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- Abstract. Modern CAD environments for control systems engineering have begun to
support substantial functionality beyond modeling, numerical analysis, and simulation.
Three major areas that have emerged in the last five years are advanced user
interfaces, data-base management, and expert-systems support (“expert aiding”). In
addition, there has been a steady thrust to integrate more completely the various
functionalities and software that comprise computer-aided control engineering
(CACE). These trends have produced CACE environmenis which have relatively
modest improvements in numerical quality but a vastly different “feel” in terms of
integration, support, and “user friendliness”.

The basic considerations and requirements for a CACE user interface (UI), data-base
manager (DBM), and expert aiding are discussed in detail. In many cases, these will
be illustrated by examples based on various CACE software suites including the new
GE MEAD CACE environment; the basic thrust will be to define needs and show how.
these can be met. The GE MEAD Project involves the integration of powerful CACE
packages under a supervisor which coordinates the execution of these packages with a
modern Ul, a CACE-oriented DBM, and an expert system. The user interface is
designed to facilitate access to the CACE package capabilities by users with widely
different levels of familiarity with the environment. The data-base manager keeps
track of system models that evolve over time and associates each analysis or design
result with the correct model instance. The expert system supplies the machinery for
expert aiding complicated or heuristic procedures to free the user from low-level detail
and tedium, This system thus exemplifies the trends mentioned above,
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in control theory to accommodate dynamic varia-
bility, uncertainty, component failures, and other
effects and phenomena that may degrade control
system performance in some sense.

1. INTRODUCTION

1.1. Motivation

Progress in many areas of technology requires
better performance from embedded control sys-
tems. These controls may be in a manufacturing
process where the need is for better control in the

In turn, the growing demand for advanced
integrated control necessitates improvements in
computer-aided control engineering (CACE)

sense of more efficient use of resources and
materials or tighter quality control; or the controls
may be an integral part of a product and the perfor-
mance of that product must be improved (e.g., the
fuel efficiency of a vehicle has to be increased).

More stringent demands on the performance of .

technological systems require the use of advanced
controls: This translates into the current trend
toward integrating the control of subsystems so
that beneficial subsystem coupling can be exploited
and adverse coupling can be reduced or eliminated.
It also promotes the use of using recent advances
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softiware, so better designs can be obtained with
less cost in terms of time, effort, and errors in
design or implementation. This has given impetus
to rapid strides made world-wide in the area of
CACE software development and usage, and has
specifically motivated the GE MEAD Project.

1.2, Trends in CACE

The development of CACE sofiware started several
decades ago with the development of routines to
perform specific functions that had previously been
done manually (e.g., simulation, root locus, Bode
analysis). In the 1970s the emphasis shifted to the




“packaging” of routines to integrate them, share
common data structures, and broaden their scope.
In this second phase considerable attention was
also given to the development of numerically
robust algorithms; libraries such as LINPACK and
EISPACK began to supplant thie “home-brew”
algorithms that had been used before. More
recently, the focus has moved to further
broadening of functionality (e.g., block-diagram
interfaces for model building, autocode generation)
and to improving the overall environment.

The latter issue - improving the environment - is
the specific concern of this presentation. Standard
phrases in this regard include “enhanced user
friendliness” and “more supportive CAD tools”.
The areas we chose for improvement are the user
interface and support facilities for data-base
management and expert aiding. We discuss the
architectu.e of such an improved CACE environ-
meni and specific needs, design considerations, and
implementation issues. Much of the description of

needs and -considerations that follows is based on

the GE MEAD CACE Environment (MEAD =
Muv i-discipli.iary Expert-aided Analysis and
De gn') and the experience gained in the course
of the GE MEAD Project.

1.3. GE MEAD CACE Environment Overview

T e GE MEAD CACE Environment (GMCE) has
been designed to address the environmental issues
outlined above while taking maximum advantage
of existing software modules. Implementing the
GMCE thus entailed the integration of commercial
CACE packages under a Supervisor which coordi-
nates the execution of these packages with an
advanced user interface, a data-base manager, and
an expert system shell. The resulting software
architecture is depicted in Fig. 1. The CACE toog
(“core packages”) include the PRO-MATLAB
package for linear %'la]ysis and design, and the
SIMNON® or ACSL® package for nonlinear simu-
lation, equilibrium determination, and linearization.
Other modules are also based on pre-existing
software: the user interface was built using the GE
Computer / Human Interface Development
Environment (CHIDE) which rests on the ROSE
data-base manager; the GMCE data-base manager
uses ROSE and the DEC® Code Management Sys-
tem (CMS®) software for version control; and the
expert system uses the GE Delphi® shell which
rests on VAX® Lisp. The supervis%r and the
front-end of the DBM are coded in Ada™.

+ The origin of the acronym MEAD is the US Air Force
MEAD Project (cf. Taylor and McKeehen, 1989), which is a
parallel / synergistic effort to that described here. The USAF
MEAD effort was sponsored in part by the Flight Dynamics
Laboratory, Wright Research and Dcvclopment Center,
Aeronautical Systems Division (AFSC), United States Air
Force, Wright-Patterson AFB, Ohio 45433-6523, under con-
tract F33615-85-C-3611.

