent devel-
opments. We will_not describe this work in any detail here;
suffice it to say this effort is neither simple nor inordinately
difficult.

Finally, note that all of these rule bases will be required
to invoke existing conventional CACE software for many of
the indicated analysis and design functions Expertise re-
garding the use of this software will be incorporated as an
integral part of CACE-lI _

The rule base structure depicted in Fig 4 serves two
i_mpbrtant functions: first, it clarifies many conceptual
aspects of the design process, and thus provides a basis for
rule base development. In addition, this structure can be
useful for developing. “meta-rules” (Al terminology for
“rules aboui rules”) that increase the efficiency of the

1800

expert system by partitioning the rule base and restricting
the scope of the expert system to the rules needed for the
task presently at hand

IV EXPERT SYSTEM FEATURES

We are currently undertaking the creation of a demon-
stration or prototype version of the CACE-lIl environment
using DELTA, a rule interpreter or “inference engine” de-
veloped at GE for a diesel-electric locomotive trouble-
shooting aid [25]. While space does not permit a detailed
discussion, we will outline some aspects of the operation of
DELTA, to the extent required for tutorial purposes Our
goal is to convey the spirit of the expert system approach,
not a working knowledge of DELTA. This overview deals
with considerations that are primarily generic to the use of
rule-based expert systems, although the details differ from
system to system. :

A Rules

The DELTA inference engine basically works with rules
having the form:

If [Premise, Premise, - ]
THEN [Conclusion, Conclusion, ]

Premises may be thought of as defining a condition,
situation, or state of a process; conclusions are actions to be
taken if the premises of the rule are satisfied Actions
include adding facts to the knowledge base (list of facts),
clearing facts from the knowledge base, or asking the user
to determine what specific fact(s) to add to the knowledge
base.

PROCEEDINGS OF THE LEEE. vOL 72 NO 12 DECEMBER 1984



fach premise and conclusion in CACE-1HI has the form of
a three-tuple which is true, false, or neutral (of unknown
truth), i.e, each three-tuple may take on certainty values of
+1, =1, and @ A three-tuple has the form [OBJECT AT-
TRIBUTE VALUEL; for example, the fact [SPEC-CL-POLE
MAX-REAL-PART UNASSIGNED] + 1 denotes that no value
has been specified for the maximum real part of the poles
ot the closed-loop control systemn being designed.

A prernise may be that a three-tuple is true,

EQ [OBJECT ATTRIBUTE VALUE]
or false,
NE [OBJ ATTR VAL] .

The conclusions of a rule may include any of the following
actions:

1 DISPLAY, which indicates that the user should be
notified about something. This conclusion must be
followed by the message to be conveyed (in parenthe-
ses);

2 UDOQO, which indicates that the user should take some
action This conclusion must be followed by a state-
ment of the action to be taken that will be displayed
to the user {in parentheses);

3 WRITE [OBJ ATTR VAL), which indicates that a three-
tuple should be written into the knowledge base;

4 CLR OB} ATTR VAL], which indicates that a three-tuple
should be cleared from the knowledge base;

5 ASK [OB} ATTR VAL], which indicates that the user
should be asked to determine the status of the three-
tuple (true or false); or

6 MENU, which allows the user to make a selection of a
three-tuple from a list of options.

Observe that in the case of DISPLAY, UDU, ASK, and
MENU each parenthetical expression is a message to the
user; in other cases and in the premise portion of the rule,
the phrases in parentheses are simply comments explaining
the thinking of the rule base creator Most of these ideas
are illustrated in the two sample rules provided in Table 2,
which are taken from the rule base RB2 that governs the
specification entry process

Ohbserve that a “yes” response to the query in the conclu-
sion of RULE 106 results in the three-tuple [MAX-REAL-PART
MODIFY VALUE] being written to the list of facts as “true ”
This action s'atisfies the premise of RULE 108, thus triggering
it. RULE 108, in turn, will activate the cule that asks the user
for a value of SPEC-CL-POLE MAX-REAL-PART Note that
the "+’ sign is a “wild card,” denoting “any valua

