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A‘bstra.ct: We havp begn working to develop an expert-system-based environment for Computer-
Aided Control Engineering (CAOE). Our goal is to create a high-level user interface to conventional
CACE tools, with substantial capabilities in areas that are either very complicated, or that require

heuristic logic or specialized knowledge, or both.

So far, we have developed rule bases for linear sys-

tem diagnosis, specification development, lead/lag compensator synthesis, and design validation,

We report here on recent research in expert-aided CACE for nonlinear systems. Our approach is to
perform extensive experlmenta.blon (usmg both numerical and symbolic processing) under the direction
of a rule hase containing * expertlse in and heuristic strategies for nonlinear CACE. The results and
status of this effort are described in detail. This work represents the first phase in an iterative process;
much is being learned that will be folded back into the rule base to improve the capabilities of the
expert system.s We should stress that our expert system is not particularly deep at this time - our
present objective is to aid the user in making the most effective use of rather complicated procedures
and conventionhl CACE software; in many instances, this simply involves “common sense”.

Keywords: Computer-aided system design; expert systems; nonlinear systems; descrlbmg functions /
Fourier analysis; artificial intelligence; computer interfaces for CAD; heuristic programming,.

1. INTRODUCTION

There has been a major effort in recent years to develop
very capable and sophisticated computer-aided control
engineering (CACE) software environments. Some of the
earlier and best-known major developments in this area are
the UMIST Suite, CLADP (the “Cambridge Package”),
KEDDC, the Lund Packages, CTRL-C, MATRIXx, and the
GE Federated System. These and other noteworthy exam-
ples may be found in the proceedings of the IFAC Symposia
on CACSD (1982, 1985) and in ELCS (Rimvall, 1986).

As the number, capabilities, and complexity of this soltware
increases, the possibility that any individual will be able to
apply the available techniques and software effectively
decreases. This problem is compounded in treating non-
linear systems: The number of approaches and the amount
ol expertise required to employ them successfully are both
large. We believe that the expert systems approach pro-
vides an effective solution to this difficulty.

Our recent efforts (refer to Taylor and Frederick (1984);
Taylor, Frederick, and James (1984); James, Frederick, and
Taylor (1985); and James, Taylor and Frederick (1985))
have focussed on the use ol‘ expert systems to aid a control
engineer in exploiting available software to carry out ana-
lyses and achieve acceptable designs. We use General
Electric’s DELPHI expert system shell in combination with
the following conventional analysis and design software:

a. CLADP for analysis, design, and simulation of linear
systems (mainly frequency domain; see Rimvall, 1986),

b. SIMNON for nonlinear simulation (see Rimvall, 1986},

c. extensions to SIMNON (Taylor, 1982, 1985), for deter-
mining equilibria, calculating conventional linearized
models, and generating frequency-domain sinusoidal-
input describing function characterizations of nonlinear
system input / output relations, and

d. SFPACK, a MATLAB-based package for state-space
analysis and design {Minto and Vidyasagar, 1985).

‘These packages are included in the GE Federated System
(Spang, 1984); they were extended slightly to support the
exchange of data with the expert system.

Integrating the numerical capabilities of the above soltware
with an expert system results in a high-level combination of
large-scale numerical processing with large-scale symbolic
processing. We use DELPHI to invoke the various numeri-
cal routines, transform and exchange data required to carry
out an analysis and design task, and interface with the user.
Tor example, more than a hundred commands may bhe

issued to CLADP by the expert system in the process of
designing a single-input / single-output control system com-
pensator (James, Frederick, and Taylor, 1985). Some of
this activity is purely mechan]cal other involves heuristic
rules, e.g., for adjusting the parameters of a compensator to
meet specifications. This software system thus achieves a
transfer of much of the burden of the complexity of the
control engineering problem from the shoulders of the
design engineer to the expert system. Our most recent
effort has been to extend this type of expert aiding from the
linear domain to nonlinear systems.

Organization: In Section 2 we discuss the basic functions
that belong in an expert’s nonlinear control engineering tool
kit, and the integration of these functions into high-level
“expert procedures” is developed in Section 3. Other
approaches to expert aiding are mentioned in Section 4.
The operation of the expert system’s nonlinear CACE
knowledge base is illustrated in Section 5, where we apply
the procedures of Section 3 to a position control problem.