® PRO-MATLAB is a registered trademark of The MathWorks,
South Natick, Massachusetts; SIMNON is a trademark of
Lund University, Lund, Sweden: ACSL is a registered trade-
mark of Mitchell and Gauthier Associates, Concord, Mas-
sachusetts; VAX, DEC and CMS are registered trademarks of
Digital Equipment Corp., Maynard, Massachusetts; ROSE is
a trademark of Maninﬁardwick. RPI, Troy, New York; Del-
phi in a trademark of GE; and Ada is a registered trademark of
the U. S. Government, Ada Joint Program Office.

1.4. Outline

CACE environments are discussed within the fol-
lowing framework: Section 2 itemizes basic func-
tional requirements, Section 3 overviews the
integration of CACE packages, Section 4 treats
concepts for a. modern user interface, Section 5
describes the CACE data-base management prob-
lem, Section 6 surveys incorporating expert sys-
tems in CACE environments, Section 7 outlines an
extended example that illusirates many of the
points in Sections 3 - 6, and Section 8 provides
concluding remarks.

2. OVERALL CACE FUNCTIONALITY

The following list captures the basic (minimal)
functions that are required of a modern environ-
ment for CACE:

1. Modeling: linear and nonlinear systems, in
continnous- and discrete-time; building arbi-
trarily structured models from components

2. Simulation: initializing system state vari-
ables, sefting system parameters, defining
input signals, designating simulation vari-
ables for storage, running a simulation

3. Steady-state (equilibrium) determination
Linearization

5. Linear Analysis: eigenvalues/eigenvectors,
zeros, controllability and observability,

model reduction, model transformations, root
locus, frequency response

6. Linear Control System Design: frequency-
domain methods (by manually adding
lead/lag or PID compensation), pole place-
ment, time-domain methods (LQG, LQR)

7. Control System Validation: frequency-
domain analysis of linear models, simulation
of linear and nonlinear systems

This list is not all-inclusive from a control theoretic
point of view or from the standpoint of practical
functionality. For example, obvious areas that can
be extended are stochastic control (e.g., Monte
Carlo analysis capability); nonlinear systems
analysis and design (e.g., describing function
methods, bifurcation analysis); optimization;
discrete-event systems modeling, analysis and
design; system model identification; and automatic
controller code generation. Furthermore, new
approaches and theories are being developed on a
continuing basis, making closure impossible.

.One objective of any realistic CACE software

development project must be to set goals as to
functionality. The first phase of the GE MEAD
Project was limited to the basic CACE functional-
ity itemized above. Recognizing the need for
future extension, the GMCE environment has been
designed to be “open”, in the sense of being exten-
sible either by adding built-in functionality or by
use of MEAD macros or the “Package Mode”
access to any CACE functionality of the core
software (see Section 4.3).

3. CACE ARCHITECTURES
Powerful CACE packages exist that cover large




parts of the overall functionality outlined in
Section 2. This enables decoupling numerical
functionality from the environmental issues. of
support and user friendliness that are the main
focus of this presentation. The implementation of
a modern CACE environment can then be
accomplished by providing a “shell” for existing
software rather than starting from the foundations
of numerical analysis and algorithms.

There are other advantages to this strategy beyond
considerations of development time and cost. Most
CACE packages are implemented as monolithic
software programs with internally-defined data
structures and algorithms that are immutable, Thus
even extendable packages, such as the MATLAB-
derived packages, are limited by the embedded
data structures and core algorithms. Since there
will probably never exist a single, “frozen”
program capable of accomplishing all tasks
performed by a control engineer, it seems
preferable to shell the best existing CACE
packages in an open software environment rather
than committing to a specific set of data structures
and algorithms. :

The approach taken in the GE MEAD Project was
based on these considerations, Implementing-the
GMCE thus required the integration of a data-base
manager (DBM), an expert system shell, and
several CACE packages, such as PRO-MATLAB
for linear analysis and design and either SIMNON
or ACSL for nonlinear analysis and simulation.
Access to the software is via a common user
interface. The resulting architecture is shown in
Fig. 1. This system has been carefully designed to
integrate different packages into a single, uniform
environment despite diverse package interfaces.

At the heart of such an architecture there must be a
module that combines and coordinates the various
CACE packages and support modules. The GMCE
Supervisor serves as the package integrator for the
GE MEAD environment (Fig. 1). Multiple
packages are run under the supervisor, and data is
reformatied or converted, when necessary, to
ensure compatibility among packages. The GMCE
supervisor accepts “MEAD commands” and
translates these into “package commands”;
therefore, the user does not have to learn all of the
intricacies involved in using each package unless
advanced functionality is to be accessed via
Package Mode (using a core package under the
GMCE via its own interface - see Section 4.3).