B Inference Mechanisms

DELTA performs inference functions in two modes: fact
driven and goal driven In the former case, the system
systematically checks some or all the rules for premises that
are known to be true 5o that the corresponding fact(s) can
be written into the list of facis (knowledge base) In the
goal driven mode, the system attempts to reach a specific
conclusion {write a specific fact) by identifying a rule or
rules that contain the desired goal in the conclusion and
using its inference capabilities to prove that the premise(s)
of the désired rule(s) are satisfied The Al terminology for
these two modes of operation are forward and backward
chaining, respectively. An example of the first inference
mode is filling in the plant characteristics in the problem

frame, while attempting to achieve the goal “design specifi-
cations satisfied” exemplifies backward chaining

the forward chaining inference mode operates by ex-
amining a rule and asking: is Premise, known to be true? if
the answer to this question is “yes” for every premise of
the rule, then its conclusion is carried out

Backward chaining starts with a goal: write Fact, to the
list of facts. First, the inference engine seeks a rule that can
cause Fact, to be written, i g, that has WRITE [Fact, ] among
its conclusions. Then, a four-stage attempt to satisfy the
premises Premise; of this rule is launched, by asking

a Is Premise; known to be true (in light of the existing
list of facts)?

b Can Premise, be inferred from the current list of facts
(using another rule or several rules)?

¢. Can conventional analysis and design procedures be
used to determine if Premise; is true?

d Can the user determine if Premise; is true?

"

If the answer to any of the above questions is “ves,” for
each premise Premise, of the rule, then the goal has been
achieved and Fact, is written into the knowledge base In

- the case of an “if-and-only-if” rule, showing that a pramise

is false will terminate the backward chaining process

- Table2 Two Rules from CACE-III

RULE 106 (Want to enter max Re part spec; already assigned)
IF:
EQ [SPEC-C-L-POLE MAX-REAL-PART REQUESTED]
(User has asked to enter max-real-part)
EQ [MAX-REAL-PART VALUE +]
(A value is currently assigned)
THEN:
CLR [SPEC-C-L-POLE MAX-REAL-PART REQUESTED]
(Reset-clear the fact that triggered this rule)
DISPLAY
{¥ou want to enter a value for the maximum)
(real part of the poles, but a value has been)
(assigned previously }
ASK [MAX-REAL-PART MODIFY VALUE]

{Do you wish to replace the current value? {Y or N}  ENTER:)

RULE 108 {(Current value of max Re part is to be replaced)
IF:
EQ [MAX-REAL-PART MODIFY VALUE]
(User wants to modify the current value)
THEN:
CLR [MAX-REAL-PART MODIFY VALUE]
(Reset—clear the fact that triggered this rule)
CLR [MAX-REAL-PART VALUE +]
(Delete the old value)
WRITE [SPEC-CL-POLE MAX-REAL-PART UNASSIGNED]
{Reset——pave the way for a new assignment)
WRITE [SPEC-CL-POLE MAX-REAL-PART REQUESTED)]
(Trigger the rule to request entry of new value)

Otherwise, the backward chainer will continue to seek
rules that can be satisfied so that Fact, can be written The
questions are always asked in the above order so that
running external procedures and asking the user are only
done as last resorts

C. Lists of Facts

The status of a session at any given time. or the outcome
of a session when completed is characterized by the list of
facts that has been written in the course of the transaction

TAYLOR AND FREDERICK: S5YSTEM ARCHITECTURE FOR COMPUTER-AIDED CONTROL ENGINLERING 1801




Table3 The Problem Frame after a DIAGNOSE and SPECIFY Session

Fact

Basis”

PLANT MODEL NONLINEAR

PLANT-NL-MODEL FNAME EXOREACT
PLANT-NL-MODEL TIME-TYPE CONTINUQUS
PLANT-NL-MODEL STATE-TYPE CONTINUOUS

PLANT-NL-MODEL ORDER 2
PLANT-NL-MODEL INPUTS 2
PLANT-NL-MODEL QUTPUTS 2

PLANT-NL-MODEL DIAGN-DATA-FNAME EXORNDATA
PLANT-NL-MODEL NL-BEHAVIOR MILD
PLANT-L-MODEL FNAME EXOREACTL

PLANT-L-MODEL S5TABLE NO

PLANT-L-MODEL CONTROLLABLE YES

PLANT-L-MODEL OBSERVABLE YES

PLANT-L-MODEL MINIMUM-PHASE YES

MODEL DIAGNOSIS DONE
SENSOR TIME-TYPE CONTINUOQUS

CONTROLLER TIME-TYPE CONTINUOUS
CONTROLLER STRUCTURE DIAG-DOMINANT

CONTROLLER CHANNELT-IN N1
CONTROLLER CHANNELT-QUT Y1
CONTROLLER CHANNELZ-IN j2
CONTROLLER CHANNEL2-OUT Y2
MAX-STEP-SS-ERR CHI1-VALUE 0.25
MAX-REAL-PART CHI1-VALUE —~14