2. CACE FUNCTIONS FOR NONLINEAR SYSTEMS

The following operations provide the “building blocks” that
are integrated into expert-aided procedures for nonlinear

system CACE in Section 3. We assume throughout that the

user has a model of the nonlinear plant in the form
g = f(=, u)

y = h(z, u)

where z represents the state vector of dimension n, u
denotes the input vector of dimension m, and y is the out-
put or measurement vector of dimension p.

(2.1)

2.1 Direct Simulation

First explorations of a nonlinear system’s behavior are usu-
ally carried out via simulation. By this, we mean writing the
nonlinear equations (2.1) in a form suitable for numerical
integration, specilying initial conditions on the states 24 and
the input function wu(¢) appropriately, selecting a suitable
numerical integration algorithm, and carrying out the
integration to generate time-hislories x(¢; g, u(t)). This is
done both to validate the model and to gain a better under-
standing of the behavior of the system.

2.2 FEquilibrium Determination

A fundamental step in designing controls for a nonlinear
plant is defining the operating point. Often this is an equili-
brium corresponding to a given constant value of the input:




(2.2) ug — %ot f(@g, o) =0
This is not the only way an operating point can be defined.

Tor example, in dealing with flight control system design,
the operating point is often a “trim condition™

zg— g f{Tp, ug) =0

This is not a generic problem, as the user cannot specifly z,
arbitrarily. Instead, knowledge of the physical significance
of the states must be used to generate a meaningful z¢ that
can in fact correspond to trim. Since our objective is to pro-
vide expert-aiding for generic aspects of nonlinear CACE,
the only operating points considered are equilibria.

2.3 Linearized Model Determination

Given an Op'erating point (g, zg), the formal definition of a
linearized model is based on partial derivatives:

(2.9) 8§z = A bz + Bbu
by = Céx + D bu

where 6z & z - %9, 0y Y ¥y— Yo, 6u A - g, and

A= [07 /03)uyzgr B = [0 /30)uy -,

C = [ah /ax]um,o, D = [ah /01:],,0'20

This process is often called small-signal linearization (SSL),
to underscore that the model is only valid in the immediate
vicinity of the operating point (ug, ), assuming that the
indicated partial derivatives exist.

(2.4).

Linearized models can be obtained by symbolic manipula-
tion (e.g.,, MACSYMA); however, approximating these par-
tial derivatives by finite differences is easier to implement

numerically, usually faster in terms of computer execution

time, and can be more informative in assessing the impor-
tance of nonlinear eflects (cf. Step e, Section 3.1).

Using the scalar case for simple notation, the partial deriva-
tive of f with respect to # can be approximated by taking a
central difference:

8f o J(s+62)— [(x - b2)
(25) Ernl 262

One must be concerned with round-off error if 62 in Eqn.
(2.5) is too small, and truncation error due to the curvature
of f if 6z is too large. A robust automatic linearization
method is used in our system (Taylor 1982) that evaluates
cenfral differences for 8§z and 26z, adjusts the perturbation
6x based on the two estimates, and then combines them
appropriately to minimize truncation error. This algorithm
can also be used with a user-specified value of §z; one con-
cern with the automatic algorithm is that discontinuities in
f(z) may deleat the adjustment, in which case manual
selection of 6z may be very useful (Section 3.1).

2.4 Diagnosis of Linearized Models

The diagnosis of a linearized model can provide a large body
of useful information regarding the stability properties of
the system in the vicinity of the operating point and other
qualitative evaluations such as the controllability and obser-
vability of the system, “wrong-way response” due to right-
half-plane zeroes, etc. Such diagnoses are well known and
can be carried out using conventional software.

2.6 Distortion Analysis

One “measure of nonlinearity” of a process is the amount of
distortion produced as it responds to a given type of inpul
signal, The most common input in this context is the
sinusoid, because stable linear systems excited by such an
input produce a sinusoidal output in the steady state.

A standard approach to distortion analysis is to simulate the
nonlinear system with sinusoidal inputs of amplitude. Au
and perform a Fourier analysis of the system output signals
to determine the amount of higher harmonic content. The
usual distortion measures involve the second- and third-
harmonic content of the output:

pps =03 +bF //al +b}
o3 = Va3 + b§ /+/af b

(2.6)

where a; and b; denote the Fourier coeflicients (in-phase
and quadrature) determined for the output of the system.

