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Abstract. Rigorous and supportive engineering
data-base management (EDBM) was accorded lit-
tle serious consideration in computer-aided control
engineering (CACE) software development prior to
the mid 1980s. By then, CACE environments had
become very powerful and extensive, and thus the
need for keeping track of models, analysis results,
control system designs, and validation study results
had become increasingly evident. Two motivations
spurred an interest in EDBM: it may be very costly
to neglect this task, and a well-designed EDBM sup-
port can also increase productivity in the analysis
and design process.

Software for EDBM should be designed as an inte-
gral part of a CACE environment. Here the features
of such an integrated EDBM system will be proposed
and described. In particular, we will discuss EDBM
organization and features that improve CACE pro-
ductivity.

Key Words. Database management systems,
computer-aided design (CAD), control system de-
sign, system documentation, software tools.

1 INTRODUCTION

There has been substantial progress made in the past
decades in the development of software for computer-
aided control engineering (CACE). Primary empha-
sis has been placed on core CACE activities, e.g.,
nonlinear simulation, linear analysis and design in
the frequency and time domains, and model identi-
fication. In the 1980s the spectrum of CACE broad-
ened to include, for example, advanced modeling and
autocode generation. One important area has re-
ceived little attention until quite recently: engineer-
ing data-base management (EDBM).

As CACE environments become more powerful and

extensive in terms of systems analysis and design ca-
pabilities, the need for keeping track of the models,
analysis results, control system designs, and valida-
tion study results becomes more pressing. In a real
industrial control system design project, the large
number of files generated in the complete design cy-
cle and the relations among these files can be very
difficult to comprehend and manage using manual
means which require strong discipline and consid-
erable added expense. On the other hand, it may
be very costly (in terms of future errors or need for
re-engineering) to neglect this activity. Building an
EDBM system into the CACE environment solves
that problem. As a further incentive for EDBM,
there are also very positive reasons to consider its
use - primarily, these are in the areas of improved
documentation of systems and increased productiv-
ity in the analysis and design process.

Tools for EDBM should be designed as an integral
part of a CACE software system. In other words, the
control engineer should be able to store and retrieve
data and models interactively within the CACE envi-
ronment, with little or no additional burden. In the
sections that follow the features of such an integrated
EDBM system will be proposed, motivated and de-
scribed. This material is based on concepts from
several projects in which EDBM has been addressed
in a substantial way, namely ANDECS (Analysis
and Design of Controlled Systems) [1] and MEAD
(Multi-disciplinary Expert-aided Analysis and De-
sign) [2]. We will discuss two issues: EDBM orga-
nization, and EDBM features that enhance CACE
productivity; for the former we will use the MEAD
organizational model and for the latter we will use
the advanced concepts from ANDECS. We note that
these considerations are also receiving attention in
the Open CACE initiative [3] under “support ser-
vices”, in recognition of the importance of such func-
tionality.



One important related area will not be discussed,
namely data structures — we take the data produced
and consumed by the various CACE components of
the system “as is”, with data translation capabilities
built-in, as needed. Recent work in developing and
defining data structures for CACE may be found in
[4, 5].

2 DATA-BASE ORGANIZATION

The organization of a CACE data base is key to its
utility and to its “user-friendliness”. Organizational
issues include accessibility, maintainability of critical
relations, and documentability. Such a system can
be described by defining the schema of the data base
and by illustrating the implementation of the corre-
sponding EDBM in terms of a supporting command
language. The description that follows is based pri-
marily on MEAD’s EDBM system [6].

2.1 Data-base Organization — Schema

In terms of organization, we propose that such a data
base should be organized in a hierarchical frame-
work having at least the levels Project, Model, At-
tribute, and Element [6], as illustrated in Fig. 1. Ad-
ditional levels might be introduced for large multi-
user systems (e.g., Subproject). The level Project
accommodates the control engineer working on sev-
eral projects, providing a convenient separation of
workspace. Thus, for example, a flight-control en-
gineer might have projects F-18, G-xx, etc. while
a generalist may set up projects Flight _Ctrl, Pro-
cess_Ctrl, and so on.