MIN-DAMPING-RATIO CH1-VALUE 10

MAX-STEP-SS-ERR CH2-VALUE 0.5
MAX-REAL-PART CH2-VALUE —14

MIN-DAMPING-RATIO CHZ-VALUE 10

CONTINUQUS-SPEC ENTRY DONE

CONTINUOUS-SPEC ENTRY REALISTIC
CONTINUOUS-SPEC ENTRY COMPLETE
CONTINUOUS-SPEC ENTRY CONSISTENT
SPEC-SESSION TERMINATION NORMAL

User-asked RB1
User-asked Rb1
Inferred RB1
Inferred RB1
Infarred RB1
tnferred RB1
Inferred RB1
Inferred RB1
Inferred RB1
Inferred RB1
Inferred RB1
Inferred RE1
Inferred RB1
Inferred RB1
Inferred RB1
User-asked RB2
User-asked RB2
User-asked RB2
User-asked RB2
- User-asked RB2
Inferred RB2
Inferred RBZ
User-asked RB2
User-asked RB2 -
User-asked RB2
User-asked RB2
User-asked RB2
User-asked' ™ RB2
Inferred: . RB2
Inferred RB2Z
Inferred RB2
Inferred RB2
" Inferred RB2

Such a tist is illustrated in Table 3, which contains the list of
facts that might exist in the CACE-1Il knowledge base at the
end of a DIAGNOSE and SPECIFY session. In order to
interpret Table 3, we provide the following brief guide to
the shorthand notation in our list of facts; NL — nonlinear,
FNAME — file name, DIACN — diagnosis;
DIAG-DOMINANT — diagonally dominant, $5 — steady-
state, CHi — channel, It should be observed that the un-
derlying data, eg, the numerical resulis of the nonlinear
system dlagn05|s and the linearized modei and its diagnosis,
are contained in ancillary files. The expert system does not
use this kind of data directly, but it must know where such
information can be found so that it can be provided to
external analysis and desrgn procedures as required

D Other Inference Engine Requirements

The above - discussion provides  a basic overview of
selected expert system concepts, in particular, of rules, lists
of facts (knowlédge bases), and inference There are other
requirements for engineering design that go substantially
beyond the needs for many other well-known expert sys-
tem apphcatlons found in the general literature [19]-[22]
The three most |mp0rtant capabilities we have so far identi-
fied are the abl%lty to yun external processes, the ability to
perform rumerical computatlons ‘and tests, and the ablllty
to be controlled or “steered” by the user

In order for CACE-IIl to perform the analyses required for
diagnosis and design, it is necessary for the inference en-
gine to run external ‘processes that execute tasks such as
calculating the frequency response of the plant and de-

1802

Lo— Imear,'

termining gain margin and bandwidth. CACE-III must ini-
tiate the process with the appropriate input parameters, and
must be able to read the resulis of the analysis in order to
update the list of facts The DELTA inference éngine we
have used in our research so far does not have this capabil-
ity; a subsequent version of DELTA WIH be able to perform
this function

The ear!ner DELTA inferénce engme could not deal di-
rectly with numbers either, havmg only the ab|1|ty to inter-
pret and use literal strings, such ‘as FOUR, POSITIVE and
BETWEEN-THREE-AND-FIVE  This restriction was not” im-
portant in the original’ application (the dlagnOSis of diesel-
electric Iocomotlves [25]), but in our case it has requ:red the
use of numerous additionial rulés and menus for the entry
of data in literal form To make full use of its potentlal
DELTA is bemg extended to altow the' usé of |ntegers and
reals, performlng tests for equahty, inequality, and inclusion
in a range, and executing arithmetic procedures. _

The third requirement—steerability—will probably be
crucial for the acceptance of any expert system for en-
gineering design such as CACE-1Il by the engineering com-
munity If CACE-Ill is always in complete control, the en-
gineer will become frustrated and/or bored. Frustration
would be caused by having to accept the dictates of the
software even when the user’s experience contradicts them,
while boredom would result from the tedium of being led
by the hand through familiar parts of the task (e g, specifi-
cation entry) The power to guide the design process can be
provided by implementing the capability for the “auto-
matic,” “semi-automatic,” and “manual” operation of
CACE-IL. :

PROCEEDINGS OF THE IEEE VOL 72 NO 12, DECEMBER 1954



We have identified the following mechanisms for allow-
ing the designer to interact meaningfully with CACE-Ill in
the design process:

1 The support provided by CACE-NI is in the form of
suggestions rather than constraints if the user wants
to ignore or not fully comply with the expert systam’s
recommendations, then the software will not force
compliance.