Fourier analysis of the process output can be carried out
“off-line”, i.e, by post processing simulation data from
which the transient portion of the response has been elim-
inated, or more directly with a straightforward extension of
software for nonlinear simulation (Taylor, 1985). In the
latter approach, TFourier integrations are performed
simultaneously with the integration of the system response
to the sinusoidal input; a convergence test is made to deter-
mine when the simulation has reached steady state and the
values of the Fourier integrals provide the harmonic content
information needed for the distortion measures Eqn. (2.6).

2.8 Compensator Design

The most straightforward method for designing compensa-
tion for a nonlinear system involves choosing a “good”
linearized model for the plant and using classical or modern
techniques to design linear compensation. This is often ade-
quate, and it is fair to say that most working control systems
were designed in this way. Our present expert system for
nonlinear system CACE is based on such an approach; how-
ever, we do intend to extend this system to include the
nonlinear compensator synthesis methods of Taylor and
Strobel (1984, 1985).

2.7 Design Validation

The minimum acceptable validation of a control system
design is to simulate the closed-loop system (with the non-
linear plant model) for step inputs of amplitude Au,,
selected to cover the expected range of operation (e.g.,
small, moderate, large Au,). Other validation exercises
might include robustness tests (simulations at various
operating points or with parameter variations representative
ol their uncertainty), response tests for other types of
inputs, more realistic emulations of the control system
soltware and hardware, etc.

3. EXPERT-AIDED NONLINEAR CACE

The knowledge acquisition part of this effort is being
approached using the “expert procedure modeling” tech-
nique described in Taylor and Frederick (1984): We pose
“archetypical problems” and develop a conceptual frame-
work and plan for their solution. This structures the
knowledge and results in an architecture definition within
which we implement the expert system. The resulting
architecture for CACE consists of a supervisory rule base,
which oversees the CACE activity at the highest functional
level, and “worker” rule bases which deal with model diag-
nosis, constraint definition, specification development, con-
trol system design, and design validation.

We implement this approach by combining the basic opera-
tions outlined in Section 2 to realize our concept of an
“expert approach” to nonlinear CACE. The areas where we
believe nonlinear CACE is most substantially different from
the linear case (in terms of “standard practice”, not theory)
are modeling and control system design. We thus focus,
exclusively on those areas and the associated rule bases.

3,1 Rule Base for Modeling Nonlinear Systems

The goal of modeling is to understand the nature of the
plant and provide the basis for control system design; the
output is a data base characterizing this process. Our plan
for an “expert approach to nonlinear system modeling” is
based on the fundamental requirement that the user be
asked to provide only a state-variable differential equation
(2.1) in a form acceptable by conventional software for
simulation and analysis, and the barest minimum a prior
information regarding the behavior of the nonlinear system.
(We could probably produce a “smarter” system if we make
the problem less generic; however, we are exploring the
general case, since treating a system model as a black box
seems to require considerable ingenuity and may provide a
great deal of support for the user who is not a process
expert.) We do presume that the system is asymptotically
stable within its operating regime; otherwise many of the
procedures below (e.g., determining frequency response via
simulation) might have to be modified or eliminated.




In addition to the dynamic model, we believe that it is rea-
sonable to ask what value of uy the user is considering

{(which defines the operating point, Sect. 2.2) and the '

approximate maximum input excursions Au that are antici-
pated. The user should certainly be able to determine the
answers to these questions by simulation, if not from
experience. If the user is quite sure that the system model

has no discontinuities,

this is sufficient information; if

discontinuities may be present, we also ask for an estimate
of the system rise time T,, for reasons outlined below.
Given only this information, expert-aided nonlinear system
modeling uses the following strategy:

&,

Determine the equilibrium (Séction 2.2) (if the
equilibrium is not unique, then the user may have to
provide an initial guess to obtain the desired point).

If there' may be discontinuities, check for integrability:
choose first-order Euler integration with step sizes dt =
0.01%T,, 0.02+1,, 0.04*T, and see if a reasonable error
behavior is observed between the resulting time his-
tories; if it is not, try doubling or halving the step size
until a suitable error relation is obtained. An “optimal”
dt is one such that the difference between that time his-
tory and one generated with 2#d¢ is within a specified ¢
while the next doubling (4*dt) yields unacceptable
error. Then try a more sophisticated algorithm (e.g.,
Runge Kutta with variable step size) and see if the
same accuracy can be obtained with less computer time.
(If there are no discontinuities, the latter algorithm can
usually be chosen directly. High-order predictor/

corrector methods should not be used unless f(z,u).

and u(t) are at least continuously differentiable.)

