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Data reconciliation is a well-known method in on-line process control engineering aimed 
at estimating the true values of corrupted measurements under constraints. An adaptive 
nonlinear dynamic data reconciliation (ANDDR) method is proposed that includes the 
application to processes with an unknown statistical model. ANDDR enables gross error 
detection (GED) as well. Finally, a novel smart tracking system is combined to ameliorate 
the problem of delay seen in both the original and later NDDR methods. This package 
with its smart tracking features is suggested for use in distributed control systems (DCSs) 
for process control and manufacturing applications such as paper making. Copyright © 
2006 IFAC 
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1. INTRODUCTION 

 
Data reconciliation (DR) is a well-known method in 
process control aimed at estimating the true values of 
corrupted measurements, taking into account 
constraints on dynamic behaviour, material and 
energy balance, etc. Usually it is presumed that the 
corrupted measurements are free of gross errors or, 
more specifically, that they only contain zero-mean 
random noise. Gross errors, however, exist normally 
in manufacturing processes due to malfunctioning 
sensors (e.g., data drop-out) or can be process-related 
(such as process leaks). It is crucial to detect and 
identify gross errors first or in some cases 
simultaneously with DR. There have been some new 
GED and statistical model identification approaches 
developed recently and combined with original 
NDDR method in order to remove the negative 
effects of gross errors. Among these methods there 
are very few approaches which address the situation 
where a statistical model is not available. However, 
they cannot handle either nonlinearity or dynamic 
behaviour of the processes which make them 
unsuitable for many manufacturing processes with 
common nonlinear and dynamic characteristics.  
 
In this study an adaptive nonlinear dynamic data 
reconciliation (ANDDR) method is proposed that 
includes the application to processes with unknown 
statistical models. Then, a novel smart tracking 

system is combined with this adaptive method, which 
ameliorates the problem of delay seen in existing 
NDDR methods. These new adaptive features permit 
solving the GED problem as well. Therefore, the 
combined ANDDR and GED algorithms together 
with the smart tracking system produce a package 
that is suitable for most manufacturing process 
applications. The proposed package has been 
successfully applied to the continuously stirred tank 
reactor (CSTR) model cited commonly in the 
literature. This package with its smart tracking 
features is suggested for use in distributed control 
systems (DCSs) for process control and 
manufacturing applications such as paper making, in 
order to improve process monitoring and lessen 
operator load work. 
 
A brief overview of DR methods and algorithms is 
outlined in section 2. In section 3 the original NDDR 
problem formulation and basic theory of ANDDR, 
which is proposed as an enhancement, is presented. 
Then, this ANDDR is combined with a novel GED 
and identification algorithm. Next in section 4, the 
smart tracking system is proposed which removes the 
delay seen in the results of original and existing 
NDDR methods. In section 5 the results of the 
implementation of the whole package on a simulated 
CSTR model are depicted. Finally, in section 6 the 
conclusions and future work are discussed. 
 



2. DATA RECONCILIATON BACKGROUND  
 

The DR problem was first introduced by Kuehn and 
Davidson (1961) for linear steady state models. 
There has been a great deal of research conducted in 
the area of steady state and linear processes, while 
NDDR has received less attention (Crowe, 1996). On 
the other hand, as far as engineering processes are 
concerned they often operate dynamically in highly 
nonlinear regions where traditional methods such as 
the Kalman filter or extended Kalman filter (EKF) 
may be ineffective (Liebman and Edgar, 1988).  
 
The necessity of developing NDDR methods was 
proposed by Liebman and Edgar (1988), and the 
advantages of using nonlinear programming (NLP) 
over traditional steady state DR methods were 
demonstrated. In the next step Liebman et al. (1992) 
developed their main NDDR algorithm. Their 
approach was based on simultaneous optimization 
and solution techniques where efficient state 
estimation was performed. There was no GED and 
identification included in the NDDR approach of 
Liebman et al. (1992), but, since then, to complete 
their work, there have been some new approaches 
which are capable of detection of gross errors, or, 
more specifically, identification of gross errors as 
well. For instance, Soderstrom et al. (2001) proposed 
an approach to simultaneously tackle the problem of 
GED and identification together with DR. Abu-el-
zeet et al. (2002) proposed a combined method of 
bias and outlier identification in dynamic DR where 
a history of all previous bias detection and 
identification methods is briefly presented.  
 