2. A "why” facility can be invoked to determine the basis
for a recommendation, so that the user can judge the
advice before deciding whether or not to accept it

3 A manual fact-entry capability can be added to allow
the engineer to write facts directly into the knowledge
base For example, the goal of the specification eniry
portion of a transaction may be to write the following
facts:

MAX-STEP-55-ERR VALUE 0005
MAX-REAL-PART VALUE —-14
MIN-DAMPING-RATIO  VALUE 10

Allowing a designer who does not require help to
enter these facts directly will streamline the session
considerably; the alternatives (eg, by being led
through a series of menus [26]) may be much less
desirable

4 The user can be permitted to invoke any underlying
conventional CACE package and do whatever is de-
sired.

These capabilities should help the user to maintain control
of the design process in an effective way. The use of a
“why' facility is well known and exists in DELTA; the other
ideas (especially items 3 and 4) are specifically targeted for
engineering users and may not be as commonplace

F Rule Base Writing Support

in developing ruies for use in DELTA, we have come to
see an urgent need for an environment analogous to the
“debug” environment associated with high-level languages
such as Fortran, The following capabilities are essential for
debugging a rule base effectively:

1 setting break points so that the status of the process
can be determined,

2 displaying the complete list of facts at any time in the
course of a session,

3 displaying changes in the list of facts as a single rule is
being executed or between two breakpoints,

4. tracing the execution of rules, and

5 modifying facts and resuming operation

A great deal of effort is currenily being focused on creating
a supportive environment for developing rule bases, at GE
and elsewhere (refer to [22], for example).

V. STATUS
We have thus far devetoped the following:

1. an architecture for CACE-Il, including a specific, de-
tailed outline of the functional characteristics of the
expert system and of the rule base;

2 a detalled “transaction” or dialog between CACE-1l
and a user [18], [26], to provide a more tangible “bot-

tom-ugp’” basis for detailing the functions of the various
rule bases shown in Fig. 4;

3. working rule bases for several functions, including an
automatic control system design procedure (lead-lag
compensator design for a single-input /single-output
plant [24]) and some portions of specification develop-
ment assistance and plant model diagnosis; and

4 analysis routines to implement several nonlinear sys-
temn diagnostic functions that illustrate the capabilities
of RB1 [18], [26]

Only item 1 has been discussed in any detail in this paper
The remaining items were developed primarily as explora-
tory tools, to sharpen the focus of the concept we have
presented here, to determine what artificial intelligence has
to offer in the context of CACE, and to ascertain the
credibility of that promise

VI SUMMARY, OBSERVATIONS AND CONCLUSIONS

A. Summary

The project we have described in this paper has just
emerged from the concept development phase Basically,
the primary outcome of our effort can be considered to be
a high-fevel design specification for a third-generation CACE
environment There are several areas in which we believe
progress has been made:

1 elucidating the “CACE problem” (starting with [7] and
following through Section [) and identifying an im-
proved environment for dealing with it based on rule-
based expert systems;

2. developing a detailed architecture, based on lists of
facts (problem and solution frames), rule bases, in-
ference mechanisms, and conventional analysis and
design software, that can support the user in the core
activities of CACE outlined in Table 1;

3. developing a concept that is flexible enough that it
can fulfill the needs and desires of novice and expert
users alike; and

4 determining some requirements of an inference en-
gine that would be suitable for implementing CACE-III

At this point, we have created a tangible top-level de-
scription of an expert system for CACE plus a small amount
of the underlying rule base and detail [18], [24] We have
placed great emphasis on the issues that translate into
credibility, namely, the capabilities of expert systems and
their relevance to CACE; there is a great deal to be defined
and implemented before we have even a prototype “real
system ” We hope that the concepts and issues set forth
here will stimulate further discussion and development

B. OChbservations

There are a number of observations (opinions) we have
reached in the course of this study:

1. Few (if any) existing CACE packages cover the full
scope of the control system design problem and sup-
port the range of techniques that most users would
like to have available

2. Critical areas of user support that are not meaningfully
provided by existing CACE software environments are:

TAYLOR AND FREDERICK: SYSTEM ARCHITECTURE FOR COMPUTER-AIDED CONTROL ENGINEERING 1803



developing and diagnosing plant models, developing
meaningful specifications, selecting design ap-
proaches, performing tradeoif siudies, validating the
design, and implementing it.