. Determine a SSL linearized model for the operating

point (ug, ) using the automatic linearization algo-
rithm (Section 2.3). This is a provisional model until
the issue of discontinuity is resolved (Step ¢).

Determine the range of the state variables (Az) and
output variables (Ay) corresponding to the input signal
range Au: select a range of [requencies |{w, @], based
on the eigenvalues of the linearized model if the user
believes the system is continuous, or on the rise time
T, if this is not so; simulate the nonlinear system for
sinusoidal inputs of amplitude Au; and search for ‘the
corresponding maximum state amplitude over the fre-
quency range. Note that the frequency range can be
modified if the behavior so indicates; e.g., if the
response is flat, over [w, @], then @ should be
increased, while if the response is continuously rolling
off over [w, @], then w should be decreased. It is
important to determine [w, @] so that “all the impor-
tant action” (e.g., breakpoints) occurs over this range.

Check for discontinuities in the nonlinear system model
at the operating point (uy, #p). This is done by using
linearization (Section 2.3) with manually-selected per-
turbations based on the anticipated range of system
variables determined in Step d, as follows: obtain two
linearized models, one for {0.02Au, 0.02Az) and the
other for one-half these perturbations. Denote the
resultinﬁ arrays {4 n, 1) o), D(l)} and
{A(Z),B 29 ¢l@) pl2) }, respectively. Il any element(s
of A are about twice as large as the same e]ement%sg
of A(l), then f(=,u) is discontinuous with respect to
z; il any elementi(s) of B %) are about twice as large as
the same element(s) of B(), then f(w,u) is discon-
tinuous with respect to u; and similarly C,D can be
inspected to find discontinuities in A{x, u). If there are
large disparities but not in the ratio 2:1 indicated, then
halve the perturbation sizes and check again. Fig. 1
shows why this approach will effectively reveal discon-
tinuities if carried out and interpreted correctly.

Check for multi-valued nonlinearities? (We have not
yet been able to devise a general strategy to do this.)

Based on the results of Steps ¢ and e, determine the
robust linear model for the plant: il the system is con-
tinuous, then use the SSL model from Step ¢; if it is
not, then replace the corresponding element(s) of the
linear model arrays with the appropriate sinusowlal-input
describing function (SIDTF) gain(s). This is done as fol-
lows: assuming that the nonlinearity is

h.

J(z)=mz +dsgnz,

for which the two derivative estimates in Step e are
(df Jds]M) = m + d /6=, [df [dz]®) = m + 2d/6a
One cah solve for m and d as

d = 8a{|df fdz)® - [df fdu] D),

m = 2[df Jdz| V= [df Jdz](?).

Given m and d, the SIDF gain is |[m + 4d/m Az},
where Az is the maximum amplitude of z (Step d).
This new gain then replaces the invalid value in the
SSL model; denote this model LRBy.

Perform a linear diagnosis of this model (Section 2.4).

Diagnose the nonlinear model for distortion: Given
sinusoidal inputs of amplitude 0.1 #*Au, 0.5 * Au, and
Au and frequencies over the range [w, @], determine
the higher harmonic content in the system output (Sec-
tion 2.5); distortion measures are given in Eqn. (2.6).

Diagnose the robust linear model for “fit": perform
simulations of this model for sinusoidal inputs of ampli-
tude Au and frequencies over the range [w, @], and
compare the response amplitudes with those obtained
in the step above (divide the response by 2 and 10 for
the low-am plitude comparisons).

