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ABSTRACT

During the system design process engineers must choose the
appropriate order of a model of a system of components,
which is accomplished by determining the appropriate or-
der of the component submodels. Several researchers have
developed model-order-deduction algorithms, under the as-
sumption that algorithms for synthesizing component sub-
models are available. Thus the issue of determining ap-
propriate submodel order has been a principal topic. In
previous efforts the primary means to determine model or-
der adequacy has been to focus on the eigenvalues of the
model. One algorithm, the model-order deduction algo-
rithm (MODA), systematically increases the order of the sys-
tem model until any subsequent increase results in adding
system eigenvalues of magnitude outside a user-specified
frequency range of interest [0,wmaz]. Another algorithm,
EXTENDED-MODA, begins with the same model that MODA
synthesizes and increases the order further until the |A;| €
[0, wimas] settle within some specified tolerance.

In this paper we develop a new algorithm, FD-MODA,
that uses the convergence of the model in the frequency
domain as its performance metric. The model’s frequency
response is based on zeros and poles (eigenvalues) of the
system model, so it provides a more comprehensive indica-
tion of model performance than just the eigenvalues. It also
seems to be more meaningful in the context of frequency-
domain controller design methods, e.g. Ho optimization.
FD-MODA’s use is illustrated with two examples, and its effi-
cacy in selecting an appropriate combination of component
submodels is thereby demonstrated. In addition to using a
broader performance metric than previous algorithms, FD-
MODA also provides visual feedback — frequency response
plots — of model convergence that are more indicative of
model performance than a map of pole locations in the s-
plane. We thus conclude that by focusing on frequency re-
sponse as a model performance metric FD-MODA provides

a useful and direct means of coordinating the automated
model synthesis process.

INTRODUCTION

Modelers, both human and automated, must cope with a
bewildering number and variety of decisions when develop-
ing a mathematical model of a physical system. The ul-
timate onus is, of course, on the human modeler to make
these decisions wisely. However, it would be highly desirable
for automated-modeling software to support this decision-
making process to the extent possible.

One early decision is the type of modeling formalism
to adopt. Continuum-based models, finite-element models,
and discrete (lumped parameter) models all have wide and
frequently overlapping applicability. Within a given formal-
ism a modeler must contend with choices concerning the
appropriate model order, the effects to include in a model,
and how to represent (if at all) the inherent nonlinearities
involved in most physical systems.

A great simplification results if the modeler represents a
physical system in terms of a continuous-time, state-determined
model, tacitly assuming that this lumped parameter formal-
ism adequately describes the system under study. This rep-
resentation (also called a “state-space” model) allows the
system to be described with a finite (often low) number of
state variables. The n state variables of such a representa-
tion are governed by a set of n ordinary-differential equa-
tions. Even with this simplification, however, a modeler still
needs to: (i) select the effects to include in a model, (ii) de-
termine the appropriate order for a model, and (iii) describe
mathematically the important nonlinearities.

While a general technique for identifying which effects
to include in a model is not available, considerable theory
is available to address the problems of determining model
order and choosing models for common nonlinear effects.



In our work, we are attempting to synthesize and extend
existing theory to create general model-order deduction al-
gorithms (MODAs) for linear and nonlinear systems. An im-
portant attribute of our approach is to consider a model’s
frequency-domain behavior to be a key measure of its “good-
ness”. In the nonlinear case, preliminary results (based
on describing-function techniques) are presented in Wilson
and Taylor (1993); here we focus on an approach for linear
systems called FD-MODA (frequency-domain model-order de-
duction algorithm).

BACKGROUND

The context of the present research in model-order deduc-
tion is as follows: We assume at the outset that the modeler
is dealing with an electro-mechanical system that is assem-
bled using a number of components (motors, gears, shafts),
and that an automated modeling technique exists that can
be used to generate a system model once the components
are specified. In fact, this technique can produce a number
of dynamic models, which differ in the level of detail used to
model each component. In the linear case, the “level of de-
tail” of each component submodel translates into its order;
e.g., a more detailed motor model may include inductive
lag (one additional state variable), or a more detailed shaft
model might include one or several modes (adding two state
variables to its lumped-parameter model per mode). The
problem addressed by model-order deduction algorithms is
deciding what minimal level of detail to use in each compo-
nent submodel so that the resulting system model is suitably
realistic.