3 Most existing broad-scope CACE sofiware is difficult
for the less-than-expert and/or infrequent user to
master.

4 An expert system for CACE should be conceived with
the following primary geals:

a. removing as much drudgery as possible from the
design process,

b reducing the probability of error,

¢. allowing the less-than-expert user to obtain better
designs than otherwise possible,

d adding better discipline and documentation to the
design process, and

e enhancing rather than replacing engineering skili
and judgment

5. An expert system for CACE should beneiit an engineer
in another, higher level way, by instilling an under-
standing and working knowledge of new contro! sys-
tem design methods (“technology transfer”). This is
only possible if the user can take an active role in the
design process, as outlined in Section IV-D

6 An expert system for CACE should prove to be helpful
in engingering education, by elucidating the process
to students and allowing them to develop understand-
ing and skil! in applying what they are learning

¢ Conclusions

There are a number of conclusions we have reached in
the course of this study that directly pertain to CACE:

1. The application of expert system concepts would seem
to be a natural choice for providing the inference
capabilities, judgment, and heuristics needed for the
critical areas of user support we have identified

2 Expert system concepts show great promise in the
development of CACE environments that are flexible
enough to meet the needs of a very broad spectrum of
control engineers—from novice to expert designers,
from infrequent to everyday users

3 No foreseeable expert system is going to provide the
optimal solution to every control design problem; the
case for creating such an environment must be made
on the basis the “primary goals” outlined in observa-
tion 4 in Section VI-B.

4. Most available design methods are not going to be
easy to automate, because they have not been for-
mulated in algorithmic terms

We have also reached two conclusions which we believe
have implications that go well beyond the field of CACE,
namely:

1 Expert/knowledge-based systems show great potential
for providing the basis for a vastly improved man/
machine environment for engineering design in gen-
eral.

2 The “systemns approach” (by which we mean the train
of thought outlined in the body of this paper, wherein
the human expert’s design process is modeled and
reduced to a structure that can be implemented in a
rule base) provides a powerful methodology for creat-
ing the architecture of an expert system

1804

ACKNOWLEDGMENT

The research outlined in this paper cwes a great deal to
the suggestions and efforts of a number of people aside
from the authors. The idea of applying artificial intelligence
to “the total CACE problem” was an outgrowth of discus-
sions between Tavlor and Professor A. G. ) MacFarlane of
Cambridge University in the fall of 1982 A major factor in
the resulting research was the expertise and expert system
software provided by Dr. P. Bonissone of the General Elec-
tric Corporate R & D Knowledge Based Systems Program
Other substantial contributions were made by students
from Rensselaer Polytechnic Institute, as follows: N
Lassinger modified existing CACE software to make it possi-
ble to mechanize an automatic fag/lead compensator de-
sign procedure; ] James refined and completed an algorith-
mic statement of this procedure [24], developed the rule
base required for its implementation, and made helpful
suggestions for this paper; and R. Quan helped to develop
nonlinear system diagnostic software (for the analysis of
harmonics and distortion) The ideas presented in this paper
have profited substantially from these interactions

REFEREMNCES

[11 H H Rosenbrock, Computer-Aided Control System Design
London: Academic Press, 1974.

7} Special Issue on Computer-Aided Design of Control Systems,
IEEE Contr. Syst. Mag, vol 2, no. 4, Dec 1982

[3] D K Frederick, “Computer programs for the simulation and
design of control systems,” presented at the Arab School on
Science and Technology, Bloudan, Syria, Sept. 1981; in Ad-
vances in Control Systems, Theory and Applications, 1. B
Cruz, Jr, Ed  Greenwich, CT: JAl Press, Sept. 1984

[41 Proc Second IFAC Symposium: CAD of Multhvariable Techno-
fogical Systems, Purdue University, West Lafayette, IN Sept
1982,

[5] CACS(3’83 Abstracts, IEEE Control System Society Symposium
on CACSD, Cambridge, MA, Sept 1983