. Determine linearized model sensitivity to perturbations

in operating point: find equilibria for 1!0+"§‘AU and

g — %Au, denoted zg" and zg , respectively; then find

robust linearized models at those equilibria (Step g¢)
denoted LRBg and LRBg ; diagnose these models;
quantify and compare:

+ FEigenvalue sensitivity: Report this to the user in the
form of root locus diagrams (characteristic loci in
the multivariable case), where the changes in roots
are due to operating point perturbations; quantify .
this in terms of percentage change.

o Transfer function sensitivity: Report this in the form
of Bode plots of magnitude and phase (maximum
and minimum singular values for the multivariable
case); quantify this using H? or H® norms.

e Step response sensitivity: Report this in the form of
time-history plots; quantify this using integrated
squared error divided by the integral of the nominal
system response squared (normalized ISE); e.g.,
given h,(t) for the nominal operating point and
h{P)(1) for the =g point,

T

T R
(3.1) pp = {[’la(t)_ ha(+)( t)]zdt /j(; [ha(t)]zdt

This measure can be obtained directly by expanding
the overall model to include a subsystem that per-
forms the required integrals during simulation.
Note that systems with odd symmetry about the operat-
ing point will yield perturbed models LRB§ and LRBg
that are identical; the test LRBg == LRBg may be
used as a check for this condition.
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3.2 Rule Base for Compensator Design

We have developed a lead/lag compensator synthesis rule
base for linear control system design (James, Frederick, and
Taylor, 1985). In our present approach to nonlinear control
system design, we apply this rule base to the “most
appropriate” linearized model of the plant. This strategy is
straightforward, and conforms to common industrial prac-
tice for nonlinear systems; it generally works if linear com-
pensation is adequate for the task. A more eflective
approach has been developed recently which synthesizes
nonlinear compensators for highly nonlinear systems; see
Taylor and Strobel (1984, 1985); however, we have not yet
implemented these advanced techniques in our expert sys-
tem, Therefore, we focus on selecting the most appropriate
linearized model, which involves substantial judgement
based on a modeling exercise as described in Section 3.1.

At the end of the modeling effort, we have an indication of
the severity of the system nonlinearity and of where trou-
bles might be encountered (e.g., for small input signals). In
addition, there is a collection of linearized models that can
be used as a set of candidates for the selection of the most
suitable model for design and for direction in the design
process. Ifor example, these models may be used to quan-
tify model uncertainty, and thus serve as the basis for a
robust synthesis approach using singular values; or they
may be used to define a conservative “worst-case” model
(e.g., in the single-input / single-output case, the model
with the least gain and/or phase margin) which is then used
in conjunction with classical design techniques.

In our case, validating .the linearized model to be used by
the lead/lag compensator rule base is critically important.
We perform this task automatically by making step- and
sinusoidal-input response comparisons: We simulate both
the nonlinear model and a candidate linearized model of the
system with step or sinusoidal inputs of appropriate ampli-
tude to generate output time-histories yy(t) and y,(¢) and
compare; the measure of linearized system modeling error
is integrated squared error. divided by the integrated square
of the nonlinear system response (normalized ISE); cf. Eqgn.
(3.1). The input amplitudes used are based on modeling
results (Section 3.1); the interpretation of the analysis and
execution of further iterations if required are governed by
the rule base. The output of this validation process (e.g.,
measures of goodness of fit) is used to select the best
- model for design, as a basis for control system performance
specification, and to assess the likelihood of success in the
linear compensator design process.

3.3 Interpretation and Heuristic Reasoning

The above items constitute a rather mechanistic statement
of the overall procedure for expert-aided nonlinear model-
ing and design. The outcome of modeling should be a
sound understanding of the behavior of the process and the
information needed to perform a control system design with
a good assurance of success. This information might
include, for example, a basis for choosing performance
specifications and the type of controller to be designed (e.g.,
lead/lag, PID, . . .; linear or nonlinear; we currently support
only the first of these). Several points call for further dis-
cussion: the interpretation of the results, and the role of
heuristic reasoning in the process. These considerations, in
effect, justify implementing this process using an expert sys-
tem rather than a conventional approach (e.g., setting up
command files or macros to run the CACE sofltware).

Interpretation: Some of the steps in Section 3.1 produce
information that is of clear importance and meaning. For
example, a diagnosis of a SSL system model (assuming the
system is continuous) reveals a great deal of information
regarding the behavior of the system in the vicinity of the
operating point; see Section 2.4, Other steps have
significance that is not so obvious: .

o Step b: Integrability testing may provide early warnings
of potential problems: for example, if the automatic algo-
rithms take large amounts of computer time compared
with the first test suggested, than the system is quite
likely to be discontinuous or worse. The dynamics may
also be stiff (have some states that are much faster than
others). Either condition may be difficult to handle.

