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GENERAL DESCRIBING FUNCTION METHOD FOR SYSTEMS WITH MANY
NONLINEARITIES, WITH APPLICATION TO AIRCRAFT PERFORMANCE

James H. Taylor
School of Mechanical and Aerospace Engineering
Oklahoma State University
Stilwater, Oklahoma

ABSTRACT

Using sinusoldal-input describing functions
(SIDF's) is a well knmown approach for studying limit
cycles in nonlinear systems with one dominant nonlin-
earity [1,2]. In recent years, a number of extensions
of the SIDF method have been developed to permit the
analysis of systems containing more than one nmonlinear-
ity. In many cases, the nonlinear system models that
can be treated by such extensions have been quite re-
strictive (limited to a few nonlinearities, or to cer-—
tain specific configurations). Furthermore, scme res-
ults invelved only conservative conditions for limit
cycle avoidance, rather than actual Iimit cycle condi-
tions. The technique described in this paper removes
all constraints: Systems described by a general state
vector differential equation, with any number of non-
linearities, may be analyzed. In addition, the nonlin-
earities may be multi-input, and bias effects can be
treated.

The general SIDF approach was first fully devel-
oped in [3]. Its power and use are illustrated here by
application to a highly nonlinear model of a tactical
aircraft in a medium~angle-of-attack flight regime
[4,5]. Some problems associated with direct simulation
{especially "obscuring modes" and the initial condition
problem) are also discussed.

INTRODUCTION

The study of limit eyele (LCY conditions in non-—-
linear systems is a problem of comsiderable interest
in engineering. An approach to LC analysis that has
gained widespread acceptance is the frequemcy domain/
sinusoidal~input describing function (SIDF) method
[1,2]. This technique, as it was first developed for
systems with a single nonlinearity, involved formulat-
ing the system in the form

i = Fx + gb
g = h?ﬁ (0
o= u(t) - ¢(0)

where x is an n—dimensional state vector. Ihe first

two relations describe a linear dynamic subsystem

with input Y and output O; the subsystem input is then
given to be the external input signal v{(t) minus a non-
linear function of g. There is thus one single-input/
single-output (SISQ) nonlimearity, ¢(c), and linear
dynamics of arbitrary order that may be represented by
the SIS0 transfer functiom (in Laplace transform nota-

tion) W(s) = hI(SI—F) t g. This system description

is a modern comtrol theoretic reformulation of the more
conventional "linear plant in the forward path with a
nonlinearity in the feedback path" {1,2].

It is then assumed that the input ¢ may be essen-
tially sinusoidal, e.g., 0 = a cos wt, and the output
approximation

$(o) = Re (W) exp (iwt)]
é Re [nl(a) * g exp (iwt}] (2)
. 1 .o 2
is made”. Ihe fourier coefficient” ¥, {(and thus the

“gain' n,) is generally complex unless ¢(¢)} is single
valued; %he real and imaginary parts of |, represent

the in-phase (cosine) and quadrature (-sifie) fundamen-
tal components of ¢{a cos wt), respectively. The so-
called describing function n_(a) in (2} is "amplitude
dependent", thus retaining a basic property of a non-
linear operation. By the principle of harmonic balance,
the assumed oscillation -- if it is to exist -- must
result in a quasi-linearized system with pure imaginary
eigenvalues,

|sw -7 + 0, gh'] =0

for some value of w, or by elementary matrix operations

W(iw) = - 1/n, (a) (3

Condition (3) is easy to verify using the polar or Ny-
quist plot of W(iw) [1,2]; in addition the LC amplitude
a is determined in the process.

It is generally well-understood that SIDF analysis
as outlined above is only approximate, so caution is
always recommended in its use. The standard caveats
that W(iw} should be "low pass to attenuate higher har—
monics'" and that ${c) should be "well-behaved" (so that
the first harmonic in (2) is dominant) indicate that
the analyst has to be cautious.

L 1f $(0) is not 0dd ($(-0) # ~0(0)) or if u(t) is not
zero, a constant term ("bias" or '"D.C. value") must
oceur in {2); such cases present no difficulry [1,2],
but are omitted to simplify the discussion.

2

The usual definition of an SIDF is that n,(a) is
chosen to minimize the mean square error between
$(a cos wt) and Re [nl(a)*a exp {dwt)]; thus n. (a)*a

is the first Tourier Toefficient [1,2]. 1
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The utility of SIDF analysis for systems with one
significant SISO nonlinearity as outlined above has
naturally resulted in a number of attempts to general-
ize the technique to the multiple-nonlinearity case.