The Supervisor contains most of the “intelligence”
of the GMCE. It accesses data files that define
how to use the underlying packages (e.g., how to
convert MEAD commands into package
commands, see Rimvall, 1990), directs the activity
of the DBM, and manages the command and data
flow between itself and the user interface. It tracks
the high-level activity of the user, including
knowing what model(s) have been configured.
Finally, the supervisor conirols the invocation and
use of the expert system by activating it, telling it
what rule base to load and execute, serving as the
conduit for communications between the user and
expert system, and handling the expert system's
results when it is finished.
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The User Interface (UI) of MEAD communicates
with all different components of the MEAD
system, including the DBM and the expert system
shell, through the Supervisor. The Supervisor
provides the Ul and the expert user with a unified
and well-structured command-language interface,
This same interface is used by the Expert System
when it is invoked to carry out a high-level
function. In fact, the GMCE supervisor may be
used by itself as an “old-style” command-driven
interface to CACE functionality, although this is
rarely necessary. The clean separation of the
“real” user interface from the supervisor has
proven to be very beneficial in terms of

'deveIoFment, test, and refinement, and has made it

possible to implement the MEAD Ul and Expert
System independent of the quite diverse collection
of underlying modules. )

4. USER INTERFACES FOR CACE

A primary goal in designing a “user-friendly”
CACE environment is to create a user interface
that supports control engineers with widely dif-
ferent levels of expertise in using CACE tools.
The design requirements necessary to satisfy inex-
perienced users are very different from those
needed for expert users, and this often results in a
fundamental conflict that causes engineers from
one or the other end of the experience spectrum to
be very dissatisfied with a given CACE environ-
ment. This conflict may be resolved in two ways:
by making the user-friendly features of the inter-
face fast and non-patronizing, and by allowing the
user to work flexibly in a variety of modes.

Despite the importance of the UT to the acceptance
and success of a CACE package, user-interface
considerations have ofien played a secondary role
in their design. Three periods of UI design philo-
sophy can be distinguished in this field:

o The interactive conirol packages developed
during the 1970°s had quite crude user inter-
faces. Most packages, such as KEDDC
(Schmid, 1985), used rigid question-and-answer
or iow-level menu interactions. This kind of a
UI can be made almost self-explanatory for the
novice; however, it becomes very tedious for
an experienced user.

o With the advent of MATLAB (Moler, 1980)
command-driven interfaces came into prom-
inence. Primarily, these were designed to
“open up” the underlying programs so that
users can extend the functionality of a program
by adding interactively defined macros and
algonthms. However, flexibility often comes at
the expense of complexity, forcing the user to
recall and accurately enter many rigidly-defined
low-level commands to get a high-level task
executed. This cost is quite high for a novice
user or for a person who doesn’t expect to be a
regular user of the package; this factor inhibits
many computer-cautions control engineers
from using such programs.

o The third generation of Uls, as represented by
- the GMCE, combines the simplicity of modern
graphical interfaces, using drop-down menus,
forms, and “point-and-click” techniques, with
extendable command- and macro-interfaces as




found in the MATLAB family. This provides
both the novice and expert user an adequately
powerful and yet fully manageable access to
the program.

4.1. Graphical Operating Environments

During the last half decade, the workstation and
rsonal-computing arenas have been revolution-
ized by the advent of completely graphics-base
systems. ghis is best illustrated by the Apple
Macintosh® computer family, which features a
graphical operating system relying on icons,
menus, and a mouse, enabling the user to perform
virtually all pecessary actions with “point-and-
click” operations. Computers from other vendors

feature similar, albeit less dominant, operating-

environments. These machines have proven to be
particularly well suited for inexperienced and
casual computer users. Using the same general
paradigm, the main GMCE operating environment
is menu- and form-based. This is in distinct con-
trast to the command-oriented operating environ-
ments prevalent in modern MATLAB-based
CACE packages and many other programs, €.g.,
SIMNON and ACSL.

Although “graphics” always played an important
role in CACE, it was hitherto mainly used for plot-
ting curves (e.g., frequency and time responses), or
for enabling graphical input of models in block
diagram form. The control engineer was thought
to “need the power” of a command-driven inter-
face, just as software engineers were long thought
to need the cryptic details of the UNIX® operating
system. In both cases there is a strong risk that
users will divide into two distinct groups: expert
users and unhappy or non-users. Incorporating a
graphical interface for CACE should substantially
increase the number of effective users without
penalizing the expert, as long as the interface is
sufficiently flexible and well designed. Such a Ul
can be illustrated by overviewing the GMCE inter-
face, where the emphasis is on design considera-
tions and the user’s perspective.

The GMCE graphical operating environment
allows the user to perform all basic controls-related
operations in a very consisient manner Over
mouse-operated menus and forms. The user does
not need to know any commands or syntax, and the
menu-tree hierarchy is designed so that there is a
natural and easy-to-remember path to each desired
functionality. In most cases the menu-tree hierar-
chy is limited to two or three levels for quick
access to all domains. At the last level of the
menu tree, selection and action forms are used to
permit the highly interactive execution of most
gaetations. The GMCE menu tree is depicted in
¥g. 3 (this is not a screen image).

Figure 4 shows a screen-image ensemble illustrat-
ing the GMCE graphical operating environment.
The top half of this is an actual screen rendering;
the bottom half contains forms that are obtained by
clicking the buttons as indicated by the arrows.