There have been studies to address the estimation of 
the measurement error covariance matrix but either 
applied only to linear processes or limited to 
stationary processes (Alici, 2001). Although several 
authors have stated the need for covariance 
estimation for DR, none of them has proved the 
effectiveness of using this matrix in DR except for 
Alici (2001) who demonstrated its necessity and 
briefly discussed the effects that covariance matrix 
estimation has on DR. She also addressed the 
combination of dynamic model identification (DMI) 
with NDDR. 
 

3. PROBLEM FORMULATION AND 
SOLUTION STRATEGY  

 
3.1 The original NDDR problem formulation and 

solution strategy 
 
The original NDDR formulation was developed in 
Liebman et al. (1992), and it may be re-stated as 
follows: 

ˆmin ( , ( ); ),
y

y y tφ σ
∧
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Here the corrupted measurements and reconciled 
estimates include both state variables and input 
variables. The first constraint, Eq. (2), represents the 
process dynamics, the second, Eq. (3), may describe 
energy and/or material balance, and the third, Eq. (4), 
may impose process variable limits. For more details 
one can refer to the paper by Liebman et al. (1992). 
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For most applications the objective function is 
weighted squared error (WSE): 
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y j%  = measured (corrupted) values at discrete time t j  

ŷ j  = estimated values at discrete time t j  

V = variance-covariance matrix where each diagonal 
element V  is ii

2
iσ  

0t = initial time, t  = current time  c
 
The solution adopted by Liebman et al. (1992) is a 
moving horizon approach which enables the user to 
utilize all the information at hand (process 
measurements) from start-up to the current time. This 
moving horizon window (MHW) approach has the 
advantage of reduced optimization problem size 
while giving the user the advantage of having only 
one tuning parameter, the window horizon (H), 
compared to other nonlinear approaches such as the 
EKF where more tuning parameters need to be 
adjusted. Another advantage is its capability of 
handling constraints such as equalities and 
inequalities, whereas other approaches such as the 
EKF cannot. Figure 1 shows the basic idea of the 
MHW approach for NDDR. In this method after 
collecting the process measurements up to , ct φ  is 

optimized over -H to , the current time. Then 
one point is saved and the procedure is repeated 
at the next time step (Liebman et al., 1992).  

ct ct
)(ˆ cty

 

In order to solve the optimization problem in Eqs. (1) 
to (4) the nonlinear model presented as the first 
constraint in Eq. (2) needs to be discretized. In this 
study the fourth order Runge-Kutta method has been 
chosen to simulate and discretize the model. 

tc - H tc

True values Measurements Estimates

Fig. 1. History horizon for NDDR 
 

     



Once the discretization is implemented, Eqs. (1) to 
(4) can be rewritten as the following NLP problem: 
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where ˆ( )f y ,  and ˆ( )h y ˆ( )g y  now represent the 
constraints obtained through discretization, η is a 
vector of weights and n  and i ns  are the numbers of 
inputs and states (outputs), respectively. 
 
3.2 ANDDR and GED methodology 
 
As mentioned earlier, most NDDR techniques today 
are based on two major assumptions: 1) having 
known dynamic and statistical models, and 2) having 
gross-error-free measurements. The novel ANDDR + 
GED approach is suitable for cases where one does 
not have a statistical model for noise, or, in other 
words, standard deviation σ or covariance matrix V is 
not known, and where isolated outliers may occur. In 
this methodology the same moving window approach 
proposed in Liebman et al. (1992) is used and σ is 
estimated as each measurement variable is processed. 
The method can briefly be described as follows: the 
moving window provides us with H measurements at 
each time step. Assume that H ≥ 10 in this 
discussion; if this is not true, then a longer window 
may be used for estimating σ. Using these measured 
variables the sample variance is used to estimate σ 
for each variable. It is known that (Taylor, 1981) the 
σ of the sample variance for a Gaussian process is:  
 

H
V
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So for H ≥ 10 the estimate is adequate for a threshold 
test that is usually conservatively chosen, e.g., 

σ̂3=T . This is the basis of the σ estimation method 
which justifies using V̂ˆ =σ  in solving the ANDDR 
problem. 
 