Before this problem can be solved, one must specify
what is meant by the term “suitably realistic.” This consid-
eration introduces the idea of a “model performance met-
ric.” We believe — and will attempt to justify — that in the
context of control system analysis and design (at least) the
appropriate metrics involve the system model’s frequency
response characteristics. In particular, we will focus on an
H metric, ie., we will use the sup norm of 6§G(jw) (the
normalized change in the model’s frequency response) as
the criterion for judging the suitability of the system model
as we iteratively increase the order of each component sub-
model and look for convergence.

Automated Modeling Framework

The model order deduction algorithm described in this pa-
per, FD-MODA, is built within a framework of components,
automated model synthesis procedures, and model evalua-
tion techniques. To define the framework for this algorithm,
we begin by specifying the set of components

7C"}

from which systems (of components) can be constructed.
In the domain of electro-mechanical systems, C will in-
clude components such as DC motors, torsional shafts, and

C:{C17C27...

gear pairs. Each component c; has a set of relevant at-
tributes that affect the dynamic response of that compo-
nent, e.g. shaft length, diameter and material. We denote
this component-specific set of attributes as:
d; = {dM,a® .. a).

In addition, each component c; has a corresponding model
generating function (MGF) that maps the component into
one of its submodels. The set of MGFs for C is

F={fi,f,... .}

Each f; is capable of synthesizing one or more candidate
submodels of the component c; to which it corresponds.
A non-negative integer, referred to as the rank of a com-
ponent submodel, is used to specify its complexity. De-
pending on the component, the maximum rank is either
unbounded or bounded. Unbounded rank components can
be mapped into an infinite number of submodels, whereas
bounded rank components can be mapped into only a finite
(typically small) number of submodels. A flexible shaft is an
example of the former case, while a motor would generally

be of bounded rank.

The set of submodels corresponding to the i compo-
nent is denoted as:

M; = {mgl) , m52), e mgm)}.
Fach submodel mE]) in M; has a rank and a set of coefficients
that parameterize it. Without loss of generality, we assume
the submodels mgj) are ordered by increasing rank. We
denote the corresponding set of coefficients as:

¢’ ={a¥"},a%),...,a% ).
There are m candidate submodels of each component, and
thus m possible sets of submodel coefficients are associated
with it. Note that these coefficient sets are explicitly deter-
mined by the physical attributes of the :** component, i.e.,
al’) = ) (do).

To clarify the above interrelationships, suppose we want
to synthesize the second submodel (in terms of rank or com-
plexity) of the first component. We would use the first MGF
(f1) and supply it with arguments 2, for the second-rank
model, and di, denoting the attributes of the first compo-
nent. In an algorithmic notation,

£1(2,d1) = m{ (¢ (dh)).

The repeated subscript 1 of the submodel, m;, and the at-
tributes and coeflicients of this submodel, d; and q,, are
needed to indicate that both the submodel and its coeffi-
cients are derived from a specific type of component. For
example, the first submodel of a motor is very different from
the first submodel of a shaft. The running superscript (2)
denotes the use of the second-rank submodel. Of course,
the notation could be one level more complicated if we at-
tempt to distinguish between shaft; and shaft,! However,



to avoid unnecessary notation, additional subscripts and su-
perscripts will be avoided when the origin of the submodel
is clear or generic.

Finally, we would like to emphasize that models synthe-
sized using FD-MODA have physical parameters, that is, the
state variables are generalized displacements and momenta,
and inertial, capacitive, and dissipative elements appear as
coefficients of these state variables. This is in stark contrast
to a black box approach to modeling, in which information
internal to a physical system is not part of the model.

As mentioned previously, the framework of FD-MODA
also includes a means to assemble the component submod-
els into a system model and to synthesize state equations.
Submodel assembly is accomplished by kinematically cou-
pling adjacent inertial elements of the component submodels
and lumping two or more inertias into a single inertia. This
is quite standard, and is discussed in texts such as Rosen-
berg and Karnopp (1983) and Karnopp et al. (1990). In
these same texts, algorithms are provided for synthesizing
the state equations of a model expressed as a bond graph.
For future reference, we denote such a system model as:

sY=Am); N="n

where A informally denotes “assembly” in the above sense,
1t ranges over the set of components and N denotes the rank
of &, which is related to its order.

