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Abstract. The production of advanced engineering materials such as metal-matrix com-
posites via Induction-Coupled Plasma Deposition (ICPD) is still emerging from the
laboratory / demonstration phase of development. A key to the commercialization of such
materials is the introduction of suitable process control methodologies so that uniformly
high-quality materials can be produced with good efficiency. The present plan for
accomplishing these goals involves devising an Intelligent Processing of Materials (IPM)
approach that replaces the laboratory production mode (which involves custom planning
each run and direct control of the process run by human operators) with an automated
planning and supervisory control system. The invention of such a system requires the
creation, study, and manipulation of process models at several stages in the development
and implementation cycle. In particular, this presentation focusses on modeling for con-
ventional control system design and on model-based intelligent control. TImplemen-
tation of IPM for this process has just begun - this discussion represents a preliminary
plan for system definition and integration.
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1. Introduction

Induction-Coupled Plasma Deposition (ICPD) has been investigated recently as a means of
producing advanced engineering materials such as metal-matrix composites (MMCs, [1]).
This work is motivated by the fact that such materials may be lighter, stiffer and stronger in
comparison with more conventional materials, and thus may be key enabling technologies
for next-generation aircraft engines, aerospace vehicles, and other high-technology products
where weight, size and strength are critically important

The feasibility of manufacturing MMC monotapes via ICPD has been demonstrated in the
laboratory. It has been shown that these can be consolidated via vacuum hot pressing or hot
isostatic pressing to produce panels or other components with superior material properties
The production of MMC materials by existing methods, however, is still too costly, slow and
labor-intensive to permit their use in commercial products. These factors provide the
impetus for the present effort to prepare the process for commercialization,

The present objective of the DARPA/GE ICPD Project is to develop the software and
hardware to implement an intelligent process control system [2-8] for the synthesis of
MMC monotape via induction-coupled plasma deposition. Such a system should improve:

s product uniformity,
» product quality, and
e process efficiency.

MMC monotape quality and uniformity can be ensured by systematizing the generation of
each process run definition and guaranteeing that the ICPD process is well regulated during
the run. Efficiency, in terms of labor, time and materials, can be improved by devising a
simple operator interface that allows the process engineer to specify the desired attributes of
the MMC material to be produced and then initiate an automatically-controlled ICPD process
run, and by implementing a planning and learning system that substantially reduces the
number of trial runs and discarded tapes needed to achieve desired material attributes. The
goal of the resulting IPM system is to achieve substantial improvements in throughput of
acceptable MMC materials at the lowest possible cost.

A complete ICPD process mun under IPM will involve the following steps:

» specifying the desired MMC monotape material attributes (e.g., dimensions, porosity,
residual stress limit, fiber damage limit),

o running the ICPD Planner to generate the required process “recipe” (e.g, desired
fiber pre-heat temperature schedule, schedules for droplet and deposit temperature
during the spray phase, etc.) and the corresponding control regimen to regulate the
process, based on the desired attributes,

+ running the ICPD Supervisor to execute the process recipe and implement the
conventional control strategy required to produce the MMC monotape material,

« evaluating the MMC material so produced to see if the specified attributes have been
attained, and

» running the ICPD Learning System to update the ICPD Planner data base so that the
recipes it generates consistently produce the desired attributes.

The ICPD Planner, Supervisor, and Learning System together form an intelligent controller
which will enhance MMC process efficiency, quality, and uniformity by automating the
recipe-generation process and by ensuring that the ICPD process is controlied to follow the
recipe accurately and repeatably. In addition, the Leaming System will be capable of
expanding the operating boundaries of the process, by refining the models to encompass
more of the processing “envelope”.



The remainder of this paper is organized as follows: Section 2 overviews the ICFD process
for producing MMC monotapes, Section 3 deals with the IPM system functional description
and architecture, Section 4 discusses the roles and methods of medeling in IPM, and we
conclude in Section 5 with current ICPD Project status, surnmary and conclusions.

2. ICPD Process Overview

The ICPD process is shown schematically in Fig. 1. The apparatus consists of a reduced-
pressure chamber outfitted with a water-cooled quartz tube, an inductively-coupled radio-
frequency (RF) plasma spray gun, and a shaft that can rotate and translate the deposit target
(mandrel). The plasma gas is fed in upstream of the RF coil and is energized by the
induced electromagnetic field. The feed powder is injected axially into the plasma stream
using a water-cooled particle injection probe, which is inserted deep into the induction coil
to prevent recirculation of the partticles. The relatively large diameter of the quartz tube and
slow speed of the plasma gas ensures good containment of the particles in the plasma
stream and sufficient dwell time to provide excellent particle melting. As the particles are
melted by the plasma, they are propelled toward the target, which is covered with an array
of reinforcing fibers. Upon reaching the target, the molten droplets infiltrate the fiber bed
and rapidly lose heat as they solidify to form the substrate of an MMC monotape. Rotation
and translation of the target are controlled to ensure uniform spray coverage.
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Figure 1. Schematic of Plasma Spray Deposition of MMC Monotapes

The quality of the microstructure produced by the ICPD process is directly related to the
processing history. There are several ways by which the properties of the composite can be
degraded [3,6] For example, volatile elements in the moiten droplets can evaporate if the
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temperature environment is too extreme. Temperature differences between the fiber and
droplet can produce fiber thermal shock damage and either fiber cracking or spallation of
the fiber coatings. Spray deposits often contain porosity in the fiber shadows. The
generation of reaction products at the matrix /fiber interface and the production of phase
variations in the solidified material can result from thermal exposure during the spray and
solidification processes. Residual stresses formed as a result of thermal expansion
mismatches among the fiber, mattix and/or mandrel can cause cracking in brittle matrix
alloys. Finally, unmelted particles may adhere to the material, causing excessive surface
roughness that can lead to difficulties during consolidation. Intelligent control of this
complex manufacturing process is needed to reduce these defects and meet stringent quality
specifications.