® Apple and Macintosh are trademarks of Apple Computer
Corp., Cupertino, California; UNIX is a trademark of AT&T
Bell Laboratories, Holmdel New Jersey.

hierarchical order to the right o

The top-level horizontal menu or Resource Bar is
continually displayed across the upper edge of the
screen. When a field in a menu is clicked u})on,
the corresponding sub-menu or action form
appears. Activated fields are displayed in reverse
video, and each sub-menu apFears in decreasing
it’s parent mena.

Action forms vary in size and content, but they are
always aligned with the right edge of the screen as
shown in Fig. 4. The setup buttons enable actions
that the user may want or need to perform before
executing the function (such as choosing an
integration algorithm or defining the end-time for
the simulation); the ‘Execute’ button triggers the
actual operation (e.g., simulate). The bottom row
of command buttons is always arranged as follows:
the ‘Display’ button to the far left allows the user
to view the result and produce hard copies. The
‘Save’ button lets the user save the result in the
data base. A ‘Modelize’ button is available on
forms where the result may be interpreted as a
model (e.g., linearization), in which case the result
is reformatted into a model and stored as such in
the data base. Finally, the ‘Done’ button moves
back down the menu tree. Whenever the user is
requested to enter any alphanumeric information,
such as the name of a result or model, an addi-
tional input form will open up below the action
form, as shown for ‘Save’.

The GMCE UI is “object-oriented”, in the sense
that the user selects ifems and options by poimt-
and-click operations rather than by typing in names
or keywords. Various “Browsing Forms™ are used
to present the user with the available choices,
together with any pertinent information about the
selectable items. The information within these
forms change dynamically as objects are created or
deleted. Ttems presented to the user for selection
correspond to the data-base hierarchy, namely, Pro-
jects, Models, Components, and Resulis (Taylor,
Nieh and Mroz, 1988). Each element may be
displayed appropriately (text files loaded in an edi-
tor, plottabie data rendered graphically).

Three Browsing Forms are depicted in Fig. 5. In
this example, the projects in a user’s data base are
listed in Fig. 5 (a), and Project ‘Tallinn’ is desig-
nated by clicking on the corresponding left button.
Clicking the ‘Models’ button on the botiom row
brings up Figure 5 (b), which portrays the Browse
Model Form for Project ‘Tallinn’ with a list of the
models in that project’s data base and their key
attributes. The user then selects model
‘NLPPFBS’ and chooses an action to be taken with
that model; in this case, clicking ‘Descript’ reveals
the description and the components of model
‘NLPPFBS’, as shown in Fig. 5 (c). Clicking on
‘Results’ would bring up a similar Results Brows-
ing Form for the same model.

Several additional aspects of the GMCE are
revealed on these Browse screens. All entities in
the data base may be assigned individual notes
through the UI by clicking on the appropriate ‘Edit
Note’ button. This feature permits on-line docu-
mentation at every level, Ul also provides
access to other data associations described in Sec-
tion 5; for example, component references and
links may be displayed via the ‘Disp Ref’ and
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‘Disp Link’ buttons on Fig. 5 (c). These and other
details shown in Fig. 5 are clarified in Section 5
and in the Section 7 example that corresponds to
parts (b) and (c) of this figure.

4.2. Implementation of User Interfaces

Building a modern UI without tools and utilities is
a huge task. A faster and more economical
approach is to employ the tools and methods of a
suitable User Interface Management System

(UIMS). The need for a UIMS arises especially '

when constructing a user interface that requires
advanced features found on engineering worksta-
tions. The use of a UIMS can greatly reduce the
effort required to produce a user interface and
ensure a consistent and reliable design. In addi-
tion, a Ul founded on a UIMS can be refined and
extended much more readily than a UI built monol-
ithically without a UIMS. Note, however, that the
“wrong” UIMS may not be an asset. It is impor-
tant to specify the Ul requirements and to be sure
that the UIMS meets them.

The use of a UIMS permits the separation of the
design of the user interface from the application
program and the display device. The Ul can be
maintained as a separate component, thus easing
the maintenance of the overall environment.
Changes can be made relatively independently in
the various modules.

A secondary purpose for a UIMS is to provide
advanced Ul capabilities to the end user which
would not be easily gained otherwise., Thus, a
UIMS should provide a comprehensive and exten-
sible set of interface tools, e.g. graphical display
editor, and support Ul capabilities such as user
profiles; interactive help facilities; session logging;
display graphics; and definition, editing and execu-
tion of command scripts.

The GMCE UI has been designed and imple-
mented using a GE-developed, experimental UIMS
called CHIDE (Computer / Human Interface
Development Environment; see Lohr (1989)).
CHIDE supports the UI design paradigm outlined
above, and has proven to be very effective.