« Step d: the frequency range [w, @] provides a measure

of the intrinsic time-scale(s) ol the plant which is very
important if' the system is not continuous. The ranges of
the state and output variables in response to the user’s
definition of the range of the input excursion may also
provide ‘information regarding the suitability of the origi-
nal Au specification, and also serves to define what
might be considered to be “small, medium and large”
perturbations in other analyses (see, e.g., Steps e, 7).

« Steps e, f: the importance of discontinuity in the system
model at the operating point is well known. The main
issues are: SSL models are not defined for systems
without partial derivatives, so one must define an alter-
native model with considerable care (Step g¢); and
discontinuities may lead to “chatter” or limit cycle
phenomena in the closed-loop system unless it is
designed to have infinite gain margin. Multi-valued non-
linearities in the system model are even more trouble-
some than discontinuities, so a simple, generic approach
to detecting them would be very beneficial.

o Steps 4, j, k: these analyses provide metrics for the
severity of the nonlinearity of the system and quality of
fit for the linearized model from Step g. These meas-
ures should be valuable to the user (e.g., for arriving at
meaningful specifications), and may be used in the con-
trol system design rule base to aid in selecting the best
linearized model to use as the basis for design,

In all of the above, there may also be a subjective aspect of
interpretation. For example, conclusions of the form “The
system is very stiff.” or “The system is severely nonlinear for
small inputs.” may be critical in determining how to design
the control system. Such statements might be reached by
applying heuristic and/or fuzzy reasoning methods to the
numerical results obtained in the diagnostic process.

Heuristic Reasoning: Executing Steps a through & in the
modeling procedure is not as easy as might be inferred from
the listing in Section 3.1. The expert system may have to
reason and iterate in response to a number of eventualities:

o Numerical problems: In every case, an analysis must be
sebt up and carried out with conventional software. Occa-
sionally, the problem cannot be solved for numerical
reasons, and another algorithm must be selected or a
convergence parameter must be changed. Most of this
information is in the form of heuristic rules known to
expert users. Examples:

—+ Step b - if there are discontinuities in the system
model, then do not use predictor/corrector methods
for numerical integration (they use previous deriva-
tive values which become invalid at a discontinuity).

—+ Steps d, i, J - analyses of steady-state sinusoidal input
response require careful handling of transient
behavior and convergence (cf. Taylor, 1985).

s Groping: There are numerous areas in which the expert
system has to use a rule of thumb to perform a trial,
then perhaps modify the experiment and iterate until
suitable information is obtained. Examples:

—+ Step b - iterate until a suitable integration method is
found, as indicated.

— Step d - determine [w, &}]: either the rise time esti-
mate T, or the eigenvalues of the SSL model provide
a rough initial guess for this frequency range. For
example, taking the minimum and maximum magni-
tudes of the SSL eigenvalues or taking [0.3/7T,,
30/T;] (since w, = 3/7, lor a second-order system)
are reasonable starting values, Then iterate as indi-
cated, using heuristics to ensure that “all the action”
occurs in the final frequency range.

—+ Step e - checking for discontinuities may involve con-
siderable trial-and-error, since the 2:1 rule only works
for appropriate perturbation magnitudes.

— Steps { and j are based on the meaning of “small,
medium, and large” input variations; the suggested
amplitudes may or may not be the most significant
cases to consider. For example, if the first-cut
analysis with the multiples 0.1, 0.5, 1.0 shows that
the system is severely nonlinear for small inputs,




then perhaps the analysis should be repeated for 0.02
and 0.05 to explore the problem further. Also, one
may find that the number of frequencies selected in
[w, @] may need to be iterated il there are reso-
nances or other need for detailed analysis.

— Step &k - quantifying linearized model sensitivity
meaningfully is a difficult and subjective business.
Quantifying this is not clear-cut (e.g., percent change
of an eigenvalue near the origin may not be a good
measure), and the significance of a sensitivity meas-
ure depends on context (e.g., the H® norm
difference in frequency response has different
significance near the desired system bandwidth than
far above or below that point),

We believe this sort of trial-and-error study is required to
produce definitive model diagnoses. An expert system can
mechanize the many details and simple rules of thumb that
make the difference between success and failure.

4, NON-GENERIC NONLINEAR CACE

As mentioned previously, there is a clear relation between
the amount of a priori knowledge built into the expert sys-
tem or supplied by the user and the depth of reasoning that
can be performed. Several areas have come to mind in this
context: Nonlinear CACE for a particular problem domain,
and nonlinear CACE for systems that can be modeled using
a particular formalism. There are undoubtedly other issues,
and the following thoughts are only tentative.