3. IPM System Functional Description and Architecture

For the purposes of intelligent control, ICPD functionality can be partitioned in two
dimensions: time and level:

e in time (sequence) the ICPD process can be broken down into stages or phases:
initialization, preheat, spray {(deposition), post-heat (annealing), and cool-down, and

e in level (hierarchy) the ICPD process is divided into low-level conventional control (for
process regulation), higher-level supervisory control (the ICPD Supervisor, to manage
the set-point definition and logic involved in conventional control), and intelligent
control (the ICPD Planner and Learning System)

Figure 2 shows the breakdown of ICPD into phases and illustrates the definition of a recipe
(e.g , substrate temperature varying from T; to T according to a specified schedule) and
control of substrate temperature by varying the torch plate current. Note that each phase is
defined in terms of preconditions, execution, exception-handling, postconditions, and hand-
off; the associated control logic is managed by the ICPD Supervisor. Tentative conventional
control loops have also been identified for each phase, as shown in this example.

The higher supervisory and intelligent control levels are depicted in greater detail in Fig. 3,
including the model-based ICPD Planner that generates the recipe that will achieve the
desired MMC attributes, and the ICPD Learning System which either saves validated plans
for runs where expected and actual results are in close agreement or “funes” the Planner
models based on actual results if there are significant discrepancies between predicted and
actual behavior. The ICPD Learning System thus works to improve the Planner’s ability to
predict MMC attributes based on control mode selection and set-point schedule parameters,
and broadens the processing envelope that can be accommodated by the IPM system.

4. Roles of Modeling in Intelligent Control

Control in general, and “intelligent control” in particular, must be founded on process
knowledge in some sense. There are two distinctly different situations regarding the type of
process knowledge that is available and the corresponding strategy for IPM:

e Case 1. process knowledge comprised mainly of experimental runs and operator
experience (complete, realistic modeling hard or impossible to achieve) - in this
situation, the best course of action may be to emulate a human operator, using an
appropriate real-time programming paradigm such as rule-based expert systems or
fuzzy logic and an extensive knowledge-capture procedure to codify operator expertise
and capabilities.

» Case 2: process knowledge captured primarily in credible models (limited operations
experience) - in this case, models can and should play an important role in IPM, as
demonstrated below.
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Figure 2. ICPD Phases and Control

In reality, an IPM controls effort usually falls somewhere between these two extremes In
the ICPD Project, extensive physics-based modeling and simulation has been performed in
close coordination with experimental studies Therefore, a great deal of the information
needed for IPM has been captured in ICPD models The decision to invest in modeling was
motivated by the need for a system that can be extended beyond present narrow processing
experience, and by the belief that physics-based models have the predictive capability
required to achieve this goal.

While the emphasis of this presentation is on meodeling, it should be mentioned that there
are other important issues as well. For example, two critical considerations are sensing and
actuation [8)]; these are not treated here.

4.1 Overall ICPD Model and Simulation Requirements

ICPD models and simulations are required as the basis for designing and implementing all
levels of the ICPD controls hierarchy portrayed in Fig. 3. A high-level breakdown of such a
model is portrayed in Fig. 4. The models needed for the design of the conventional
control-loop level of the hierarchy and the ICPD Supervisor include actuator, process, and
sensor transient-response models; models for the ICPD Planner include these plus material
attribute models.

4.1.1 ICPD Actuator, Process and Sensor Models

Actuator, process and sensor models used for controls engineering are generally nonlinear
dynamic representations of the behavior of the process, which may be used to generate
“time-histories” (records of process variables as they evolve over time in response to
varying input signals), by simulation. These are usually “lumped-parameter” models, rather
than distributed-parameter, either because the process is inherently lumped or because the
process has been modeled using finite-element methods or some other approach that
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Figure 3. IFM Controls Architecture for ICPD

transforms a distributed-parameter system into lumped-parameter form. A general
continuous-time model can then be expressed in the form:

x= f(x,u),
6=gkx,u), (1)
= h(x,u)

where x represents the “state” of the dynamic portion of the model, u corresponds to
process input variables, and y specifies output variables The state differential equations
x = f(x,u) govemn the evolution of the state over time (e.g., of T,(¢t) or substrate
temperature as influenced by torch power and other input variables), and the algebraic
equations 0 = g (x,u) model relations that can be considered to occur instantaneously (e.g.,
a change in chamber pressure immediately affects the plasma radiation losses). The output
equations y = h(x,u) include both measured variables (with sensor scale factors and
nonlinearities, if required; for example, a thermocouple reading in volts is a nonlinear
function of the temperature being sensed), as well as unmeasurable variables (e g, particle
velocity at impact on the workpiece, which cannot be sensed practically during processing).
Note that the model does not have to be structured exactly as in Fig 4 (with separate blocks
for actuators, process, sensors, and attributes) - it is sufficient that the signals labeled
and [D] be allowed as input variables and that the model outputs include those variables
identified as and in that schematic. A combination of actuators, process and
sensors is often called a “plant” model. Highly detailed and realistic models of the ICPD
plant have been described elsewhere [3-7].
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Figure 4. Models Required for IPM of ICPD

4.12 ICPD Material Attribute Models

Material attribute models may be dynamic or static characteristics, as appropriate. The
requirement is simply that a specified “recipe” can be played through the complete model
chain shown in Fig. 4 and the resulting MMC monotape attributes can be predicted with
adequate accuracy so the process engineer can study the effects of trying various recipes
and, ultimately, the ICPD Planner can iterate to determine the best or most feasible recipe to
utilize for the specified run. Attribute models are often nonlinear operators which accept
process variable time-histories and detect improper processing conditions. To determine the
amount of fiber damage caused by excessive temperature gradients, for example, a material
attribute model may monitor the time-history of AT = T —~Tpper and produce a
measure of excessive AT and a comresponding prediction of fiber thermal shock This
modeling effort has also been reported in other publications [6].

4.1.3 Overall Model Integration

The interconnections and interactions of the various parts of the ICPD model are indicated
in Fig 4 A typical list of input and output variables associated with these blocks is
provided, to further clarify the nature and scope of these models. In this illustration, a
recipe prescribes a desired set-point schedule (command) for substrate temperature (7;) in
order to achieve specific MMC monotape material attributes. This is converted into a digital
signal by specifying T, 4 = Ty(t), k =1,2,. . where # denotes the sample time (the
command samples in the digital controller might be defined every 0.1 seconds, for
example). This signal is input to the control loop where is it compared with sensed
substrate temperature f‘, (t,), and the controller responds to the corresponding error signal
by generating control manipulations of (perhaps) plate current and gas valve settings. The
actuators respond to produce the actual process inputs, ie., torch power and gas ratio
(He/Ar), and the nonlinear process variables then respond to these input signals. The



output of the process model includes the actual substrate temperature T, which evolves with
time; if good regulation is achieved, it f'ollowsﬂthe command closely. Finally, the substrate
temperature sensor provides a measurement 7, which is used to calculate the controller
error signal, and the actual signal T, is fed into the attribute model to be used in
conjunction with other process variables for predicting MMC raterial properties.