Model Order Deduction

One approach to modeling is to begin with a high-order
model of a physical system and apply mathematical trans-
formations to pare the high frequency modes from the model.
Such a model order reduction approach is quite powerful and
commonplace; however, its use presupposes the existence of
a high-order model to start with. In contrast to this ap-
proach, model order deduction begins with a very low-order
model of a system and adds state variables to the model
— through the inclusion of inertial and compliant elements
— until the performance predicted by the model no longer
changes (appreciably) as more state variables are added to
the model.

The first algorithm to apply this idea systematically was
the “model order deduction algorithm” (MopA) (Wilson and
Stein, 1992; Wilson and Stein, 1995) Since that contribu-
tion, several approaches have been proposed for its extension
and improvement. One area that is clearly significant in-
volves the definition of measures for a model’s performance,
since these govern the search for a “good” or “adequate”
model and determine when such a process has converged.
Therefore, a detailed discussion of the last element of the
framework — model performance metrics — is needed to com-
plete this background exposition.

Model Performance Metrics

Two basic truisms are: 1) a model should be accurate, and
2) an accurate low-order model is preferred over a high-
order model of approximately the same accuracy. Quan-
tifying accuracy is, however, somewhat elusive, because in
the design stage no hardware is available against which the
performance of a model can be evaluated. Even if hardware
exists, the time and expense required to measure system
performance may weigh against obtaining this data to eval-
uate a model.

Since model performance often cannot be evaluated
against measured data, a reasonable alternative is to com-
pare the performance of lower to higher-order models of the
same system to get an indication of the sufficiency of model
order. For example, if SV provides approximately the same
predicted behavior as higher-order model S¥*!, we might
conclude that SV has sufficient order. Conversely, if a large
difference exists in the predictions obtained from these two
models, we would conclude that S has insufficient order
and we should increase the order and compare models SV 11
and SM*2, and so on.

Previous model-order deduction algorithms have used
the concept of a frequency range of interest (FROI) and eigen-
values as a performance metric. MODA used |A;| € [0, Wmaz]
as a performance metric in the sense that it synthesized a
low-order model that minimized the spectral radius, while
simultaneously guaranteeing that any subsequent increase in
model order would result in a spectral radius beyond wmqz.
EXTENDED-MODA (Ferris and Stein, 1995) also focused on
the |Ai| € [0, wmaz], but continued increasing model order
until these eigenvalues no longer changed appreciably with
subsequent increases in model order. In the sequel we will
discuss MODA and EXTENDED-MODA in more detail and also
demonstrate that the frequency response metric provides
a more comprehensive measure of model performance than
[Ai] € [0, wimaz].

Frequency Range of Interest.

The FROI is of considerable importance in systems engi-
neering, and provides a context within which to formulate
requirements on model performance. The FROI is the fre-
quency band [Wmin, Wmas] over which a model, in terms of
steady-state input-output prediction, should give a reliable
indication of system response. For convenience, zero may of-
ten be taken as the lower bound of the FROI (wmin = 0). The
upper bound may be determined from an input specification,
e.g., if the frequency content of commanded inputs or dis-
turbance inputs is known then the model should be accurate
to frequencies 2-5 times the highest input frequency (win)
(Karnopp et al., 1990); accordingly, Wmaz = 5 X win. In the
case of closed-loop system design, the open-loop crossover
frequency drives the FROI in that the model should provide
a reliable response at frequencies 1 to 2 decades beyond the
crossover frequency weo, that is, 10X weo < Wimar < 100X weo.
Both of these approaches are merely “rules of thumb”; the



engineer must temper these suggestions with the particulars
of the problem under consideration.

Eigenvalue-Based Model Performance Metrics.

MODA coordinates the search for the combination of com-
ponent submodels that results in a model that, for a given
order, minimizes the spectral radius and guarantees that
any increase in model order will result in a spectral radius
beyond the upper bound of the FROI [0, wimaz]. This implies
that a model synthesized using MODA contains only eigen-
values with magnitude in the FROI. Wilson and Stein (1992;
1995) use the term Proper Model to refer to a model with
physically based parameters and state variables and that
meets this performance metric.

A limitation of MODA cited by Ferris and Stein (1995) is
the lack of a guarantee regarding the accuracy of the con-
dition |A;| € [0,wmas] iIn a model synthesized using MODA.
That different lumpings of continuous components in a larger

system model will result in different eigenvalues is well known.

In the case of MODA, an increase in the order of a Proper
Model generally results in some shifting of |A;| € [0, wmaz],
which suggests that a more accurate prediction can be ob-
tained by increasing the order of the Proper Model.