4.1 Specific Problem Domains

The ability to go beyond a black-box treatment of a non-
linear process as detailed in Section 3 requires further
knowledge of the process. Such information may provide a
substantially better basis for modeling and control system
design than can be obtained via the procedure in Section 3.

In the modeling area, for example, expert-aided diagnosis of
a robot model could go into a number of issues that might
be impossible in the generic case. One can conceive of
simulation tests that can detect certain types of nonlinear
friction (e.g., stiction), backlash, and torque motor satura-
tion. Each of these effects can be made to reveal a distine-
tive signature if the suitable simulation is performed; the
situations and signatures are well-known to robotics experts.

In addition to detecting the presence of such nonlinear
effects, their severity can be assessed and it can be deter-
mined whether or not they need to be factored into the
design of the control system and how. For example, given
the information regarding the allowable input excursions Au
and an assessment of torque motor saturation, the need to
accommodate integral wind-up can be determined. Simi-
larly, the need for high gain for small inputs to correct for
stiction and/or backlash can be inferred from performance
specifications and diagnosis of these effects.

The above points illustrate how constraining the problem
domain can lead to more definitive results. We believe that
it is generally true that any discipline has a set of known
problems, known ways for determining how important they
are, and standard “fixes”. These can be a valuable resource
for expert-aided nonlinear CACE which can be folded into
the generic rule bases already described.

4.2 Constrained Model Formulations

Certain nonlinear effects are difficult to detect in a black-
box context via experimentation (e.g., multi-valued non-
linearities, Section 3.1). Another possibility is to use lexical
analysis on the system model. The success of this
approach would be inversely proportional to the freedom of
the user in choosing the formulation of the model.

At the one extreme, if the user is allowed to supply the
model in the form of Eqn. (2.1) in a relatively general,
high-level, flexible language such as FORTRAN, then it is
unlikely that allowing the expert system to inspect the
model will be fruitful.

As an intermediate case, if the system is formulated in a
constrained modeling language like that used in SIMNON,
then dissecting the model may be very helpful. A SIMNON
model is shown in Table 4.1: Note that the names of the

primary variables are given, the possible nonlinear functions
are well defined, and the use of “if - then - else” constructs
lo write piece-wise-linear, discontinuous, and multi-valued
nonlinearities is quite transparent. Lexical analysis might
not be simple, but something useful can clearly be done.

Table 4-1. Example SIMNON System Model

continuous system MOTORLD

?  Saturating servo motor driving a load with
Coulombic friction and linear plus cubic spring

state el x1 x2 " States are 'lag’, theta, omega; theta =
» angular position, omega = angle rate
der del dx1 dx2 ” Derivatives of states

inputu ” Input to motor

output y ” Qutput = angular position

” Smoothly saturate the input:

Tmot = G1 *sign(el) * (1.0 - exp(-Bl+abs(el)))

” Viscous plus Coulombic friction:

Tfrict = F1 * x2 +' F2 * sign(x2)

? Linear plus cubic spring:

Tspring == K1#x1 4 I{3#x1#x1*x1

» Effective load torque:

Tel = Tmot - Tfrict - Tspring

del = pole * (u - el)

»

dx1l = x2 ? theta dot = omega
dx2 =Tel / J " omega dot = torque / MOI
y=x1 .7 output = theta

pole: 10.0 ” pole for electrical lag

G1:2.0 ”-> Tmot saturates at u = 2.0 v;
B1: 0.5 " ->> gain for small input = 1.0 Nm /v
F1: 0.1 ” Viscous term; Nm-s/rad

F2: 0.3 " Coulombic coefficient; Nm

K1:1.0 ”Linear term; Nm /rad

K3:0.5 ” Cubic term; Nm /rad"3

J:0.01 ”Moment of inertia; kg-m#*+2

end

Lexical analysis becomes straightforward only if the user
must formulate the process model in terms of components
related via a precise interconnection formalism, and all com-
ponents of the model are taken from a “library” of non-
linear elements. Some special-purpose simulation packages
are structured in this fashion, so expert-aided modeling in
this sense is possible in such environments.