4.1 4 Simulation Requirements

From the standpoint of controls engineering, the actuator, process, and sensor models in the
control loop in Fig. 4 must:

» be realistic over the entire material processing envelope in which we expect to control
the ICPD process;

+ model all of the inputs, outputs and process variables that will be involved in its
control;

 run interactively in an acceptable time; and
» be linearizable.

Fast, interactive executability is critical, since the design and validation of the control
system typically take hundreds of simulation runs Execution speed is an important factor
for the material attribute models, too: simulations that take hours or even many minutes to
run will severely hinder exploratory efforts and limit the development of the ICPD Planner
(see Section 4.3.1). The ability to obtain linearizations at various operating points is also
required, as these will serve as the basis for control architecture and algorithm development
(Sections 4.2.6,4.2.7).

It is vsually highly advantageous to have such models interfaced with a general-purpose
nonlinear simulator (e.g., SystemBuild [9], SIMULAB [10], SIMNON [11] or ACSL [12]),
since setting up and executing simulation runs is then very easy. In addition, such packages
can linearize the models, thus providing the needed starting point for control system design.
Finally, the controls engineer can model the IPM control system in the same environment,
couple it with the actuator, process and sensor models, and validate the IPM controls design
by simulation very readily (Section 4 2 8).

The trade-off between realism and speed is a reality of modeling and simulation. This
generally leads to the development of models having several levels of detail /realism/speed.
These might be typified as:
e high-fidelity models, based on physics/first principles, carefully validated against
experimental runs, and typically very detailed and slow to run;

» simplified models, derived from or based on the hi-fi model and simplifying
assumptions validated by runming it, not as accurate but usually much faster;

o input/ output (I/ O) models, which may be as simple as first-order “black-box” models
obtained by model identification; and

o linearized models, derived from hi-fi or simplified models by specifying an operating
point and taking partial derivatives of model nonlinearities about that point.

All levels of modeling are being used in the ICPD Project. Approaches for generating and
validating models of the last three categories are outlined in greater detail in Section 42.
These secondary models are most frequently used in controls design and implementation;
the hi-fi model plays an important role as the “truth model”, sparingly used for validating
results obtained with other models.



4.2 Modeling and Conventional Controls Design

The following steps characterize a typical approach to the development of a conventional
control system given a high-fidelity model of the process to be controlled such as the ICPD
Simulator [3-71:

1. exercise the ICPD Simulator to obtain:
a.  a basic understanding of the process dynamics and control requirements,

b. insight into simplifications that might be made in the model to improve its
speed without significantly decreasing its accuracy, and

¢. synthetic input/output data sequences for identifying I/0 models if needed;

2. define ICPD process runs needed to test model simplifications and /or to produce real
input / output data sequences for generating 1/0O models; execute these runs;

3. develop simplified physics-based models of the ICPD process, to the extent possible;

4, identify 1/O models by processing real and synthetic data logs (obtained as in Step
1 (c) and Step 2), as necessary;

5. compare the real and synthetic data Jogs and models based on them, to validate the
models from Steps 3 and 4 and the hi-fi ICPD Simulator;

6. produce linearized models from the high-fidelity and/or simplified models (I/O
models are usually already linear), at a number of operating points; validate their
realism for small perturbations about the operating point;

7. perform a preliminary control sensitivity and design exercise based on the validated
linearized models to produce low-level control algorithms and supervisory control
logic for pre-specified MMC recipes;

8. validate the performance of the preliminary control design by modeling it coupled
with the ICPD Simulator and exercising it for a variety of realistic scenarios; iterate
if necessary until satisfactory performance is achieved; implement the controller in
the actual facility; test and refine as necessary.

These steps are described in greater detail in the sections that follow. Particular emphasis is
placed on the creation, validation, and use of nonlinear and linearized models in the process
of ICPD control system design. This overall approach is typically very iterative and
involves a great deal of “boot-strapping” to achieve the desired results.

421 Step 1: Understanding the ICPD Simulator

The hi-fi ICPD Simulator is a physics-based model of the ICPD spray process that consists of
seven submodels [5,6]: a gas mixture model, a power-supply circuitty model, a detailed
free-stream model of the plasma flow in the gun and plume, a central core model for the
interaction between the plasma and injected particles, a plume /mandrel heat transfer model,
a dimensional and thermal deposit model for the heat flow and mass accumulation on the
workpiece, and an attribute model for MMC material quality. Portions of the original
detailed hi-fi model were based on finite difference methods and placed a high demand on
computer resources. For example, a single static solution of the detailed finite-difference
model of the flow and temperature patterns in gun and plume required about an hour of
computations on a 10 mips computer. This calculation has to be done repeatedly in simula-
tions of the controlled process as described in Section 4.1 4, making such runs prohibitively
time-consuming. This motivated the development of simplified models that are less detailed
and accurate but more fast, flexible and understandable. The plan is to use such models in
the initial stages of the controls design process and in preliminary predictions of the
controller’s performance based on adding the controller model to the simplified ICPD
Simulator (see Section 4.2.8).



Substantial progress has been made in developing a comprehensive and fast-acting ICPD
simplified simulator. Much of this work has been based on the use of physics-based
subsystemn decoupling and precalculated data bases [7]. Certain additional simplifying
assumptions have also been suggested on the basis of detailed ICPD Simulator runs. These
approaches and corresponding results are outlined in Section 4.2.3.

4.22 Step 2. Defining Experimental Runs

The results from Step 1 have served as the basis for specifying process runs to be executed
with the ICPD Facility to produce real input/output data sequences for model validation,
simplification, or identification These data sequences are used to verify that simplifying
assumptions are appropriately accurate or for generating I/O models in Step 4, and it is
important that they be appropriately defined and logged so that these purposes can be
realized. Given the expense of such runs, this model-based approach is highly preferable to
cut-and-try experimentation at the facility.