4.3. User Interface Modes

As mentioned previously, a Ul should be designed
to facilitate access to CACE package capabilities
by engineers with widely different levels of fami-
liarity with the environment. This goal may be
achieved by permitting the user to work in a
variety of modes. These modes should be avail-
able in a flexible interactive framework, so one can
always work effectively at the most comfortable
level. In the GMCE, there are four modes:

o IDEAS Mode (IDEAS = Integrated Design
Environment for All Systems), using the graph-
ical menu/forms style Ul for basic CACE func-
tionality, as presented in Section 4.2;

e M_Command Mode, using GMCE supervisor
commands when this expedites CACE work
compared with the more user-friendly
menu/forms interface;

o Package Command Mode, using a core pack-
age’s native commands when a needed result is
not available via M_Commands; and the
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o GMCE Macro Mode, which includes both
direct execution of macro files and a flexible
_ macro-edit facility; macros may contain
M_Commands, Package Commands, or a
combination thereof. '

The availability of a variety of interaction modes
supporis the inexperienced user as conveniently as

possible (primarily via IDEAS), while providing

the more experienced GMCE user with an extensi-
ble and effective environment for CACE.

The two GMCE command modes are accessed by
clicking ‘Commands’ in the Resource Bar depicted
in Fig. 4. The operating system may also be
accessed via this button. These three optitms are
included in the menu under ‘Commands’; clicking
one of these selections opens a command-line area
for wotk to proceed. GMCE supervisor commands
are described in Rimvall (1990), and package and
operating-syswm command languages are commer-
cially documented.

Package Mode is currently most extensive for
PRO-MATLAB, because this package is more
open than SIMNON or ACSL, i.e., it supports the
generation of an arbitrary number of result types.
This is generally true in comparing nonlinear simu-
lation packages which produce a closed set of
results (typically time-history files. equilibrium
points, and linearizations) with linear CACE pack-
ages like PRO-MATLAB which can produce a
wide variety of linear analysis results.

Basic DBM support for PRO-MATLAB is pro-
vidled in Package Mode by “layering” two
M_Commands over the package commands:

o Data objects may be saved in the Result data
base for the Model by entering the command
‘MEADSAVE’ that is intercepted and executed
by the supervisor; e.g., if the result is com-
prised of the arrays O and K, then one may
enter MEADSAVE (Q, K, result => thisdaia)
and the result will be stored in the DB with the
user-supplied name thisdata .

A data object may be saved in the Project DB
as a new model via the ‘MEADMDL’ com-
mand; e.g., if the new system is represented in
state-space packed form by Snew (Snew =
[ Anew, Bnew; Cnew, Dnew |) then the com-
mand MEADMDL (ABCD, Snew, model =>
thismdl) accomplishes the goal, where ABCD is
the type of model (type must be ABCD for
continuous-time state-space models or DABCD
for discrete-time) and thismdl will be the name
assigned to the model in the data base.

DBM functionality for SIMNON or ACSL is
presently limited to recording every package com-
mand in the Condition Spec so that subsequent
results can be documented; saving results in the
data base can only be done by returning to IDEAS
mode for execution. Since only the standard
results and models listed above can be obtained in
any event, there is no loss of generality in this
implementation. Later versions of the GMCE may
incorporate result and model saving as ‘outlined
above, to eliminate unnecessary mode switching.

Finally, the Macro Facility allows the user to
streamdine CACE by using custom macro




procedures. Macros may be set up to initialize a
GMCE session (e.g., to select a project and
configure a key model), to perform a procedure
defined by a sequence of M_Commands, to
execute a task that may require the use of Package
Mode, or to carry out a combination of these
activities. The user interface facilitates macro
invocation by providing a ‘Macro’ button on the
Resource Bar (again, see Fig. 4) which when
clicked produces a listing of all files with the
extension "MMAC’ for the user to designate and
use. Macros may be invoked directly from storage,
or they may be loaded into the editor, modified for
the task at hand, and then executed. The following
simple examples are GMCE macros for start-up,
for nonlinear simulation, and for evaluating the
singular value decomposition of a linear model:

Initialization Macro:

Select_project ( Tallinn )
Configure ( LinPlnt )
Configure ( NLPInt#2 )

(“Tallinn’ is the project name; the highest class of
‘LinPInt’ and class 2 of nonlinear model ‘NLPInt’
will be configured);

Simulation Macro:

Equilibrium ( result => steady_state )

Input ( Ref, Step, {15.0, 1.0} )

Simulate ( 12., 0.01, result => REF_15)
(find equilibrium and save; make input ‘Ref’ a step
of amplitude 15 units starting at t = 1; simulate for
12 time units with dit = 0.01 and save);

SVD Macro:

Set_mode ( package, promatlab )

a = unpack_ss(S);

[u, 5, v ] = svd(a);

Meadsave ( u, s, v, result => svd )

Set_mode ( UI)
(enter Package Mode using PRO-MATLAB; split
out the A matrix; obtain the SVD; save result in
the data base as ‘svd’; reset mode to IDEAS).

4.4. Package Unification

Another GMCE Ul goal was to provide a totally
unified interface for all core packages, with as liitle
as possible left up to the user’s memory. This is
also illustrated in Fig. 4, which shows the GMCE
fizmework for simulation which is identical
whether using PRO-MATLAB or SIMNON or
ACSL. This is facilitated by the fact that the
M_Commands are the same wherever possible,
despite the very different package interfaces.