6] H A. Spang, I, “The federated computer-aided control de-
sign system,” in Proc Second IFAC Symposium: CAD of
Muitivariable Technological Systems, Purdue University, West
lafayette, IN, pp 121-129, Sept 7982; also this issue, pp
1725-1731

[71 | H. Taylor, “Environment and methods for computer-aided
control systems design for nonlinear plants,” in Proc. Second
IFAC Symp : CAD of Multivariable Technological Syst., Purdue
University, West Lafayette, IN, pp 361-367, Sept. 1982 (is-
sued as General Electric Rep 82CRDN93, GE Corporate Re-
search and Development, Aug. 1982)

18] J. C Doyle and G. Stein, “Multivariable feedback design:
Concepts for a classical /modern synthesis,” IEEE Trans Autor
mat Contr, vol, AC-26, no 1, pp 4-16, Feb, 1981,

[9 Y.S Hungand A G ] MacFarlane, Muitivariabie Feedback: A
Quasi-Classical Approach, lecture Notes in Control and Infor-
mation Sciences, vol 40. New York: Springer-Verlag, 1982

[10] M. Vidyasagar, Control System Synthesis. A Factorization Ap-
proach, Fifth Draft, Jan 1984 (To be published by MIT Press.)

[11] 5 K Hedrick, ¥ The use of statistical describing functions with
linear quadratic Gaussian controller design,” in Proc, fomnt
Automat. Contr Conf. (West Lafayette, IN), pp. 390-393,
1976

[12] § H Taylor, “A systematic nonlinear controller design ap-
proach based on quasilinear system models,” in Proc. Ameri-
can Contr Conf (San Francisco, CA), pp. 141145, 1983, and
(San Diego, CA), pp 817-824, 1984

[13] § C. Shah, R. A Walker, and D. B. Varveli, “A control design
workstation,” presented at the [EEE Contr. Syst. S5oc Symp on
CACSD, Cambridge, MA, Sept 1983 (see [5])

[14] R. M. Travassos, “Completing the CACSD process,” presented
at the American Contr Conf  San Diego. CA, 1984

PROCEEDINGS OF THE 1EEE VOL 72, NO 12 DECEMBER 1984




[15]

[1e]

{17

(18]

(9]

TAYLOR AND FREDERICK: SYSTEM ARCHITECTURE FOR COMPUTER-AIDED CONTROL ENCGINEERING

H A Sutherland and K L Sonin, "A control engineer's
workbench— A methodology for microcomputer implementa-
tion of controls,” Proc American Contr Conf San Diego
CA, pp. 115119, 1984

}. Wieslander and |. Gustavsson. "1TDPAC—An efficient inter-
active identification program,” presented at the 4th IFAC
Symp on Identification and Syst Parameter Estimation, Thilisi,
USSR, Sept. 1976

S Shah, R Walker, and C Gregory. Jr, "Matiix,: A data
analysis, system identification, contro! design and simulation
program,” in Proc Second IFAC Symp  CAD of Multivariable
Technological Syst. (Purdue University, West Lafayette. IN).
pp. 131136, Sept. 1982

] H Taylor and D K. Frederick, “Expert systemn concepts for
computer-aided control engineering,” General Electric Rep
TIS 84CRDN27, GE Corporate Research and Development
June 1284

D Michie, introductory Readings in Expert Systems
Gardon & Breach, 1982

London:

(0]
t23]
i2zZ]
[23]

[24]

[25]

{26]

F Hayes-Roth, D. Waterman, and D B. Lenat, Building Expert
Systerms  Reading, MA: Addisen Wesley 1983

W B. Gevarter, “Expert systems: Limited but powerful
Spectrum, pp. 39-45, Aug 1983

R. Davis and D B Llenat, Knowledge-Based Systems in Artifi-
cial Inteligence  New York: McGraw-Hill, 1982

K ] Astrom, private communication to the authors regarding
an expert system for [DPAC [16]. Sept. 1983

J. R, James, D K Frederick, and |. B. Taylor, “On the applica-
tion of expert systems programming techniques to the design
of lead /lag precompensators,” submitted for presentation to
Control 85, Cambridge. UK, July 1985.

H E lohnson and P. P. Bonissone, " Expert system for diesel
electric locomotive repair,” J FORTH Appl. and Res, vol 1
no. 1. pp 7-16, Sept. 1983

] H Taylor, D K. Frederick and ] R James, "An expert
system scenario for computer-aided control engineering,” in
Proc. American Contr Conf. (San Diego CA). pp 120-128
1984

IEEE

1805