Ferris and Stein addressed the issue of eigenvalue mi-
gration by creating a new model synthesis algorithm that
monitors the migration of the |A;| € [0, wmaz], which they
refer to as the critical system eigenvalues. The new algo-
rithm EXTENDED-MODA synthesizes a Proper Model in the
same manner as MODA; it then continues increasing model
order until the |A;| € [0, wmaz] remain approximately the
same as the model order is increased. The degree of ap-
proximation can be controlled by a user-specified tolerance
defining the acceptable percentage change. The claim by
Ferris and Stein is that EXTENDED-MODA will synthesize a
model of appropriate complexity that provides estimates of
[Ai| € [0,wmaz] that have converged to some user-specified
percentage.

Frequency-Response—Based Model Performance Metrics.

The frequency response of a system, denoted G(jw), is a
useful performance metric and design aid. When plotted on
the G-plane the frequency response is the basis for Nyquist
stability analysis, and is used to compute gain and phase
margins. When the magnitude and phase are plotted sep-
arately, as in Bode plots, frequency response is used for
frequency-domain based compensator design.

We believe that considering a model’s frequency response
over a given frequency range provides a broader measure
of its performance than monitoring eigenvalues within this
same range. Frequency response is obtained by evaluating
a transfer function, a ratio of polynomials, over a range of
frequencies, i.e.

N(jw)

G(yw) = D(j)’

W e [wmznywmaz] (1)

The transfer function (1) is obtained from the state matrices
using the well-known relation:

G(s)=C(sI — A)™'B+D. (2)
If we focus (for the present) on SISO systems, we can rewrite
(2) as
Lot @
Hi:l(s +pi)

where m < n and m < n if D = 0. The poles of (3) are the
eigenvalues of the system.

G(s)= K

We now consider (3) in the context of the model or-
der deduction algorithms described in the previous section.
Comparing the frequency response of (3) over a FROI
[Wmin, Wmaz] provides a more meaningful basis for deciding
submodel rank and evaluating model performance than just
focusing on the poles. There are several reasons for this
assertion:

e Using eigenvalue convergence as a criterion for setting
model order may have little bearing on the conver-
gence of G(jw). For example, the variation of G(jw)
for a 10% change in a real eigenvalue may be quite
small, while a 10% change in a pair of very lightly
damped eigenvalues may have a major impact.

e In the context of control system analysis and design,
G(jw) tells the “whole story” regarding gain and phase
margin, loop-shaping requirements (for compensator
design), and the like; eigenvalues convey only part of
this information.

In the final analysis, we want the system model to pro-
vide a reliable prediction of model performance for w €
[Wmin, Wmaz]. For this to occur, both the zeros and the poles
of (3) must have converged sufficiently such that increases
in model order do not cause appreciable changes in the fre-
quency response. This cannot be done by considering only
the eigenvalues.

FREQUENCY-DOMAIN METHOD FOR MODEL-ORDER
DEDUCTION

The most succinct way to present the frequency-domain
method for model-order deduction is to define the objec-
tive of the FD-MODA algorithm, and specify the logic used
in its execution.

Objective

The input and the desired output specify the requirements
of the algorithm. The input to FD-MODA includes:

e a system, S, of serially-connected components, e.g.
S= {C17C37C27C37C3}7
® a FROI [Wmin, Wmaz), and

e a frequency response convergence tolerance, TOL.



The output of FD-MODA is the set of ranks of the compo-
nents of S, i.e. R = {r1,rs,12,13,18}. This set satisfies two
conditions:

1. the frequency response over [Wimin, Wmaz| predicted by
a model synthesized based on R has converged within
TOL,

2. the sum of the ranks, Zi r;, is minimum.

This provides a system model that is of appropriate com-
plexity given the specification that the frequency response
should be accurate over the FROLI.