Within a project, models (e.g., of plants, control sys-
tems, etc.) are the main focus. Each Model has two
attributes, a Description, i.e., a catalog of the funda-
mental characteristics of the model (linear or nonlin-
ear, continuous- or discrete-time or mixed, etc.) plus
a list of the components that comprise the model and
a definition of the component interconnections!, and
a Result_set, i.e., the set of analysis and design results
obtained using the model. Elements of a Description
characterize the system in terms of component mod-
els (e.g., representations of a plant, compensator,
sensor, etc.); elements of a Result_set include any
result generated with the corresponding model, such
as a time-history, frequency response, etc. plus a
record of the previous set-up activity (e.g., setting

INote that our discussion of a Model Description assumes
that models are composed by suitably connecting a set of com-
ponents — dealing with monolithic models would be simpler
but less flexible.

initial conditions and parameter values, defining in-
put signals, selecting algorithm options). This latter
portion of the result_set is called the Condition_spec,
i.e., a specification of the conditions used in gener-
ating the result; note that this data structure plays
an important role in Sections 3.2 and 3.3 (retracing
analysis and design experiments).
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Figure 1: Data-Base Hierarchy for CACE

Given the hierarchical framework outlined above,
there are several considerations and features that are
vital for maintaining the integrity and documentabil-
ity of the data base; these include [6]:

1. The use of a Model version control scheme 1s es-
sential, so that system models can evolve and re-
sults obtained with each “version” of the model
can be unambiguously associated with that ver-
sion. Given that models are composed of com-
ponents, this would actually be implemented
at two levels, as illustrated in Fig. 1: Each
system Component has a version number
which is incremented with every change, and ev-
ery Model instance composed of a set of com-
ponent versions is assigned a class number.
Each result is thus associated uniquely with its
Model class.

2. The use of a Reference to relate each subsidiary
model (such as a result from linearization,
model reduction, model identification, etc.) to
the “parent” or model from which it was pro-
duced 1s also vital. For example, a lineariza-
tion of the nonlinear system NL_Plant pro-
duces both a Result and a potential Model, e.g.,
Lin_Plant; in MEAD [2] this potentiality is re-
alized by modelizing the result, by which it 1is
meant that it is installed in the data base as a

Components)



Model, ready to use for whatever purpose. If
Lin_Plant were modelized, then it can be an-
alyzed and have a Result_set of its own. Ref-
erences allow such models and their origins to
be maintained with integrity; without this fea-
ture, the value of each subsidiary model would
be jeopardized.

3. The use of links to maintain a Component
that may be used in a number of Models
greatly facilitates its maintenance. For ex-
ample, the component Plant may be used
in the models Bare_Plant, Open_Loop, and
NL_Fdbk_Sys; the component is actually
stored and maintained under one model (proba-
bly Bare_Plant, called its “home”) and the De-
scriptions of the other models simply link to its
“home” as the source for its file. This eliminates
the need to keep separate copies of component
Plant for each model, making its maintenance
much easier and more secure.

The hierarchical data-base schema and the three
mechanisms outlined above for maintaining the crit-
ical relationships among the data elements provide
the required foundation for the productivity en-
hancements presented in Section 3.

2.2 Data-base Organization: Commands

The most succinct way to specify the implementation
of an EDBM that conforms to the schema outlined
above is to delineate a corresponding command lan-
guage Z:

1. Model Building Commands — Models are
created by defining components and specifying
their connections, or by “modelizing” a result:

> Model_create(name, type, form) — this com-
mand initiates model building.

> Component_create(name, type, file_id) — the
data structure in the specified file (nonlinear
dynamic equations, {A,B,C,D} data, etc.) is
to be used in defining the named component of
specified type.

> Component_lib_fetch(component_id, (link |
copy) ) — in MEAD there is a Project called
Library in which components are stored; this
command allows the modeler to copy OR link
with these components. The details of this com-
mand would depend on the implementation of a
library.