4.5. Darta-Base Access

A Ul should be designed to provide access to
data-base management functionality with minimal
user overhead. If the user has to do a lot of extra
work to use the DBM, then it is unlikely that it will
be used. In fact, it was possible to design the UI
50 that the DBM is an asset with respect to over-
head; rather than a liability. This was due in part
to the natural hierarchical data-base system organi-
zation, and in part to the use of the “object-
“oriented design” features in the User Interface as
outlined in Section 4.1.

The first pivotal decision was that a query language
would be excessively difficult to implement and

use for DB access. In addition, the nature of the
CACE data base did not seem to require the ty?ical
capabilities of such systems. For example, “find
all males over 2 meters tall” has few natural ana-
logs in CACE data bases. These factors led us to
display data-element information via a hierarchical
set of “Browsing-Screens” as illustrated in Fig. 5.

The second realization that streamlined the Ul in
relation to the DBM was that the browsing screens
can be used for CACE functionality in addition to
display. Thus one may browse the models in a
given project and immediately designate a model
for use. This is called “configuring a model”, and
is done by hitting the ‘Config Model’ button in Fig.
5 (b). One may also create new models; edit
models; purge models; and add, modify, or delete
model notes from the same screen.

4.6. GMCE UI Limitations :

The present platform for the GMCE is a vAx®
computer running the vMs® operating systen&
with the user interface displayed via a Tektronix
4107 _terminal (or higher model oumber) or an
IBM® PC or PC clone running a Tektronix 4107
(or higher) emulator. This platform is adequate for
the type of Ul and functionality needed for the
GMCE, although it is recognized that the UI could
be faster and more flexible if a true workstation
environment with high-resolution hics and
window management was used. We plan to port
the GMCE to such a platform during 1990.

5. DATA-BASE MANAGEMENT

The specific issues of data-base management that
seem to be the most pressing in CACE are related
to mainiaining the integrity of the data base. Pri-
marily, this involves being sure that the model used
to generate a result can be identified with certainty
and used again if necessary, being sure that the
conditions used to generate each result are docu-
mented, and knowing how models were obtained if
they were generated numerically, e.g., by lineariza-
tion. This is a much larger task than simply know-
ing what is in file refinput_step2.dat in subdirectory
[user.tallinn.niplnt]! In addition, there are support
functions such as on-line documentation that can
add substantially to the value of the DBM.

Earlier generations of CACE packages provided
little or no data-base management support. It was
left to the engineer to decide how to organize data
and track the relations among them. Often organi-
zation is bassd on storage, e.g., data for a project
may be kept in a sub-directory or on a (?e
separate from data for other projects. Data files for
a project may be distinguished by assigning
“meaningful” file names. Some packages helped
by “tagging” data elements of different types by
using different extensions, such as the ‘.m’ conven-
tion of PRO-MATLAB. One early package
(CLADP) generated filenames by appending char-
acters to a user-supplied ‘Run name’ (Edmunds,

® VAX and VMS are registered trademarks of Digital Ecquip-
ment Corp., Maynard, Massachuseits; IBM is a registered
trademark of International Business Machines, Armonk, New
York: Tektronix is a trademark of Tektronix, Inc., Beaverton,
Cregon.
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1979). All such support is very rudimentary and
leaves it entirely up to the user to shoulder the real
burdens associated with maintaining the integrity
of the data base. The first effort to track models
and results and to integrate DBM functionality
with a CACE environment appears to be in Bunz
and Guischow (1985). However, the ideas of the
complete  hierarchy of  projects, models,
components, and results and of version control
were not discussed.

Rigorous data-base management requirements for
CACE were presented in Taylor, Nieh, and Mroz
(1988). Data-base elements were catalogued and
categorized, and the relations among them were
established. Then an organization for these
elements was devised. Two approaches for data-
base access were considered: query language and
browsing, as mentioned above. In each case the
CACE software user was the main consideration;
this involved determining how the data elements
are created and used, how the user perceives their
relations, and features that are mnecessary for
“doing the job right”. Some of the features in the
last area include: version control for models that
change over the course of a project, recording the
conditions (parameter values, etc.) set up before a
result is generated, and mainfaining model com-
ponents that are used in more than one model.

This line of thinking resulted in the design of the
GMCE DBM, which was developed from first
principles. Note that we made the pragmatic
decision not to be concerned with the exact
representation of each type of data element
instead, we used the data elements created or used
by the core CACE packages as a de facto standard
and only worried about content and format when
required for purposes of inter-package compat-
ibility. Work on this aspect of CACE data base
definition may be found in Maciejowski (1988).

5.1. CACE Data Elements

In terms of data element categories, the controls
engineer works with models that are comprised of
components and a description (type, connection,
etc.). . Associated with each model there are
results, e.g., files containing frequency response
data or time-history data. Models and resulis are
often organized within Projects (e.g., project =
“Tallinn’ for the analysis and design example
presented in Section 7). These considerations led
to- the DB hierarchy portrayed in Fig. 2; this
reflects the belief that control engineers naturally
think of projects and models as being of paramount
importance; all data elements produced during
CACE activity are “children” of these entities.