Defining such experiments should include recommendations and specifications for:
» the operating regimes to be run to cover anticipated control operating points,
» the signals to be logged,
» the length of the data sequences in each regime,
« the type of input variation, and
« the sampling interval and the accuracy of the data.

The following sketch illustrates a specification used for I/ 0O model identification:

Pre-Heat. initiate this phase with torch plate current I, = 9 amps. Allow the
environment in the chamber to reach steady state. Then apply a square-wave
perturbation to I, with amplitude 1 amp and period 30 sec.; continue the
perturbations for 3 cycles. Then increase the perturbation amplitude to 2
amps, double the period (to I min.), and continue for 3 more cycles.

Now ramp 1, (¢) from 9 to 12 amps in 30 sec. and hold the plate curent at
that value for 2 minutes. Then start to apply a square-wave perturbation (etc. .
. . similar spec as above). During this run log the signals { list of variables }
with sample time 0.2 sec.; the errots in the data due to noise and round-off
should not exceed { list of rms error bounds }.

This information should be based on iterative experiments using synthetic data logs from
the ICPD Simulator (Step 1) and preliminary real data from the MMC Facility, if the latter
can be supplied. Further discussion of these issues as specifically related to model
identification is included in Step 4 below.

4.2.3 Step 3: Development of Simplified ICPD Process Models

A fast-acting ICPD simulator is under active development. This effort is based on the use of
physics-based subsystem decoupling, precalculated data bases, and the application of certain
simplifying assumptions suggested by results from the hi-fi ICPD Simulator

Physics-based Subsystem Decoupling: The fluid dynamic characteristics inside the gun and
plume were studied by exercising the ICPD Simulator, and it was determined that the
plasma free-siream region and the central core region where the plasma and particles
interact can be decoupled through the use of a boundary-layer core model. Free-stream
calculations are done whenever the gas mixture changes; all simulations related to
determining the influence of gas ratio changes on plasma and particle interactions can thus
be conducted using the fast-acting boundary-layer core model. This significantly reduces
the computational burden.
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Precalculated Data Bases: Observation of phenomena involved in the various submodels
shows that the time constants of variables in the power supply, free-stream flow, central
core, and plume/mandrel interactions are very fast compared to the relatively long time
constants of the heat flow in the workpiece. This permits modeling everything from the
power supply to the heat transfer between the plume and workpiece as steady-state or static
characteristics govemed by the external inputs and the instantaneous temperature
distribution and axial location of the workpiece. The simplified ICPD simulator takes full
advantage of this, and thus contains only a single dynamic model, for workpiece heat-flow
and mass-accumulation phenomena

The following illustrates the time-savings that have been achieved in performing free-stream
calculations within the static part of the simplified model by the use of precaiculated data
bases: To implement this approach, a number of representative conditions were chosen,
based on hi-fi simulator runs, the time-consuming detailed model calculations were
petformed off-line, and the results stored as a free-stream data base. This data base or
look-up table is then used as the basis for interpolation in solving the static conditions as
they vary during simulation exercises. In ranges where such a data base is available, the
compute time for determining the simulator 1esponse to an adjustment of controlied
parameters during a spray operation is presently about 30 seconds on the same 10 mips
computer, which is substantially closer to that needed in IPM simulation and design
activities.

Through the combination of subsystem decoupling and precalculated data bases, the
computation time has been successfully reduced by a factor of more than 100 from the time
required for the original detailed finite-difference numerical model. In its present form, this
fast-acting simulator provides excellent accuracy in representing the ICPD process.
However, to gain a detailed understanding of the effects of system parameter and input
variations on the dynamic behavior of the system as outlined in Section 4.1, the 30-second
response time of the ICPD simulator is still frustratingly slow in terms of fulfilling the needs
of the control system design process and of the ICPD Planner. One way to speed up the
response is to migrate the simulator to a faster computer; the other approach is to further
simplify the ICPD simulator.

Further Simplifying Assumptions: Simple physics-based submodels for the gun, plasma,
patticle heating, and plasma/woikpiece mass and heat transfer are being investigated as
follows:

1. A simplified model for heat and mass transfer to the cylindrical workpiece can be
generated by assuming that:

» the plasma plume properties are uniform over any cross section near the
workpiece;

o the plume cross section defines the heated area of the workpiece;
» both mass and heat are deposited uniformly over the heated area;

o the plasma-workpiece heating is determined by a heat transfer coefficient
obtained from a theoretical correlation of Nusselt number, Reynolds number,
and Prandtl number derived [13] from established boundary-layer theoty; and

e heat loss from the workpiece is by gray body radiation.

2. A model for injected particle heating can be developed by assuming that:
o the relative velocity between plasma and particles is small;
» the particles are approximately spherical;
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« the temperature is uniform within any particle; and

« the particle heat balance involves convective heating and radiation cooling.

The convective heat transfer coefficient from plasma to spherical particle at low
relative flow speed can be obtained from the literature [14] or from a laminar heat
transfer calculation, and the change in emissivity of particles at melting (due to the
smoothing of the particle surface by surface tension forces) can easily be included.

3. A very simple model for plasma plume expansion can be based on assuming that:
o momentum and energy fluxes in the plume are constant,
« the plume has uniform properties over any cross section;

o the plume expands with constant cone angle to ingest gas from the tank
background; and
o the plasma gas is ideal with constant specific heat.

In this model, both the plasma velocity and the plasma temperature vary inversely as
the plume area. A radial expansion angle of 0.1 radian gives about a factor of 2
reduction between gun and workpiece in plasma speed and temperature due to plume
expansion and mixing.

