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A network made up of the lumped passive elements R, L, and C (re-
sistance, inductance, and capacitance) has a driving point impedance
Z(s) that is rational and positive-real, and, conversely, any rational
function Z(s) that is positive-real can be realized as the driving point
impedance of a passive RLC network. The properties of positive-real
functions have thus been exhaustively studied in the evolution of
modern network theory. Strictly positive-real functions have not re-
ceived the same attention, however, and this deficiency has led to a
basic lack of clarity in one area of absolute stability theory. A resolu-
tion of this difficulty as detailed in [1] is outlined in this letter.

Given Z(s) = (n(s))/(d(s)) having poles and zeros in the left half plane
(Re s < 0), the necessary and sufficient condition that Z(s) be positive-
real (denoted Z(s) € {PR}) is that Re Z(iw) > 0 for all real w. The
corresponding conditions for Z(s) to be strictly positive-real (Z(s) €
{SPR ) have been given in two forms: Z(s) must have poles and zeros
in the open left half plane (Re s < 0) and either

Re Z(iw) > 0, wE (-=,=) (la)

or

ReZ(iw) 26 >0, wE€E|[-=,=]. (1b)
Equation (la) is not sufficiently strict [and this has led to a fundamental
complication in the Lefschetz-Kalman-Yakubovich (LKY) lemma],
while (1b) is too stringent.

First, the proposed definition” of a strictly positive-real function is

motivated by an appeal to network theory. A strictly positive-real
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function is said to correspond to the driving point impedance of a
dissipative network, i.e., a network composed of resistors, lossy in-
ductors, and lossy capacitors. These latter elements may be represented
by L(s + ¢) and C(s + €), corresponding to an ideal inductor in series
with Ry, = eL and an ideal capacitor in parallel with G¢ = €C, respec-
tively. Directly, an intuitively reasonable definition of strictly positive-
real functions ensues.

Definition 1: Z(s) € {SPR} if and only if there exists some € > 0
such that Z(s - e) € {PR }.//

Thus given any passive RLC network with Z(s) € {PR},a dissipative
network is always obtained by substituting L;(s + €) and C;(s + €) for
each L;s and Cys in Z(s), yielding the driving point impedance Z(s + €),
and, conversely, for any Z(s) € {SPR} there must exist some e¢; > 0
such that 0 < e < e; guarantees that Z(s - ¢) € {SPR}while Z(s-¢€p)
is merely positive-real.

This definition leads to an important asymptotic property.

Corollary to Definition 1: If Z(s) € {SPR} then Re Z(iw) can go to
zero no more rapidly than w2 as w — =.//

Proof: Given Z(s) = (n(s))/(d(s)) € {SPR}; Re Z(iw) — 0 as w — =
only if order [n(s)] = (order [d(s)] - 1), i.e., if
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By expansion,
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Thus since Re Z(iw - ¢) > 0 is to be satisfied as w— =, clearly
(@ncy - cp_y) 2 ecy = by, > 0 is required, and so Re Z(iw) ~ b,,lwz as
W —* o,

Example (Guillemin [2]): Several points are clarified by considering
the driving point impedance of a network made up of two parallel



paths, the first a lossy capacitor [C in parallel with G] and the second a
lossy inductor [L in series with R]. The normalized impedance is
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Directly,
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When ¢| = a3, note that G = 0 and Re Z (iw) — 0 as w ™ when w— =;
if ¢; = 0 then R = 0. In both cases Z, (s) is only positive-real and the
network having this driving point impedance cannot be realized with
lossy elements. Only in the second case is Re Z, (fw) zero for finite w
(at w = 0); if ¢; = 4 then Re £ (iw)> 0 for we(-==, =), so condition
(1a) is not in itself a useful definition of a strictly positive-real function.
Also, note that Z;(s) could not be accepted as a strictly positive-real
function using condition (1b) under any circumstances.
Every real rational function that is proper (having no more zeros than
poles) may be realized by a quadruple 1v,¢, A, b}as

Z(s)=y +cl (s1-A)'b 2)

where ¢ is a scalar, ¢ and b are n-element column vectors and A is an
n X n matrix. A fundamental network theoretic result (which is central
to the solution of the absolute stability problem via the Lyapunov
direct method) is the Kalman-Yakubovich lemma [3]. One form of
this lemma, due to Lefschetz [4], is especially useful in the stability
analysis of nonlinear time-varying systems (cf., Narendra and Taylor [5]).

Lemma 1: Given § > 0, a matrix 4 such that |s/ — A| has only zeros
in the open left half plane, a real vector b such that (A, b) is com-
pletely controllable, a real vector ¢, a scalar ¥, and an arbitrary real
symmetric positive definite matrix L (L = LT > 0); then a real vector g
and a real matrix 7= PT > 0 satisfying

ATP+PA=—qqT - 5L (3a)
Pb-c=\2yq (3b)

exist if and only if  is sufficiently small and Z(s) € {SPR }.//

Only the constraint Re Z(iw) > 0 was originally required in [4]. In
Lefschetz, Meyer, and Wonham [6] it was pointed out that this condi-
tion is too lax if ¢ = 0; in that case, the additional requirement
¢TAb < 0 must be imposed. Using phase variable canonical form (as
in [4], with no loss in generality), viz.,
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direct expansion results in

cpsl 4 ogsH ey
ZE) =y +

s 4ays™ 1+ 4ays+a,
and ¢TAb = (cp_y - apcy). Thus
(—CTAb) u:(n—l) PR

Wi g

Re Z(iw) =y +

and the condition Z(s) € {SPR } immediately guarantees that ¢74b < 0
if ¢ = 0 by the Corollary to Definition 1. Hence Definition 1 obviates
the necessity of introducing the seemingly artificial auxiliary condition
eTab <0 explicitly.

Finally, Lemma 1 and Definition 1 make the LKY lemma entirely
equivalent to one form of the Kalman-Yakubovich lemma due to
Meyer [7]. Given Z(s) € {SPR}, define

202 Z-=v+eT[(s - -A] b Ay +eTisl - )b

whereh;l\ A A + el; for € > 0 sufficiently small, f(s) e {PR}, and
| sf - A| has zeros only in the open left half plane. ~

Lemﬁm 2 (Meyer [7, Lemma If): Given a matrix A4 such that
|sf - ,@‘i has only zeros in the open left half plane, a real vector & such

that (4, b) is comp}\clcly controllable, a real vector ¢, and a scalar ¥;
then a real vector g, a real symmetric positive semidefinite matrix
M M =MT = 0), and a real matrix P = PT>0 satisfying

ATp+PA=-94T-M (4a)
Pb-c=-20 G (4b)

exist if and only if Z() € {PR}./
Substituting 4 = A + el into (4a) yields

ATP+pPA = -GGT - (M + 2¢P).

Since (M + 2¢P) is symmetric and positive definite, an elementary result
of matrix theory is that for any L = L* > 0 there exists a § > 0 such
that

M+ 2eP=5L 1-JI-’1\r

and z‘lr? = 1;:1 T2 0. From Meyer’s proof (it is not entirely obvious here) Ait

is thus always possible to satisfy (3a) with g satisfying qqT=34T + M.

This new definition of strictly positive-real functions may not be uni-
versally useful in every situation where it is necessary to impose a
stronger condition than Z(s) € {PR}; however, these points demon-
strate that it plays an important role in the present context.
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