The Condition Specification (C_Spec), also dep-
icted in'Fig. 2, is an important secondary data type
directly related to each result. This element con-
tains information regarding operations performed
on a model before a specific result is obtained;

these include such actions as changing a parameter

value, specifying an initial condition and/or input
signal before performing a simulation, defining a
frequency list used in obtaining Bode plot data, etc.
Condition Specs also record algorithmic condi-
tions, such as setting a tolerance for controllability
or observability, selecting an integration algorithm
for simulation, etc. Capturing this data is critical,

61

since it is the combination of model insiance and
Condition Spec that determines the result and
thereby allows the engineer to document or repeat
the result. Hence C_Specs must be kept in the
CACE data base so they can be recovered for any
result that has been saved; this is an integral part of
the GMCE data-base definition.

5.2. CACE Data Relations

While the CACE data-base categories outlined
above are few in number and simple, there are
several factors that complicate the DBM task:
Models tend to change over the life-time of the

_ project, some resulis are also models (e.g., lineari-

zations of nonlinear models or transformed linear
models), and components tend to be "used in
several models yet they should be stored in ome
location to simplify their maintenance. In terms of
full support for the controls engineer, mechanisms
to handle all of these situations must be incor-
porated, and this should be done so that the
corresponding DBM activity imposes little or no
burden on the user.

5.2.1 CACE Model Version Control - The primary
need for “version control” in the conventiomal
software engineering sense exists in the model
level of the hierarchy. The DBM must be able to
keep track of system models that evolve over time,
e.g., as better modeling information becomes avail-
able or as preliminary modeling errors are
corrected, 5o that each analysis or design result can
be associated with the cormrect model instance.
This requirement motivated the use of a tool that
tracks each version of a model component so that
version = 1, 2, 3, ... refers to the original and sub-
sequent variants of this component, and each class
of a model that incorporates the component.

5.2.2 CACE Component Maintenance - The
CACE DBM requirement for tracking models also
gives rise to the meed for non-redundant model
management, since maintaining the integrity of the
Model level of the data base is nearly impossible if
copies of various components are separately stored
and maintained. The GMCE DBM supports this
need via linking, which allows the engineer to
maintain each componeni in one model (the
“home” model) and use it elsewhere by bringing it
out of the home model DB and incorporating it in
other models.

5.2.3 CACE Maodel-to-Result Relations - One
remaining relation that complicates the hierarchical
DB organization is that which associates a lineari-
zation as a result obtained using a nonlinear model
with a linearization used as a model component.
The same situation exists with regard to linear
model transforms. - For example, one may create a
reduced-erder version of a linear model, and desire
to save this as both a result and a distinct mode] for
further study. These associations are tracked in the
DBM using a mechanism called the reference.
The user may inspect a linearization result’s refer-
ence to see if it exists as a component in any
model; from the other perspective, a linear model
component may be checked to determine if it was
obtained as a result gemerated with a particular
nonlinear model so the user can trace that result
back to determine how it was obtained (e.g., at
what. operating point). The value of a linear model




is greatly reduced if component uaceabﬂity in this
sense cannot be assured,

In summary, there is a natural hierarchical
organization of projects, models, components, and
resulis + condition specs in the GMCE database,
Models are tracked over Hime via class number and
version conirol. In addition, there are reiations
called links and references to completely maintain
the integrity of ihe database.

5.3. Dala Base Software

Several important decisions were made in selecting
the implementation of the GMCE DBM:

o It was decided not to use a major commercial

DBM package. Such a module weould be too.

costly to license widely within GE, most of the
functionaiiiv would not be useful or suitable in
filling the somewhat unique requirements for
CACE, and some needed functionality might be
difficult to obtain or unavailable,

o We did not, however, develop cur own
software for vemion control. One major
concern is the efficient storage of multiple ver-
sions of models; without a scheme like that in
DEC CMS that re-builds each discrete version
based on stored differences large amounts of
storage would be required.

e The ROSE package was used for low-level
data-element relation management, since this
package was already a part of the UIMS
CHIDE (see Seciion 4.2) and considerable
software development was thus saved.

Based on these considerations, the GMCE DBM
consists of an Ada-coded “front end” that calis
CMS and ROSE to execuie lower-level storage and
version control activity.

6. EXPERT SYSTEM SUPPORT

There have been several major studies of augment-
ing conventional CACE sofiware with Al-based
support facilities. For reasons of space, we simply
refer to the survey paper by James (1983) for an
overview of this activity. It is also important to
note thai there are a number of widely different
styles or paradigms of experi-aided CACE, and
that the selection is critically dependent on the
needs of the user community. An inappropriate
paradigm has the potential to defract from the
effectiveness of the entire environment. These
considerations are discussed in Taylor (1988).

The GMCE expert system shell (ESS) provides the
basis for expert aiding clear-cut but complicated
andfor heuristic procedures that involve unneces-
sary low-level detail. One concept of experi-aided
CACE was originaily defined in Taylor and Freder-
ick (1984); the primary difference in the GMCE
involves adopting a less ambitious model for
expert aiding that makes the expert system the
user’s assistant (Taylor, 1988) rather than pufting
it in charge of the CACE effort being performed.
This change in perspeciive was motivated by the
specific goal of providing support without getting
in the control engineer’s way. _

A second noteworthy feature of the integration of
the expert sysiem with the GMCE is that the ESS

interfaces with the supervisor in exactly the same
fashion “as the user working through the UL The
ESS outpuis MEAD commands andfor package
commands to the supervisor, and gets the same
return as the Ul, i.e., a result (if it is brief), a file
name (for larger resulls), or messages (errofs or
information). This aids knowledge capture, since
this is exactly the output and input of the supervi-
sor if a user were to perform a given task.