The preceding submodels appear suited for use in IPM controls design. Unfortunately, less
success has been attained thus far in modeling the operation of the plasma gun. A
preliminary attempt was based on the assumptions that the electrical discharge fills the gun
volume; that the plasma properties are uniform within the gun; and that thermal equilibrium
prevailed in all dissociation and ionization processes involving the plasma gases.
Calculations with this model give reasonable values for the impedance reflected into the
power supply oscillator, but unreasonably low values (5000-6000 °K) for the plasma
temperature. Examination of temperature and plasma velocity distributions for plasma guns
calculated using the ICPD Simulator suggests that the basic error in this model is the
assumption of uniformity in plasma properties and flow velocity across the gun diameter.
Those solutions show that most of the gas flow occurs in a relatively cold annulus near the
outer wall, and that the electrical dissipation is concentrated in an inner annular region of
low (perhaps recirculating) fiow, containing temperatures up to about 10000 °K. It should
be possible to capture these features in a revised model based on the boundary-layer
interaction between an inner cylinder of stagnant high temperature gas and an outer annulus
of flowing cold gas. All electrical dissipation would occur in the outer edge of the hot gas
in a narrow zone whose radial extent is determined by the electrical skin effect and whose
axial extent is limited by boundary-layer mixing between hot and cold gases. Further wotk
on this model may be undertaken in the future, if necessary.

424 Step 4. I/ O Model Identification

Models required for control system analysis and design (“control models”) can be obtained
from several sources. Where possible, one should use the hi-fi nonlinear ICPD Simulator
and linear models based directly on it. If the run-time of the ICPD Simulator is excessive,
then simplified physics-based models provide the next best alternative. Finally, if there
appear to be areas where these models are not available or may be of questionable accuracy
then model identification may be used to fill the gap. For example, it is not clear at this
time that the ICPD Simulator accurately characterizes substrate temperature variations due to
variations in the plate current and gas ratios, due to uncertainty in boundary-layer conditions
and heat transfer coefficients; if so, then model identification may be critical for the
successful design of ICPD controls. Also, there may be regimes where the ICPD Simulator
nonlinear model is not linearizable (e g., if there are deadzones or other discontinuous
nonlinearities) - here, too, model identification may supply useful approximate models.
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The basic concepts of model identification are portrayed in Fig. 5. First, it is usually
assumed that the transient-response dynamics of the MMC process at a given operating point
can be modeled accurately by a simple linear dynamic model. This is generally a realistic
assumption, especially for small variations about an operating point, so in most cases this
provides a good basis for control system design. Such a model can be represented in
transfer function form. As a simple example,

Kexp(—-sTy)

G = T35 2

describes the dynamics of a process with low-frequency gain K, a pure delay (delay time =
T,) and a first-order lag (time constant = T,). Higher-order models might also be required
for certain subsystem dynamics An operating point is defined by an average or “DC” level
of the process inputs, denoted u in Fig. 5. The actual input to the process must vary about
this point, as shown by the arbitrary step changes in Fig. 5 (a). The output of the process
must show a tendency to follow the input, as depicted in Fig. 5 (b). If this is not so, then
there is effectively no dynamic interrelation between the input and output signals under
consideration (G(s) = 0).

‘ ut) =1 p

u / \ S
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time

Input signal = plate current

/ y(it) =Tg

Input Qutput
—= Gs)|, _, AP \L
o]
-
' time
Response (output) =

subsirate temperature
Figure 5. ICPD I/O Model Identification

Real or synthetic data logs as depicted in Fig. 5 (from Steps 1 and 3) are analyzed to
identify process I/O models. This procedure involves parameter estimation, ¢.g.,
determining the values of K, T and T, in Eqn. (2) so that the input/output response of the
identified model optimally matches that of the real process. Methods such as Least Squares
and Maximum Likelihood [15] serve this purpose, and are implemented in algorithmic form
in many controls CAD software packages; these can be applied to ICPD data logs to obtain
such linear models. The identification of higher-order models may also be pursued, to
ensure that accurate models are obtained. Established criteria for determining the optimal
model order can be applied (e g , the Akaiki Information Criterion [16])

This procedure is illustrated in Fig. 6, where the two time-history records correspond to
scaled torch plate cuirent (trace 1) and mandrel thermocouple reading (trace 2). The output
data records were detrended (to remove a slow quadratic tendency ag+a ¢t +a,t“ that
was unrelated to the perturbation) Note that these records are far from ideal - the
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thermocouple data is very low-gain and noisy; yet a good first-order 1/0 model was
obtained Higher-order model identification was also carried out; the Akaiki Information
Criterion indicated that the resulting model was less desirable than the first-order case.

Scaled Torch Power (1) and Detrended Thermocouple B (2)

0.05 |

e

-0.05

0. 100. 200.
Sample Number

Figure 6. Signals for I/0 Model Identification

The input and output signals in Fig. 5 also serve to illustrate some of the issues mentioned
in Step 3, namely the definition of suitable experiments for control model identification
The signal u(¢) must exhibit transients of the right frequency content, ie, if the input
varies too quickly then the system will not be able to respond, and if the input varies too
slowly then the faster transients of the system will not be excited. In either case, the
corresponding low- or high-frequency dynamics cannot be identified successfully. The
sampling rate must also be matched to the system dynamics - for example, if the data is
taken too infrequently, then high-frequency content of the transient response will be
obscured.

425 Step 5: Model Validation

One approach for validating simplified or identified models from Steps 3 and 4 is simulation
and cross-verification. In other words, the same input signals that were applied in the
process runs (e.g. u(t) = plate current as in Fig 5 (a)) are applied to the secondary model
and to the ICPD Simulator. The simulation responses (e.g., y(¢) = substrate temperature in
Fig. 5 (b)) are obtained and inspected to see if the secondary model response and the output
of the ICPD Simulator faithfully replicate the behavior of the real process. These
comparisons of real and synthetic data logs and models based on them thus serve to validate
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both the models from Steps 3 and 4 and the ICPD Simulator. If there are any subsystems or
signals for which either real process or ICPD Simulator data cannot be obtained, then
validation must be based on whatever data is available.

Another technique for validating models is to compare them in terms of frequency response,
based on real process runs and on synthetic data from the ICPD Simulator. Such
frequency-domain approaches are particularly important for controls design, since “robust
designs” (designs that will still woik effectively if the models and actual process are not
identical [17]) are based on frequency-domain criteria. For the real process and for
nonlinear ICPD models, the most reliable way to make this comparison is to obtain the
process response to sinusoidal inputs and use Fourier analysis of the output to produce Bode
plots of the models’ frequency response {(gain and phase characteristics); convenient
software has been developed to accomplish this for nonlinear simulation models [18]. In
the case of linearized models (Eqn. 4, see Step 6) the frequency response is obtained by
direct application of transformation methods:

G(m)= Cojol —Ay'By+D, 3)

and for I/0 models as in Eqn. (2) one obtains G (jw) simply by substituting s = j®.
However these frequency-domain models are obtained, they can be compared and
acceptance criteria might involve bounds on the differences between the magnitude and
phase characteristics over the band of frequencies important to the design process.