2This is not the MEAD command language — it is untested
but conveys the needed functionality.

> Component_copy(name, component_id) -
copy a component from any source for use in
a model (there is no link — it will be maintained
separately).

> Component_link(name, component_id) — the
named component in the model being built will
be linked with the specified component in an ex-
isting model.

> Model_connect(type | fileiid) — the model is
to be configured in a standard way (type = par-
allel, series, feedback_system ...) OR the data
in the specified file defines the configuration of
the system.

> Modelize(name) — install a result (lineariza-
tion etc.) in the data base as a one-component
model of given name.

2. Model Management Commands — Models

may be “configured” (loaded into a CACE pack-
age and readied for use) or modified:

> Configure(model_id) — defined above.

> Model_edit(model_id) — modify a model’s de-
scription (may not be needed if the connection is
regarded as another component, as in MEAD).

> Component_edit(componentid) —  self-
explanatory.

> Component_replace(component_id, file_id) —
the previous definition of the component is com-
pletely replaced by the data structure in the
specified file.

> Component_transfer(component_id, model-
.id) — move a linked component to another
“home” model (would be necessary if the old
home model is going to be deleted).

> Create_new_class(model_name) — one or more
revised components are assembled to create a
new model class.

> Delete_class(model_id) - eliminate a model
class (usually done if it is broken or otherwise
useless; associated results (if any) are discarded
along with the class.

> Delete_model(model name) - self-
explanatory.

3. Data-base Management Commands — El-

ements of the data base may be catalogued,
fetched, deleted or annotated (supplied with
notes):

> Projects — produce a listing of all projects in



the user’s data base.

> Set_project(project_.name) — specify the
project in which the user will work (use mod-
els, produce results).

> Models(project_name) — produce a listing of
all models in the specified project.

> Description(model.id) — produce a listing
of all components that make up the specified
model.

> Results(model.id) — produce a listing of all
results generated with the specified model.

> Fetch_model(model.id) — self-explanatory.

> Fetch_component(component_id) -
self-explanatory.

> Fetch_result(result_id) — self-explanatory.

> Fetch_condition_spec(result_id) — determine
the set-up conditions used in generating the
specified result. It is advantageous to store this
information as the original command set, so it
can be used as a macro (e.g., to generate an
analogous result with a new model class).

> Fetch_link(component_id) — determine where
a component has its home, or if this is the home,
determine where else it is used.

> Fetch_reference(result_id | component.id) —
determine the home model of a modelized re-
sult (if argument = result_id), OR its parent (if
argument = component_id).

>  Delete_project(project_name) -  self-
explanatory.

> Delete_result(result_id) — self-explanatory.

> Annotate_project(project_name) — Store com-
ments and observations at the project level.
Each note insertion or modification is time
stamped.

> Annotate_model(model name) — as above;
comments might include information about
changes from class to class.

> Annotate_component(component_name) — as
above; comments might include information
about changes from version to version.

> Annotate_result(result_id) — Store comments
and observations about a specific result.

Note that the above command set makes an im-
portant distinction between entities with the suffix
“_name” and those with “.id”. The former denotes a
simple name (e.g., F-18) while the latter is a unique
data-base pointer, i.e., model_id = project_name

+ model name + class_number, component_id
= project name + model name 4+ compo-
nent_name + version_number, and result_id =
project name + model name + class_ number
+ result_name .

There are other needs and features that could be
introduced, particularly in the area of support for
larger efforts with multi-user EDBM requirements.
These are discussed briefly in [7].

3 ENHANCED CACE PRODUC-
TIVITY

In terms of enhanced productivity, there are several
ways in which a well-designed EDBM can achieve
this goal [8, 9]: Tt can —

1. provide an object-oriented paradigm for dealing
with models and results;

2. support widget, tool and package integration;
3. permit application/task decomposition; and

4. enable the definition, execution and retrieval of
design-history databases by structuring retrace-
able “design chains”.