Model Order Determination Procedure

1. Initialize

(a) Initialize all component ranks to zero (r; = 0)
(b) Specify a tolerance TOL

(c) Specify a frequency of interest [Wimin, Wimaz]
(d) Create a grid of K points, wi € [Wmin, Wmaz]

(e) Synthesize a system model S, based on current
ranks
(f) Compute G(jw) for all wg
(8) Set G*(jw) = G(jw)
2. Determine Most Sensitive Component
(a) dGmae =0
(b) Cycle over the components c;:

i. Increase rank of c;

ii. Synthesize system model, based on current
ranks

ili. Compute G(jw) for all wr — G(jws)

iv. §Gy = (G*(jwr) - G(jwi))/G* (Jwk)

v. If (|| 6Gk ||co= maxg | 8Gx |) > dG pmas then:
A. dGmae = || 0Gk ||
B. " =1

vi. Decrease rank of component c;

3. Evaluate Need to Increase Order

(a) If dGmas > TOL then:

i. Augment model order by increasing rank of
component c;+

ii. Synthesize system model, based on current
ranks

ili. Compute G(jw) for all w;
iv. G*(jw) = G(jw)
v. go to 2

(b) else, continue below
4. Output Results

(a) Output ranks of components

(b) Output system model

ot

ALGORITHM DEMONSTRATION

We will demonstrate FD-MODA with an example that in-
volves synthesizing a model of a drive train. The section
begins with a description of the drive train, followed by
a discussion of the model generating functions that corre-
spond to its components. With this background, the sec-
tion culminates with a step-by-step description of FD-MODA-
coordinated model synthesis.

Physical System

The drive train, shown in Figure 1, consists of a DC motor,
a flywheel supported by roller bearings, a torsional shaft,
and a second flywheel, also supported by roller bearings.

DC Motor
Flywheel Shaft Flywheel

Figure 1: Demonstration system
Component dimensions, motor data, and material pa-
rameters for the system in Figure 1 are as follows:

DC motor torsional inertia J, 3.6e-4 kg—m?, inductance
Lg 3.1e-3 H, resistance R, 1.4 ohm, torque constant

K;0.17 Nm/amp, viscous friction B, 7.4e-5 Nm/rad/sec

Flywheel 1 diameter 0.2 m, thickness 0.0254 m, density

7775 kg/m?, viscous friction coefficient 3e-5 Nm/rad/ sec

Shaft diameter 0.02 m, length 1.0 m density 7775 kg/m?,
shear modulus 7.31e10 N/m?

Flywheel 2 diameter 0.2 m, thickness 0.0254 m, density

7775 kg/m®, viscous friction coefficient 3e-5 Nm/rad/ sec

Component Submodels

Models are needed for each component in the drive train.
As discussed, model generating functions are assumed to be
available, and these can be used to synthesize component
submodels. In that section, model generating functions were
defined as taking an argument, rank, that dictates the com-
plexity of the component submodel. Henceforth, we will call
the model that results from the rank being set equal to n,
the “rank-n” model.

For the DC motor, two models are available, a rank-
0 model and a rank-1 model. As discussed in more detail
in Wilson and Stein (1992), the rank-0 model does not in-
clude the inductance of the windings, and the rank-1 model



I:La I:Ja
(Rank 1 only) d d
_—
Se:Vin 1 QY N
Kt
R:Ra R:Bv

Figure 2: Bond graphs for rank 0-1 DC motor

includes the inductance. The rank-0 and rank-1 DC mo-
tor bond graphs are shown in Figure 2, and are standard
(Karnopp et al., 1990).

The flywheel model and torsional shaft models are dis-
tinct in that only one model is available for the flywheel and
an infinite quantity of models are available for the shaft.
One model is available for the flywheel, an inertial element
coupled to a dissipative element. No additional inertial or
compliant elements can be used to augment the flywheel
model. The model for the flywheel is standard (Rosenberg
and Karnopp, 1983). In the case of the torsional shaft, it can
be modeled as a torsional inertia, or as two rigid shafts sepa-
rated by a torsional spring, or as N +1 rigid shafts separated
by N torsional springs. As discussed in Wilson and Stein
(1992), this latter model is the rank-N shaft model. Bond
graphs for the flywheels, the rank-0 shaft, and the rank-1
shaft are shown in Figure 3; note the distinction between
rank-0 and rank-1 shaft made in Figure 3.

:J1 LJs/2 I:Js/2 1:J2

N

1 1 0 1 1

(Rank 1 only)

C:Ks

R:bl R:b2

Figure 3: Bond graphs for flywheels, rank 0-1 shaft

Proper Model

In the FD-MODA framework model synthesis reduces to se-
lecting the set of component ranks that result in a model
that has converged over a specific FROI. Converge in this
context implies that the model frequency response does not
change appreciably when the rank of any component is in-
creased. For the drive train in Figure 1 only the DC motor
and the shaft can have their ranks changed. The flywheel
models are strictly rank-0. The choices for the DC motor
are rank-0 and rank-1, and the choices for the shaft range
from rank-0 to rank-co. Our model notation here is as fol-
lows: the (m,n) model corresponds to the rank-m motor
(model) and the rank-n shaft. We assume a FROI of 1-1000
%, with a 1000-point grid, and a convergence tolerance of
0.2.