To perform GED the previous mean, Eq. (10), is 
used to derive the difference  for each time step, 
and this is compared with the threshold based on the 
previous 
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σ̂ , 1ˆ −cσ , as indicated (Eq. 12). If exceeds 
this threshold, then the algorithm suspects the 
existence of an outlier and waits to receive the next 
measurement. Based on the new d, , it decides if 
the previous measurement was an outlier or a step 
change. This comparison is continuously conducted 
at each time step. 
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Attention must be focused on points in time near set-
point changes. If the algorithm is not smart, then 
such a change can simply be taken as a gross error. In 
our development, a sample point where an error 
threshold is exceeded is designated as a possible 
outlier and the next point is processed to decide if a 
set-point change occurred or the previous point 
contained an outlier (in which case it is edited out, 
e.g., by interpolation). This is effective under the 
assumption that outliers are isolated (do not happen 
in successive samples); if this cannot be assumed 
then the algorithm would have to be modified to wait 
several samples before the outlier/set-point-change 
decision can be made. This logic causes a one or 
several time-step delay in a real-time setting; thus 
there is a trade-off between fast or robust detection. 
The former needs a GED algorithm based on an 
assumption of isolated gross errors, and the latter, 
which enables us to handle a number of successive 
gross errors, requires more detailed logic. 
 
Figure 2 is a flowchart that describes step by step the 
procedure of implementation of proposed ANDDR 
and GED. This flowchart is inspired by Alici et al. 
(2002). 
 

4. ANDDR AND ITS SMART TRACKING 
SYSTEM  

 

Studying the results of the original NDDR 
implementation on the simulated CSTR model 
presented by Liebman et al. (1992) clearly shows a 
significant delay for the input estimation when a step 
occurs, which also causes some delay in the 
estimation of output variables. This delay, especially 
for the input estimation, is the main drawback of the 
original NDDR and later enhanced approaches. This 
delay is caused by the assumption that the input is 
constant over the entire moving window. Therefore, 
a complete window length is required to reach steady 
state at the new set-point. Our new algorithm 
includes set-point change detection as part of the 
GED logic, and it tracks the set-point change by 
introducing a second level. When the set-point 
change is sensed, the second level tracks the new set-
point. In this way the whole delay is removed, 
producing estimates that are significantly more 
accurate. In the next section the results for the input 
estimation show satisfactory results of this smart 
tracking system implementation. 
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5. CASE STUDY  
 

In this paper a simulated CSTR model studied 
commonly in the literature is chosen. In order to 
produce the comparable results with those of 
Liebman et al. (1992), the same assumptions and 
parameters values for the model are used here. The 
normalized model can be presented as follows: 
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Fig. 2  ANDDR and GED algorithm flowchart 
 
where the input stream feed concentration and feed 
temperature are input variables and concentration 
A and temperature T are output variables. There are 
two simple constraints on both input and output 
variables as follows: 

0A

0T

 

0.20,0 0 ≤≤ AA     (16) 

0.10,0 0 ≤≤ TT     (17) 
 

The values of other constants in this model are 
presented in Liebman et al. (1992). In this example 
both the two inputs and two states (outputs) are being 
estimated. The measurement noise is assumed to be 
Gaussian withσ equal to 5% of the actual value and 
zero mean. The time step is assumed to be 2 sec and 
the simulation is run for 100 samples with window 
width of H=10. Obviously, the first estimation is 
achieved at time step 10 where the first window of 
measurements is available. 
 
5.1 Comparison of original NDDR results with 

ANDDR + GED in the presence of outliers 
 
Here it is assumed that isolated outliers exist for each 
variable. The number of gross errors over the entire 
horizon is 5 for each variable.  
 

     

In Figs. 3 to 6 the estimation results considering a 
step change at time step 30 for the first input, , 
from 6.5 to 7.5, and another step change from 7.5 to 
4.5 at time step 70, are presented. In each figure the 
complete time-history is shown, plus a zoomed 
section for better viewing. The solid lines in these 
figures show the true values, circles show the 
corrupted measurements, stars present the proposed 
ANDDR + GED estimation results and plus signs 
mark the original NDDR data. As the figures show, 
the gross errors have been detected and successfully 

removed, and the estimation has not been corrupted. 
Observe that the outliers cause significant corruption 
of the NDDR data.  