Besides MEAD [2, 6, 7, 9], ANDECS [1, 8, 10] is
another major CACE system with a fully integrated
engineering database. The ANDECS technology em-
phasizes engineering-efficient ‘computational experi-
mentation’ by supporting the exploratory and itera-
tive nature of control-dynamics analysis and design.
In addition to control-engineering efficiency, concur-
rency with adjacent engineering-dynamics disciplines
is of prime concern. The description that follows is
based primarily on ANDECS [1], as that package is
more advanced in these areas.

3.1 Support of an Object-oriented Data
Paradigm

Parnas’ data abstraction [11] via Abstract Data
Types (ADTs) is a technique to decompose com-
plex computational tasks. Safe and efficient data
handling and data processing can be supported by a
database system which recognizes appropriate ADTs
and provides computationally optimized ADT han-
dling tools.

The RSYST engineering database used in ANDECS
supports generic ADTs such as: 1-, 2- and 3-
dimensional arrays of integers, real- and double-
precision numbers; parameter sets of numeric and



symbolic values; text; and pixel-images. The
database access and storing mechanism is optimized
to work efficiently with large data objects, such as
numeric arrays of time series.

An object-oriented database with a class concept
and an inheritance mechanism provides a means to
formally define complex data objects composed of
generic data types. This is used in ANDECS to
formally define Control Data Objects (CDOs) [12]
which are basic data structures in CACE: signals,
nonlinear input/output dynamic systems, linear dy-
namic systems in state-space form, transfer function
matrices, frequency responses, pole/zero patterns,
etc.

While CDOs are just data structures encapsulated
by the database class schema, one could go one step
further in defining computational objects which en-
capsulate a CDO together with the system theoretic
methods possible to operate on that particular data
object. In ANDECS, this ‘early binding’ approach is
not pursued, however. Rather, the database support
of ADTs and CDOs is exploited by a versatile mod-
ules concept which i1s based on the concept of ‘late
binding’ as advocated by Cox [13]. This allows an
evolutionary development and set up of rather com-
plex computational chains and loops. This is dealt
with next.

3.2 Support for Widget, Tool and Pack-
age Integration

In CACE-computational experimentation, rather
complex systems of interactively controlled compu-
tational chains and loops have to be composed from a
broad variety of simulation, analysis, order-reduction
synthesis, control synthesis, and optimization meth-
ods. To compose such experimentation set-ups from
more basic computational elements, the concept of
‘tool abstraction’ [14], which is the complement of
‘data abstraction’ [11], provides utmost configura-
tion freedom and reusability of proven algorithmic
components. Computational tasks are decomposed
into suitably simple function modules (“toolies”)
which communicate their input/output data only via
the database. Since by this mechanism no direct
module-to-module communication is possible, this
allows the configurability of computational chains
by side-effect-free modules. Thereby the database
serves the purpose of syntactic integration in ‘late
binding’ of complex application tasks. This consti-
tutes the ‘database-centered’ modular software ar-

chitecture of ANDECS.
Note, that here it is important that the database

is optimized for efficient access of engineering data
structures, in particular complex data objects which
include large arrays of numerical data. In ANDECS,
such an engineering database can also be kept resi-
dent in main memory to reduce the access overhead,
e.g. when used within an optimization loop.

To associate the results produced by a function mod-
ule to the originating CDOs and the chosen algo-
rithmic data, a hierarchical database is best suited.
With the ‘dialog-generator paradigm’ proposed in [8]
then an automatically evolving ‘producer-oriented’
database structure can be evoked when executing
a function module. The simulation module AN-
DECS_DSSIM [15] is an example thereof, where
all producing data (method, input functions, time-
grid, ...) are automatically stored together with the
simulation results below a node of the hierarchical
database, where the system model CDO is stored.
This allows complete and simple-to-do retracing of
any simulation run.