For the first pass of the algorithm, we begin with the
(0,0) model and compare §G(jw) of the (1,0) and (0,1)
models. As noted in Table 1, the (0,1) model has a much
larger dG pmqe than the (1,0) model, which implies that the
shaft compliance has a larger effect on model performance
than motor inductance. As the (0,1) model has the largest
dG maz, this model is the first model for the second pass of
the algorithm.

During the second pass of FD-MODA, we compare the
(0,1) model with the (1,1) and the (0,2) models. As tabu-
lated in Table 1, the (1,1) model has a much larger dGmaz
than the (0,2) model, which implies that the motor induc-
tance has a more significant effect on model performance
than a two-spring shaft model. Thus, the (1,1) model is the
first model for the third pass of the algorithm.

The model converges after the second pass. Within the
FROI [1,1000] %, there is little change between the perfor-
mance predicted by the (1,1) model and the (1,2) model,
which is the only available choice at this point, in terms of
incrementally increasing complexity. As Table 1 indicates,
dG ez for the (1,2) model is 0.16, which is less than the
specified tolerance (0.2).

1 0 0 0 (0,0) —

1 1 1 0 (1,0) | 0.9115
1 2 0 1 (0,1) | 3309
2 0 0 1 (0,1) —

2 1 1 1 (1,1) 0.91
2 2 0 2 (0,2) 0.18
3 0 1 1 (1,1) -

3 1 1 2 (1,2) 0.16

Table 1: Component ranks during drive train model
synthesis

Although Nyquist plots were used to determine that the
(1,1) model is the Proper Model for the drive train in Fig-



ure 1, Bode magnitude plots better illustrate the changes in
predicted behavior as the model rank is increased.

Consider the magnitude plot for the (0,0)—(1,1) mod-
els shown in Figure 4. Note the large difference between

Plots for (0,0), (1,0), (0,1), and (1,1) Models

20

magnitude, dB

-100 0 ‘ 1 ‘ 2 3
10 10 10 10

frequency, rad/s

Figure 4: Bode magnitude plots for (0,0)—(1,1) models

the (0,0) and the (0,1) plots, which corresponds to the se-
lection of the (0,1) model during the first pass. Note also
the smaller, but still significant, difference between the (0,1)
and the (1,1) plots, which corresponds to the selection of the
(1,1) model during the second pass. The model converges
during Pass 2, which is evident when the nearly identical
Bode plots for the (1,1) and (1,2) models are plotted (not
shown).

COMPARISON OF MODEL-ORDER-DEDUCTION AL-
GORITHMS

We now examine the synthesis of a model of a shaker system
described by Ferris and Stein (1995). The shaker, shown in
Figure 5, consists of a rod, a DC electro-mechanical linear
actuator, a second rod, and a vibration isolator. Component
dimensions and data for the system in Figure 5 are as fol-
lows:

Rod 1 density 7755 kg/m?, elastic modulus 2.1e10 N/m?,
diameter 0.05 m, length 2.0 m,

Shaker gyrator modulus 1 N/A, resistance 1 ohm, induc-
tance 5e-4 H, base mass 1 kg, armature mass 1 kg.

Rod 2 same as Rod 1

Isolator mass 1 0.5 kg, spring stiffness 10000 N/m, mass
20.5 kg.

The models for the rods are standard translational shaft
models, where rank-0 corresponds to a rigid shaft, rank-1
corresponds to two rigid shafts separated by one (1) spring,

Actuator Output Velocity
\

Rod 1 Rod 2

Mass  Spring Mass

\l/

Isolator

Input Voltage

Figure 5: Shaker system

etc. The rank-0 model of the shaker omits the inductance
of the shaker, while the rank-1 model includes the induc-
tance (similar to a DC motor). Finally, the rank-0 model of
the isolator is a single mass of 1 kg, and the rank-1 model
consists of two masses separated by a spring. Note that the
model of the second rod is different than the one used by
Ferris and Stein (1995), which was obtained from a closed-
form solution of a continuum based model of a translational
shaft. The model used by Ferris and Stein appears to as-
sume force-free boundary conditions, a condition that we
believe does not accurately reflect the forces to which the
second (right) rod in Figure 5 is subjected.