The two approaches outlined above should be applied judiciously to the various models
obtained in Steps 3 and 4. Models considered will only be those required for control
system analysis and design (see Fig 4). The bottom line should be to obtain good enough
models with the minimum expenditure of effort.

4.2.6 Step 6: Model Linearization

A critical step in the control system design process is conventional linearization, also called
Taylor series linearization, which can be expressed in terms of Eqn. (1) and an operating
point (xq, 1) as:

53c=-QLSx+—BLSu

ox ou
é AO 8x + BO 8”
4)
_ o, ok
oy = ™ ox + e du

8 Codx + Dodu

where &x, 8u, Oy represent perturbations or “small signal” variations around xg, ug, and
Yo= h (xq ug), respectively. (Note that the algebraic relations in Egn 1 have been
omitted, for notational simplicity.) The arrays [df /9dx] etc., are evaluated as the partial
derivatives at xg, g, and are matrices; the subscript ‘0’ stresses the dependence of the
arrays upon the operating point. Such models are extremely important to the control system
design task, as the primary task of the lowest-level control algorithms is regulating about a
specified operating point where a linearized model is usuvally realistic. (Linearized models
are valid wherever the partial derivatives exist, i.e., wherever the model nonlinearities are
smoothly differentiable, and if the excursions from the operating point are sufficiently small.
If non-differentiable elements such as relays are present, then one must account for their
effect in some other way.)
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An advantage of interfacing the ICPD Simulator with SystemBuild, SIMULAB, SIMNON or
ACSL is that the matrices Ag, B, Cg, D can be evaluated directly by taking the partials
numerically, e.g., in the scalar case the partial of f with respect to x is obtained by
evaluating f for x+d and taking a central difference:

o . fE+®-fa-8
ox 28
Most nonlinear simulation packages [9-12] have more or less sophisticated algorithms for

linearization, including higher-order approximations and automatic selection of & to achieve
accurate results (see also [19]).

&)

4.27 Step 7: Control System Design

The ICPD Simulator and the validated control models from Step 5 will be used for control
sensitivity analysis and design in a number of ways. The nonlinear models will be
exercised to determine the sensitivity of each important process output variable (each output
that must be regulated to achieve acceptable MMC monotapes) to variations in each input
that can practically be actuated. In addition to these simulation experiments, linearized
models will be extracted and control-theoretic approaches such as relative-gain-array (RGA)
analysis [20] will be applied to determine the so-called control architecture, ie., which
inputs are important for MMC attribute control and which loops should be closed to achieve
good regulation Tentative control architectures for the vatious ICPD process phases have
been proposed based on experimental observations of the process; for example, Fig. 7 shows
the preliminary control loop for the spray phase. These results need to be validated by

linearization and further analysis.
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Figure 7. ICPD Control Architecture (Spray Phase)

Several concepts are important to understand in the context of controls development. First,
there is the issue of processibility or processing envelope, which defines the limits that
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must be imposed on the ICPD process during regulation. For example, there is a rather
small “window” in the relation of fiber temperature to droplet temperature where acceptable
material attributes can be obtained, as shown in Fig 8 The IPM control system must
ensure that the process recipes and regulation keep the process within this window.
Generally, this is done by incorporating limit protection logic in the controller.
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£ — = Distribution
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a . :
— Solid Temperature Spaling | Evaporated
Particies { Conditions | Dropiets
1 s
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Figure 8. ICPD Processing Envelope

Then, there is the issue of operating point. Various “operating points” must be defined in
the space of process variables, in recognition of the fact that a nonlinear process has
different dynamic behavior depending on the state of the process For example, it is likely
that the effect on substrate temperature due to a small variation in torch plate current will
depend on the current itself (e.g, a small variation around 9 amps may produce a different
response than the same variation about 12 amps), as well as on the present gas mixture
1atios (H,/He [Ar). The degree of nonlinearity, the dimensionality of the process variable
space (e g., I, vs H;/Ar vs He [Ar), and the granularity (number of points in the space),
of course, has to be determined by detailed study using the ICPD Simulator and/or
experimental process runs. The controls schematic in Fig. 7 shows (hypothetically) that the
control algorithm for temperature control may have to be parameterized according to the
present value of torch power.

Finally, the relative interaction time-scales will be important for specifying the control
architecture and algorithms. For example, it is known that the torch dynamics are very fast
(so a step-change in plate current results in a rapid change in plasma and droplet
temperature), the fiber temperature reacts a little more slowly, and the substrate temperature
is much slower. This has important implications on the controller requirements for
regulating the process so as to remain in the processing window shown in Fig. 8; these
factors can only be quantified by linearization and linear analysis as outlined above.

These factors greatly influence process modeling and simulation for IPM. It is clear that
controls engineers require ICPD models that are fast-running, so that exploring the dynamic
behavior of the ICPD process over the processing envelope, determining process
sensitivities, linearizing or generating synthetic data sequences for 1/0O model identification,
and validating candidate control algorithms can be done in a reasonable time.

Conventional control algorithms are obtained for each loop closure at various operating
points, govemned by the factors outlined above. There are several possible outcomes in this
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stage of control system design: It may be that linear control can be used with limit
protection logic, it might be possible to synthesize a simple nonlinear controller based on
insight into the properties on the process, or it might be necessary to utilize a “gain-
scheduled” controller in which supervisory control logic is developed for switching among
various control algorithms as the operating conditions change over the duration of a process
run. In any case, such a design is done for pre-specified MMC recipes, and the form of the
control algorithm and supervisory control logic specifications will be difference equations
suitable for direct implementation in the ICPD digital control system using the ISI platform
AC-100 [21]; the use of SystemBuild for Step 8 (below) will ensure that implementation
will be an automatic translation and download to the AC-100 hardware.

428 Step 8 Control System Simulation Validation

The performance of the control system design from Step 7 will be validated by modeling
the control algorithms and ICPD Supervisor in SystemBuild in conjunction with the ICPD
Simulator and exercising the resulting ICPD control system simulation for a variety of
realistic scenatios (a variety of pre-specified MMC process 1ecipes). The Step 7/Step 8
process is iterated if necessary until satisfactory performance is achieved. Once a validated
design for the conventional controller is obtained, it can be transitioned for implementation
on the actual process.