0A

 
5.2 Comparison of original NDDR with proposed 

smart tracking system  
 
As discussed in section 4, using the original NDDR 
method (and later extended versions of it) it takes a 
full moving window length to get to the exact new 
set-point after an input step change occurs. One can 
see this delay in Fig. 5 in the estimation of feed 
concentration  when the step inputs are applied at 
time points 30 and 70, which also causes a slight 
delay in both states’ estimation. Using the smart 
tracking system, however, the estimates do not show 
any delay (Fig. 5). To present this feature of the 
smart tracking system, another situation is considered 
where no gross errors exist on any measurement 
variable. Here again the same two steps are applied 
on feed concentration. Fig. 7 shows the estimation of 
feed concentration which represents no delay. Also 
the slight delay seen in both NDDR output 
estimations are eliminated (Figs. 8, 9). 

0A

 
Note that in all the estimation results of ANDDR + 
GED the assumption was that the statistical model, σ, 
is not available, and only for the original NDDR 
implementation the σ is assumed to be known. 
Therefore, Figs. 3 to 9 prove that the ANDDR + 
GED package has successfully estimated the σ and 
there is no accuracy degradation seen in the main 
NLP problem solution. Also the noise reduction ratio 
of ANDDR was compared with that of the original 
NDDR, and no difference was seen.  
 
Another improvement observed in this study is the 
ability to detect the peak for the output estimations. 
For instance, Figs. 8, 9 show the peak (at time step 
70) has been detected clearly but the results given by 
Liebman et al. (1992) demonstrate the output 
estimates do not follow the peak when the set-point 
is changed. 
 

6. CONCLUSION AND FUTURE WORK 
 
The proposed package has been successfully 
implemented and applied to the CSTR model of 
Liebman et al. (1992). These results demonstrate the 
performance improvements possible in applications 
where set-point step changes occur and where the 
variance/covariance matrix is not known. The next 
step will be an evaluation on a more realistic model 
of a pilot plant facility at the College of North 
Atlantic, which is involved in the Petroleum 
Application of Wireless Systems (PAWS) project, 
followed by studies with actual data acquired from 
the plant. This package with its smart tracking 
features can be successfully used in a DCS in order 
to improve process monitoring and lessen operator 
load work. Adding a DMI feature to the proposed 
approach may be a useful extension for this study. As 
stated in section 2, DMI has been addressed in Alici 
et al. (2002), but the selection of a DMI approach 
requires some attention, since it can be application 
dependent. Therefore, the combination of a suitable 



DMI method and our new package for ANDDR and 
GED is suggested as future work. 
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Fig. 3 Output concentration, A, estimation 
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Fig. 4 Output temperature, T, estimation 
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Fig. 5 Feed concentration, , estimation 0A
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Fig. 6 Feed temperature, , estimation 0T
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Fig. 7 Feed concentration, , estimation 0A
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Fig. 8 Output concentration, A, estimation  
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Fig. 9 Output concentration, T, estimation 
 

 
REFERENCES 

 
Abu-el-zeet Z.H., Becerra V.M. and Roberts P.D. 

(2002). Combined bias and outlier identification 
in dynamic data reconciliation. Comp. Chem. 
Engng, 26, pp. 921-935. 

Alici S. and Edgar T.F. (2002). Nonlinear dynamic 
data reconciliation via process simulation 
software and model identification tools. Ind. 
Engng Chem. Research, 41, pp. 3984-3992. 

Alici S. (2001). Dynamic data reconciliation using 
process simulation software and model 
identification tools, Ph.D. Th., U of Texas Austin. 

Crowe C. M. (1996). Data reconciliation progress 
and challenges. Jour. of Proc. Cont., 6, pp. 89-98. 

Kuehn D.R.  and Davidson H. (1961). Computer 
Control. Chem. Engng Prog., 57, pp. 44-47. 

Liebman M.J., Edgar T.F. and Lasdon L.S. (1992). 
Efficient data reconciliation and estimation for 
dynamic processes using nonlinear programming 
techniques. Comp. and Chem. Engng, 16, pp. 
963-986. 

Liebman M.J. and Edgar T.F. (1988). Data 
reconciliation for nonlinear processes. Proc. of 
AIChE Annual Meeting, Washington DC. 

Soderstrom T.A., Himmelblau D.M. and Edgar T.F. 
(2001). A mixed integer optimization approach 
for simultaneous data reconciliation and 
identification of measurement bias. Cont. Engng 
Practice, 9, pp. 869-876. 

Taylor J.H. (1981). Statistical performance analysis 
of nonlinear stochastic systems by the monte 
carlo method. Math. & Comp in Simul., XXIII. 

     


	(13)