FD-MODA was used to synthesize a model of the shaker
system with a FROI [1,1000] 222 and a tolerance of 0.2. The

s
model synthesis process is summarized in Table 2.

[P.]1t. [ RL | Shak. [ R2 [ Isol. | G* (@) | dGmas

10 o0 0 0 0 | (0,0,0,0) -
I 1] 1 0 0 0 | (1,0,00) | 2.1e-4
120 1 0 0 | (0,1,0,0) | 4.5e-1
1 3]0 0 1 0 | (0,0,1,0) | 6.de-1
140 0 0 1 |(0,001) ] 3.0
2 0] 0 0 0 1 [ (0,0,0,1) -
2 [ 1| 1 0 0 1T | (1,00,1) | 2.1e-4
2 2] 0 1 0 1T | (0,1,0,1) | 4.5e-1
2 [ 3]0 0 1 1T | (0,0,1,1) | 6.0e-1
3]0 0 0 1 1 [ (0,0,1,1) -
31| 1 0 1 1T | (1,0,1,1) | 2.1e-4
320 1 1 T | (0,1,1,1) | 4.5e-1
330 0 2 1T | (0,0,2,1) | 1.8e-1
4]0 o0 1 1 1 [ (0,1,1,1) -
4 1|1 1 1 T | (1,1,1,1) | 1.8e-4
420 1 2 1T | (0,1,2,1) | 1.8e-1

Table 2: Component ranks and performance during
shaker model synthesis



As in the previous example, although Nyquist plots were
used to determine that the (0,1,1,1) model is the Proper
Model for the shaker in Figure 5, Bode magnitude plots bet-
ter illustrate the changes in predicted behavior as the model
rank is increased. Following the steps of the model synthesis,
the bode magnitude plots for the (0,0,0,0)—(0,1,1,1) models
are shown in Figure 6.

Plots for (0,0,0,0), (0,0,0,1), (0,0,1,1), and (0,1,1,1) Models
:

(0.00,0) ...
~6or : (0,0,0,1) - |

(0,0,1,1) +++++

(0,1,1,1) solid

magnitude, dB

-100 L

frequency, rad/s

Figure 6: Bode magnitude plots for (0,0,0,0)-(0,1,1,1)
models

Observe the large difference between the (0,0,0,0) and
the (0,0,0,1) plots, which caused the selection of the (0,0,0,1)
model during the first pass. Note also the smaller, but still
significant, differences during the next three passes, until
the model converges during the fourth pass. The charac-
teristic “dip” in the Bode magnitude plot results from the
vibration isolator acting as a dynamic vibration absorber,
with a natural frequency of about 150 rad/sec.

Although space does not permit details to be included
here, models were also synthesized using EXTENDED-MODA.
With a FROT of [0, 1000] and an eigenvalue tolerance of 0.1%,

model synthesis terminates at the (0,0,0,1) model, even though,

as indicated in Figure 6, the frequency response continues
to change significantly over the FROI as the model order is
increased further.

SUMMARY AND CONCLUSIONS
Significance

The FD-MODA algorithm results in an efficient search for the
set of component ranks that produce a model that meets
a frequency-domain performance criterion. The search uses
a systematic means of testing the effect on system perfor-
mance of more complex component submodels. The search
is efficient because it adopts a gradient approach (Rich and
Knight, 1991) to seek a model of sufficient complexity that
meets the performance criterion, i.e. the Proper Model. This
technique avoids the combinatorial explosion that would re-
sult from an exhaustive search for the component ranks that

result in a Proper Model. Specifically, for n. components
this gradient search evaluates n. x (1 + Z::l ri) models,
where r; is the final rank of component c¢;. While this quan-
tity may seem large, it is much smaller than the number that
would result from an exhaustive strategy such as breadth-
first.

This performance metric is comprehensive in that it re-
flects the frequency domain behavior of the entire system,
not just the behavior of its poles. This observation is partic-
ularly important in the context of modeling plants for con-
trol system design. Note that this metric can also be used for
closed-loop systems, since a change in closed-loop frequency
response due to an increase in model order can be evalu-
ated as easily as open-loop frequency response. Finally, the
frequency response reflects system performance by concisely
depicting input-output behavior over w € [Wmin, Wmaz]- En-
gineers have found this type of information meaningful for
over half a century and continue to employ it in modern
techniques such as Hoo-based design.