5. EXAMPLE OF EXPERTAIDED NONLINEAR CACE

The expert system defined above is currently being
developed. We are coding specialized soltware (SIMNON
systems, SIMNON and SFPACK macros, LISP functions)
and rule-base modules to execute the steps outlined in Sec-
tion 3; the overall strategy will be implemented once the
modules are validated. We demonstrate several of these
modules by applying them to an illustrative example:

The problem is position control system analysis and design,
The plant model corresponds to an electro-mechanical posi-
tioning servo (motor plus load) with a first-order “electrical
lag” and three nonlinear eflects: Coulombic friction, a cubic
spring term, and torque saturation. The equations and
parameter values are given in Table 4-1.

Many of the nonlinear CACE modules outlined in Section 3
have been exercised on this problem. The starting
knowledge was: ug = 0.0 volts, Au = 2.0 volts, T, =1/8
sec. Sample results:

1. Integrability, Step b: We found that the “optimum” dt
was in fact 7,/100, and that first-order Euler with fixed
step size -was the most eflective algorithm. Fourth-
order Runge-Kutta with variable step size used 3.9
times more computer time for acceptable accuracy.

State variable range, Step d: We used our SIDF-
generating capability (Taylor, 1985) to obtain the max-
imum magnitudes Ael, Az;, and Azy = 2.0, 0.94, and
7.03, respectively. In so doing, we first tried w =
T,/20, @ = 57T, (see Groping, Section 3.3), but we
found that w = 0.5, &@ == 50.0 was more appropriate in
terms of covering the breakpoints.

3. Discontinuity check, Step e: We found that ag g for éz2

w




= 0.04 and 0.02 was -760 and -1510, respectively,
clearly detecting the discontinuous Coulombic term.

4, Robust linear model, Steps ¢, ¢: We used the data
from item 3 above to solve for m = 10.0 and d =
30.0; based on Az, = 7.03, we calculated the
corresponding SIDF gain to be agzigpp = 15.43. The
complete linear system LREB, was:

-100 0.0 0.0 10.0
A=1| 00 0.0 1.0 ; B=100
99.5 -100.0 —15.43 0.0

5. Distortion analysis, Step ¢! nine log-spaced frequencies
were selected in [w, @], and Fourier analysis was per-
formed for input amplitude Au to obtain negligible
second-harmonic output and maximum third-harmonic
content of 59% at w == 1.6 rad/sec. (This was done in
the same run as item 2 above.)

6. Operating point sensitivity, Step k: the indicated ana-
lyses were conducted, and the frequency-domain
behavior of LRBy and LRB§ obtained - see Fig. 2.

7. Robust linear model fit (Section 3.2): the nonlinear
model (Table 4-1) and LEB, were simulated for u =
Ausin(w t) and normalized ISE (Eqn. (3-1)) was calcu-
lated. A resulting pair of time-histories is shown in Fig,
3, indicating that LRB, is conservative. (The actual
system response is smaller due to Coulombic friction,
saturation, and the nonlinear spring.) The ISE obtained
was 0,084,

8. Compensator design: We used the CACE-II lead/lag
compensator design rule base with specifications of
closed-loop bandwidth wgy = 45 rad/sec, gain margin
= 20dB, low-frequency gain == 40dB; and we obtained
a compensator with two leads (pole/zero ratios of 20
and 2.4) and one lag (zero/pole ratio == 17.9).

9, Design validation: We checked the closed-loop system
via step-response simulations for Augpp = 0.2, 0.5, and
1.6, and ;obtained the time histories shown in Fig. 4 (a
simulation with the linear plant LRBj is also shown for
comparison). This verifies that the choice of LEB, for
compensator design was conservative: Coulombic fric-
tion and saturation make the response over-damped for
small and large reference inputs, respectively. Satura-
tion clearly limits performance for large inputs.

6. CONCLUSION

Handling a nonlinear control system design problem in a
modern CACE environment can be very complicated, time-
consuming, and involve using a large number of trial-and-
error studies of the sort described in Section 3. Managing
this process using an expert system to carry out at least a
preliminary “reasonable” exploration of the properties of the
plant and compensator design and validation exercise should
provide a great deal of assistance and insurance to the user,
whether novice or expert.

The approach to nonlinear CACE described above and the
corresponding rule base that is under development
represent Phase 1 of our attack on the problem. We
emphasize that we expect that our understanding and
software will both become deeper as we develop, test, and
refine the system.
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