4.3 Model-Based Intelligent Control

The “brain” of the JPM environment depicted in Fig. 3 is comprised of the ICPD Planner
and Leaming System modules. The Planner will operate to generate a process “recipe” via
logic and model-based optimization, and the Leamning System maintains and refines the data
base (models and validated plans) used by the Planner. More specifically, the IPM
fiamework portrayed in Fig. 3 includes the following submodules:

o Setup - translates the “easy” MMC monotape attributes into run parameters, €g.,
monotape dimensions into mandrel dimensions;

« Plan Generator - controls the iteration of the MMC recipe generation system; uses the
Plan Library to obtain a preliminary plan, and the Plan Optimizer to converge on the
final plan;

¢ Plan Library - a growing repositoty of real and synthetic ICPD process runs that serves
as the basis for the initial guess and subsequent iterations to determine the process
recipe for the present run;

» Models/Simulators module - contains the actuator, process, sensor and attribute
models which are run for the current candidate recipe to generate the expected signals
(time-histories of the process variables) and MMC material attributes;

e Plan Optimizer - uses the gradient of the material attributes with respect to plan
parameters to generate a new parameter set; and

« Plan Validator and Model “Tuner” - compares the expected and actual MMC material
attributes and process signals (time-histories) to either validate the plan that was just
executed and store it in the Plan Library for future use, or update the
models / simulators.

The objectives of these modules are to systematize the operation of the ICPD process, to
improve the consistency and quality of MMC so produced, and to continually expand the
IPM system’s processing “envelope” by building a growing data base of successful MMC
processing plans and improving the validity and predictive capability of the models. The
details of the design and implementation of these modules are very preliminary at the
present time; the results of the conventional controls design activity will be essential in
fleshing out the ideas presented below.
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4.3 1 ICPD Planner Definition
The ICPD Planner overviewed in Fig 3 involves several types of knowledge and logic:

1. heuristic /experience-based translation of material attributes to process variables
(e.g, MMC monotape thickness may govemn some or all of the following: the
amount and rate of metal powder feed, mandrel speeds (stroke and rotation), and the
duration of the spray phase);

2. locating the plan from the data base that most nearly matches the present material
attribute specification;

3. model-based plan optimization (if necessary and possible), to deterrnine an optimal
or feasible MMC recipe; and

4. heuristic / experience-based scrutiny of the final proposed plan to screen out recipes
that are unlikely to yield good results.

These steps are shown schematically in Fig. 9. Step 1 is executed in the *Setup’ module;
this provides the translation of user specifications or ‘Desired MMC Attributes” (DMA) into
the information needed to invoke the ‘Plan Matcher’. The Matcher searches the plans in the
data base to find the closest fit to the input specification, ie, to find a plan Pk so that the
‘Actual MMC Attributes’ (AMA) are nearly equal to the current DMA. If a plan is found
that produced material that is sufficiently close to the specifications (DMA = AMA within
specified tolerances), then that plan is executed; otherwise the closest plan is extracted for
further consideration:

o if the closest plan is an OPTIMIZABLE_PLAN, then model-based optimization is used
to refine it; the result is displayed to the operator for approval or medification;

« otherwise the closest plan is displayed for possible use or modification by the operator.

In either case, the operator is given the opportunity to preview and accept/modify/reject
the plan. Plans that have been adjusted, whether by optimization or operator intervention,
are given a final check to see if there are any obvious flaws, e.g., the plan may nearly match
a recipe that failed in the past or violate some other known limit or condition.

Note that every plan in the data base will be categorized in such a way that the above
judgments are simply made (see Fig. 10 and Section 4.3.2). For example, we have an
OPTIMIZABLE_PLAN if the material attribute models were accurate enough so that the
predicted and actual material attributes (PMA and AMA) are in good agreement (attribute
‘z’ = 1) and if the process model was accurate enough so that the predicted and actual
process variable time-histories (PTH and ATH) are in good agreement (‘y’ = 1). If so, Step
3 of the above plan-generation process is executed. This involves the use of models, and is
thus the most germane to this presentation.

The present scheme for model-based plan optimization is to generate a preliminary plan by
Steps 1 and 2 above, and then exercise the models in the Planner data base to determine
adjustments required to make the plan feasible or optimal in some sense. Feasibility
involves finding a recipe that is predicted to achieve the present objective (PMA = DMA),
while an “optimal” plan might additionally accomplish this in minimum time, for example,
This will be done with a standard optimization approach, i.e., perturb the recipe, run the
models to obtain material attribute sensitivities, and adjust the plan accordingly.

A number of factors must be addressed in order for this approach to be practical:
« the “plan space” must be made as small as possible,
« the material attributes must vary smoothly over the plan space, and
o the Planner models must execute very quickly.
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Figure 9. Model-Based ICPD Planner

The plan space dimensionality will critically determine the magnitude of the Planner’s task.
Optimization over a very large number of parameters will be prohibitive even if the
simulators require little computational effort. For this reason, the number of material
attributes being optimized must be modest, and an ICPD process recipe must be defined by
as few parameters as possible. The most efficient representation of a recipe is to specify
each control set-point variable by a table of time-points and values. This is illustrated in
the recipe “icons” in Fig. 7; see, for example, the “surface temperature schedule” block.
The number of time-points will have to be kept to a minimum,; at controller sample times
between these points the digital controller (ICPD Supervisor) will interpolate to generate the
actual required current set-point. Based on current process understanding, it is expected that
a typical recipe will be parameterized by fifty to 100 tabular values.

The characteristics of the material-attribute surfaces in the recipe parameter-space will be
important to the speed and convergence of the Plan Optimizer. If the conventional control
algorithms are properly designed, this should not be a problem. The sensitivity and control
architecture studies mentioned in Section 4.2.7 are conducted precisely to determine the best
process inputs to vary in order to achieve the control objectives, namely produce an MMC
monotape with the desired material attributes. With proper scaling and cross-coupling in
the control loops, the optimization problem should be easy to solve numerically.