The first CACE rule base to be built in the GMCE
is a reimplementation of the leadflag compensator
designn expert system developed by James, Freder-
ick, and Taylor (1985/67). The function of this
rule-based system is to accept specifications for
steady-state error coefficient, bandwidth, and gain
margin, and to design a lead/lag compensator to
meet these specifications if possible. At the end of
this task, the expert system performs a simulation
of the step response of the designed coatrol sys-
tem. The user may inspect the result and accept
the design if the response is satisfactoty or iterate
on the input specifications to obtain another trial

‘design. The final compensated linear control sys-

tem may be modelized if the user wanis to use it
for further study.

7. A CACE EXAMPLE

The following example illustrates the use of the
GMCE on a small sample problem. Most of the
salient features of the GE MEAD environment are
illustrated in the course of this scenario. Note in
particular that the data-base hierarchy portrayed in
Fig. 3 exactly represents this example. The follow-
ing outlines the scenario and relates the steps to the
various figures:

o Project ‘Tallinn’ is created; .see Fig. 5 (a) for
the corresponding entry in the Projects Brows-
ing Screen. Work begins.

o The nonlinear plant model ‘NLPint’ is created;
see Fig. 5 (b) for the corresponding entry in the
Models Browsing Screen for project “Tallinn’.
(This screen was captured after the whole
scenario was done; hence the additional
entries.) The single component ‘NLPInt’ is
changed twice, to refine it suitably; this creates
a total of three classes (see Fig. 3). All work
below is done with class 3.

o The nonlinear plant ‘NLPInt’ is simulated
thrice, equilibriated, and linearized; the results
and condition-specs are listed in Fig. 3 and the
time-history plot of the input ‘Ref’ and output
“YPInt' versus time is depicted in Fig. 6. The
linearization is “modelized” to create the linear
plant model ‘LinPlnt’ - see the entries in Figs.
3 and 5 (b); note that the ‘Reference’ relation
(‘Ref') diagrammed in Fig. 3 will penmit this
model to be traced back to the linearization
result for the model ‘NLPInt’,

» Two linear comtrol sysiems are synthesized
from ‘LinPlnt’ using pole placement with poles
at —6+4j and —-10L 5 j, respectively. These
are “modelized” to install the linear closed-
loop models ‘LinPP64’ and ‘LinPP105’ in the
data base - see also the entries in Figs. 3 and 5
(b). Note that two ‘Refs’ diagrammed in Fig. 3
tie these models to the results of the model




‘LinPlnt’,
o The performances of ‘LinPP64’ and
‘LinPP105’ are checked via simulation (time
histories not shown); simulation and eigenvalue
analysis resulis are catalogued for these models
in Fig. 3. The model ‘LinPP105" was selected
as the final linear design based on these results.

o The nonlinear control system ‘NLPPFBS® is
created with gains comresponding  fo
‘LinPP105°. Note that this model uses the
same representation of the nonlinear plant
component by linking back to model ‘NLFInt’
as indicated by the ‘Link’ relation diagrammed
in Fig. 3 and by the ‘Linked’ designation in
Fig. 5 (c). The performance of this nonlinear
control sysiem is validated via simulation and
the result is shown in Fig. 8.

8. CONCLUSION

There has been a growing realization over the last
five years that existing CACE packages may be
réaching a good state in terms of functionality and
numerical power but that there are other areas of
support that are required in order to achieve effec-
tive CACE environments for less-than-expert users
and for use on large projects. Three pressing needs
are for a more user-friendly user interface (to
expand the usefulness of CACE software o less
expert users), data-base management (to rigorously
track the many disparaie data elements that are
generated during the life of a major project), and
experi aiding (to alleviate some of the tedium asso-
ciated with tasks that presently require a lot of
low-level detail and a little heuristic logic). We
have assessed and discussed requirements and
implementation issues in these areas.

In terms of these features, the GMCE typifies such
an advanced, more supportive environment for
computer-aided control engineering (CACE). The
most impertant novel features are it’s flexible user
interface including a “poini-and-click’ interactive
mode, two command modes (MEAD and Package),
and a Macro Facility; the integrated data-base
manager o rigorously maintain all data elements
and relations; and the built-in expert system shell
to serve as the user’s assistant.

In terms of CACE functionality, the present GMCE
is a basic CACE package for conirol system
analysis and design. The higher-level functionality
of PRO-MATLAB is avaiiable through the most
user-friendly access mode; all lower-level primi-
tives may be used via Package Mode. The major
areas of nonlinear simulation and analysis are also
accessible using the GMCE graphical interface. A
number of extensions and refinements are planned,
including improved Ul features, more user-friendly
handling of linear models, additional expert aiding,
and porting onto a workstation environment.
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