In this paper we’ve elected to compare models synthe-
sized using FD-MODA and using another model synthesis al-
gorithm, EXTENDED-MODA. We chose to compare the algo-
rithms using the same system that Ferris and Stein (1995)
used to demonstrate EXTENDED-MODA; however, unlike Fer-
ris and Stein, we modeled a continuous component with a
finite segment model, rather than with a finite model based
on (we believe) invalid boundary conditions. This compari-
son is a relatively minor part of this paper, and is intended
to demonstrate the utility of the comprehensive model per-
formance metric used by FD-MODA, as contrasted with the
eigenvalue based approach used by EXTENDED-MODA. The
main contribution is a new modeling algorithm, FD-MODA,
and not the example involving the comparison.

Open lIssues

As noted in the previous section, we believe that FD-MODA
provides an efficient means of synthesizing a linear state-
space model that meets a useful performance criterion. How-
ever, we have identified several open research issues that
merit comment:

e All of the elements of the FD-MODA framework pre-
sented in Section appear to be sound. What remains
an open question is proof that FD-MODA indeed syn-
thesizes a model of minimal order that has converged
to a final frequency response with accuracy within
some tolerance. We have not been able to prove this,
and thus limit our claim to the following:

FD-MODA provides an effective heuristic for
coordinating the synthesis of a model that
has converged, relative to other lower-rank
models of the same system, to a user-specified
tolerance over a user-specified frequency

range [wmm ; wmaa:] .



e We consider finite-segment (lumped-parameter) mod-
els of the (potentially) distributed-parameter compo-
nents in the system. One might also use a continuum-
It is
not clear which approach is preferable, as each has its
problems:

based model for the same continuous element.

— Finite-segment models are simple to create and
simple to use in a state-determined system model.
However, it is well known that care must be
taken to include sufficient degrees of freedom to
achieve desired accuracy over a FROL.

— Continuum-based models are more accurate but

more difficult to obtain. They can be repre-
sented with a finite-mode bond graph (Karnopp
et al.,, 1990) and used in building the system
model; however, even though standard “solved”
models exist for ideal continuous elements in iso-
lation (e.g. a torsional shaft with no discrete in-
ertias attached to it), the use of these solved
models inside of a larger system model without
consideration for adjacent elements may result
in serious modeling errors. While procedures
to synthesize continuum-based models of non-
uniform elements (such as a shaft with discrete
inertias) do exist (Gizhong and Wilson, 1994)
they are tedious to use.

The use of either type of model depends on the re-
quirements of the model, but specific guidelines for se-
lecting the appropriate model are not currently avail-

able.

Finally, the generality of FD-MODA could be greatly

broadened by extension to nonlinear systems. In this

context, describing-function methods provide a direct

approach for achieving this goal, and frequency-domain
performance metrics are even more appropriate than

in the linear case (cf. Taylor, 1983; Taylor and O’Don-

nell, 1990) for examples of using DF-based frequency-

domain modeling for nonlinear control system design).

Preliminary research in extending MODA for nonlinear

systems was reported in Wilson and Taylor (1993) and

resulted in MODANS, a MODA for nonlinear systems;

however only eigenvalues were considered as the per-

formance metric in that work. The corresponding

frequency-domain extension, FD-MODANS is described

in Taylor and Wilson (1995).
derlying generating amplitude-dependent frequency-
domain models to be used in this context is as follows
(refer also to Taylor, 1983, and Wilson and Taylor,
1993):

The basic idea un-

— Create a fully nonlinear model of the electro-
mechanical system;

— augment it by adding states to serve as Fourier
integrals;

— excite the model with a sinusoidal input of suit-
able frequency w and appropriate amplitude a;

— numerically integrate the model for a sufficient
number of cycles so that the Fourier integrals
have time to converge; and

— use the Fourier integrals as the basis for evalu-
ating G(jw, a).

Once a set of frequency-domain models is obtained for
the FROT and amplitude range of interest one may not
only deduce how many modes to use in modeling each
continuous component, but also decide which nonlin-
earities are important for realistically characterizing
the behavior of the system.

Conclusion

Automated modeling approaches offer great promise for ex-
pediting the development process for electro-mechanical sys-
tems. In many contexts, most especially in developing con-
trols for such systems, FD-MODA provides a useful technique
for synthesizing a low-order yet accurate state-space model
for the electro-mechanical assembly that is to be analyzed
and designed.
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