Finally, the execution time of Planner simulators must clearly be very short This will
require the use of ICPD process models that are as simple as possible. This is also a
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pressing requirement for the success of the Learning System, so we will discuss this issue in
more detail below.

4.3.2 ICPD Learning System Definition

The basic functions of the Learning System are to maintain the plans and improve the
models in the data base used by the ICPD Planner. The first task involves categorizing
plans and adding them to the data base once it has been determined whether or not the
results of a run were satisfactory and whether or not there were significant disparities
between the Planner’s predictions and the actual results. If there are discrepancies, then the
second task will entail using automatic and/or manual methods to refine the simulator
models. In this way, it should be possible to expand the working envelope of the overall
IPM system as different material attribute specifications are proposed and trial recipes
executed. This is not to say that one should expect miracles, e g, that new powders or
fibers could be accommodated without trial and ermor manual leaming to incorporate new
process knowledge in the data base. It should be possible, however, to produce monotapes
with incrementally better material atiributes, to produce a monotape that is a little thicker
than any previously obtained, o1 to reduce processing time or raw material consumption, for
example.

Classification of plans and refinement of models in the ICPD data base should be a straight-
forward task. The logic for this is depicted in Fig. 10. There are three characteristics to
consider, as mentioned in the Planner discussion above:
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Figure 10. Learning System for ICPD
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1. Run Results. if the MMC monotape is defective, set attribute ‘x’ to 0; otherwise ‘x’
= 1. A sample may be judged to be acceptable (1) even if the DMA were not met,
as long as it might be accepted now or in the future; clearly defective tapes (e.g,
with broken fiber) are rejected (0).

2. Process Model Validity: Fiist, the actual controller outputs (commands) from the
run are compared with the Planner’s recipe. If there are significant disparities, the
operator is notified that the recipe was not properly executed. Then the actual
controller outputs are supplied to the actuator/process/sensor model to generate a
predicted response. If these results agree within specified tolerances, the process
model is validated for the run (attribute ‘y’ set to 1); otherwise an attempt is made to
update the process model to bring the predictions into accord with the run data
(below). If the model cannot be refined to yield sufficiently accurate predictions,
then the operator is notified and ‘y’ = 0.

3. Attribute Model Validity. If the process model is not validated, then “synthetic”
predicted material attributes (PMA) are generated by running the actual time-
histories (ATH) through the material attribute models; otherwise, the original PMA
are used for comparison with the actual material attributes (AMA). If the PMA
agree with the AMA within specified tolerances, the material attribute models are
validated for the run (attribute ‘z’ set to 1); otherwise an attempt is made to update
the material attribute models to bring the predictions into accord with the run data
(also, see below). If the models cannot be refined to yield sufficiendly accurate
predictions, then the operator is notified and ‘z’ = 0.

At the end of this evaluation and updating process, the plan and results are stored in the
data base for future use by the Planner.

The actuator /process/sensor or “plant” models (Fig. 4) used by the Planner must be fast in
execution time and formulated in such a way that automatic methods for refinement are
feasible. Based on preliminary experience with the ICPD Simulator and real process data
and I/0 model identification, we expect that the Planner’s plant dynamic models can satisfy
both requirements. We believe that most of the process dynamics are so fast relative to the
time scales involved in determining material attributes that they may be neglected, ie,
replaced by a static nonlinear table-look-up functions (Section 4.22) During each phase
(preheat, spray etc. - see Fig. 2) the number of important control loops is small - we may
need to consider plant models with no more than two to four inputs and outputs at any time.
(There are secondary control loops, for example governing the static pressure in the
chamber, that can be neglected in this context; these are shown at point [D]in Fig. 4) The
end result of these considerations is that the Planner’s plant models can be expressed either
as low-order physics-based nonlinear models or as low-order multi-variable 1/O models that
are a simple extension of Eqn. (2), e.g., the relation between input u ; and output y; may be
of the form

K, jexp(-sTy; ;)
( 1+5 TZ,i,j )

G; ;(s) = (6)
where the parameters K; ;, Ty, ; and T, ; are based on the phase and operating point and
obtained by table-look-up functions.

Evaluating and refining such models based on new time-history data is a straightforward
task. The predicted and actual time-histories (PTH, ATH, Fig. 10) are segmented into data
sequences that correspond to specific phases, and only those phases where there are
significant discrepancies between PTH and ATH are considered. Within each phase, only
those outputs y; that differ meaningfully are treated; denote one such output as y;; The
input/output data for that variable is then processed by a recursive parameter identification
algorithm to refine the model (e.g., the parameters K;; j» Tijaj and Ty 4 ;o in Eqn (6) are
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updated via recursive least squares or maximum likelihood algorithms). The reason for
using a recussive algorithm is that the resulting updated model is the best that can be
obtained for all input/output data up to the present time, ie., it optimally increments the
parameter estimates based on the past history of the model’s usage as well as the most
recent run.

Material attribute models will be maintained and refined in the same manner as outlined
above: predicted and actual material attributes will be compared; disparities determined, if
any; and recursive parameter identification used to update model parameters as needed.
These models are also quite simple in form, and will be parameterized as efficiently as
possible (e.g ., by elementary nonlinear functions with a few parameters or piece-wise-linear
table look-up functions) to facilitate this process.

5. Summary and Conclusion

The implementation of an IPM system can be based primarily on empirical process
knowledge (from operators and process engineers), or on process models. Several factors,
especially limited operational experience and the need to expand beyond the known
operating envelope, have motivated us to base the ICPD IPM system on process models.

The reliance upon models as the main foundation for intelligent controls design and
implementation has a profound influence on the entire controls engineering effort. The
approach described above is based on having a high-fidelity model of the process, and
involves generating and validating several types of secondary models (simplified models,
input/output or “blackbox” models, and linearized models). Modeling requirements were
also discussed briefly. Following that, we outlined the use of models in four distinct
realms: process simulation; analysis and design; IPM design validation; and in the IPM
system itself (the ICPD model-based planner).

Sections 3 and 4 comprise the present “road-map” for designing and implementing a state-
of-the-art IPM system for ICPD From inception through implementation, process models
play a central role in this system. We believe this system shows great potential for realizing
the project goals, namely, improving product uniformity and quality, increasing process
efficiency, and expanding the limits of the present operational envelope (e.g., producing
MMC materials with dimensions and material attributes that have not been achieved so far)
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