A database-centered software architecture also fa-
cilitates the integration of different proprietary tool
packages within an application: Since the database
constitutes a neutral data communication platform
through the generic data structures it supports, each
external package needs just one data interface to the
database. Therefore the number of interfaces nec-
essary for n packages involved, is only of order(n)
instead of order(n?) if the packages were allowed
to communicate mutually among each other. More-
over, if the same database system with the same data
structure is used in different application systems, the
package/database interfaces are reusable, which is a
step in the direction of ‘open application systems’.

3.3 Support of Application/Task Sepa-
ration

A gross decomposition in the development and use
of application programs is a task separation into
three parts: pre-processing, main-processing, and
post-processing.  This is also a task separation
where most likely different packages are involved.
In particular, plant modeling by domain specific
modeling tools may be considered as preprocess-
ing for CACE analysis-, synthesis-, and simulation
main processing. Result visualization, -export and
-documentation is often considered as postprocess-
ing since one operates on result data of the previous
computations. Again, a database can help to strat-
ify the sequential input/output structuring of such
a task decomposition. Specifically, if more than one
database realization can be used in one application,



for each task subgrouping one database can be used
and all databases can be operated together when
group results have to be integrated. This facilitates
transaction management in collaborative work. In
ANDECS eight databases can be used concurrently
within one application system.

3.4 Support of Design History Retrace-
ability

A more detailed, method-oriented CACE-task de-
composition is supported by ANDECS for the task of
‘design experimentation’. Design experimenting em-
bodies (I) model experiments, i.e. exploring what is
a suited design dynamics model, (J) method experi-
ments, i.e. exploring the behavior of a chosen model
via various analysis methods in state- and frequency
domain or via time simulation, and (K) parametric
experiments, i.e. doing parametric iterations either
by hand or by an optimizer to explore the best pos-
sible attributes of design instances.

The variability of possible design decisions on the
strata I, J, K; and the amount of computational data
to get the proper indicators for these decisions, make
it necessary to support the designer in

e formally structuring the decision process,

e automatically recording the various design steps
and the pertinent data,

e allowing to compare any design outcomes by
making the necessary indicator data easily re-
coverable,

e allowing backtracing and branching of the de-
sign process.

The 3 decision strata I, J, K form a hierarchy.
Hence a hierarchical database is best suited to record
and to show the design history [16]:

By means of the design indices I, J, K not only the
different design steps can be distinguished, but it
i1s also possible to make evolve the data structure
automatically as design proceeds. For this, simple
rules uniquely map the sequence of design decisions
onto the design-data structure:

1. decision on design model:
ILLJK—IT+1,1,1,if K#1. (1)

This means that in case of model modifications,
the design index I is augmented by 1, whereas
J and K are reset to 1. However, the indices
are only changed, when K > 1,

2. decision on performance indices (methods):
ILJK—I1J4+1,1,if K#£1. (2)

The evolution of the design index J is in accor-
dance with the first rule. The index I of the
node models now remains unchanged, because
the model specifications are not concerned by
this design decision.

3. iteration in parameters:
ILJK—I JK+1. (3)

After the design parameters are specified, a syn-
thesis step for a parameter change can be per-
formed. The resulting synthesis data are stored
below the node design. K + 1.

This data structure gives the desired decision sup-
port, in that all design steps are completely recorded,
and immediate backtracing is possible. Branching
of the design process can be done by making any
existing design I, J, K to the first branch of a new
design-data structure. From the stored data all anal-
ysis data involved can be easily recomputed, since
any synthesis step can be reproduced. Hence a com-
parison between any design outcomes is possible.

Hence a hierarchical database can serve the integra-
tion of a parametric design process on syntactic, se-
mantic and method level.

4 CONCLUSION

Several recent computer-aided control engineering
(CACE) projects have demonstrated the need for
engineering data-base management (EDBM) in this
area[l, 2]. They have also provided a detailed anal-
ysis of requirements for functionality (accessibility,
maintainability, integrity, documentability) and for
productivity enhancement. Such a system would
appear to be especially important for Open CACE
Software[3]. Tt is our hope that the discussions
and specific details provided above will encourage
the wide-spread and standardized introduction of
EDBM into existing and future CACE environments.
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