In most work that preceded {3], only SISO nonlinear-
ities were considered, and bias effects (either due to
constant inputs or te "rectification" caused by nonlin-
ear effects) were excluded. Also special model con-
figurations were often assumed. The earlier results
are discussed more fully in [5]. The LC analysis ap-
proach described in this paper removes all restrictions
with respect to model configuration, nonlinearity type,
or the presence of biases.

THE GENERAL, $IDF LIMIT CYCLE ANALYSIS METHOD
The most general system model considered here is

= £ =z (4)
when X is an n-dimensional state vector amd u is an n-
dimensional input vector. Assuming that u is a vector

of constants, denoted B it is desired to determine
if {4) may exhibit LC behavior.

As before, we assume that the state variables are
nearly sinusoidal,

x = x, + Re [(a exp (lwt)] (3)

where a 1s a complex amplitude vector and X is the
state vector center value (which iz mot a singularity,
or solution to £ (x ,u ) = 0 unless the nonlinearities
satisfy certain stringent symmetry conditions with
Tespect to x ). Then we again neglect higher harmon-
ies, to make the approximation

(X::)+R8[F

X ,3,u ) a
¢ (—c’—’—o) =

exp(iwt)] (6)
The real vector and the (generally complex) matrix
are obtalned"gy taking the fourier expansions of
tBe elements of £{(x_+ Re a exp {(iwt), u ), and provide
the quasi-linear or describing function_gepresentation
of the nonlinear dynamic relation. The assumed limit
cycle exists for u = u, if x_ and a can be found so
that <
(1) fpp(x.,a,u) =0
(7

(11) [i0l - Fpplx ,a,u)]a =10, a#0

has a pair of pure imaginary eigenvalues, and a
is ghe corresponding eigenvector.)

The nonlinear algebraic equations (7) are often diffi-
eult to sclve. A second-order DE with two nonlineari-
ties (from a two-mode panel flutter model} has been
treated easily by ditect asnalysis [6]. An iterative
method, based omn successive approximation, can be used
successfully for more complicated problems such as that
described in this paper.

A HIGHLY NONLINEAR ATRCRAFT DYNAMICS MODEL

In a realistic model of the dynamics of a high-
performance aircraft at moderate angle of attack, one
is confronted with a large number of nonlinearities.
These nonlinearities arise from the empirical aerodyn-—
amic data for the specific aircraft (aercodynamic coef-
ficients and stability derivatives) and from dynamic

and kinematic effects. The state equations for the air-
craft motion can be written in body axes as in (8) if
small off-diagonal moment-of-inertia terms and nonaxial
thrust components are neglected [7]:

] qcos ¢ — r sin ¢
af |G+ /m + v - gqw - g sin B
? ((IZ—Ix)pr + M)/IY
é,é T _l2/m+qu - pv + g cos ¢ cos B A £fx,0)  (8)
v| {¥Y/m 4+ pw — ru + g sin ¢ cos B
r ((IX—IY)pq +W/I,
13 ((Iy-Iz)qr + L);’IX
¢! Ip + g sin ¢ tan 6 + © cos ¢ tan §

The state variables are the aircraft wveloeity components
in body axes (u,v,w), the rotational rates about the
body axes (p,q,r), and the pitch and roll Euler angles
(6,0). The parameters g, m, , L, I denote the ac-
celeration due to gravity and %he fircfaft mass and
moments of inertia, respectively.

The airecraft data and response characteristics are
associated with the forceée and moment components, X, Y,
%, 1, M, N; these contributions are expressed in terms
of non-dimensional aerodynamic force and moment coeffi-
cients, for example,

L= %pvzsbc (9

L
I

where p represents air density, V is the veloecity vec-—
tor magnitude, and $ and b denote reference area and
wing span. The aerodynamic coefficients are determined
by the aircraft control settings,

woms 8 8, 8] (10)

s sp ds
which are stabilator, spoiler, differential stabilatox
and rudder, respectively. In addition, they are highly

nonlinear functions eof angle of attack and sideslip
angle,

- -1
Dwiw) 8 =sin™ (v/7) 11

In terms of these variables, the force and moment con- .

tributions (9) were represented in standard form; for

exanple,

o = tan

5(0‘)‘5&3 + Cﬁs(a)ﬁsp
sp
b
+ Cﬂ‘a(awt + 37 [Cl(a)r + Cg‘(a)pl
T P

r

(12}

The nenlinear terms in (12) were supplied in the
form of empirically determined values of the aerodyn-
amic coefficients and stability derivatives at various
flight conditions. Based on this information, analytic
representations were developed by curve fitting; for
example,

2
¢, = k., (1+k cx-.l-k360L)

2 34 kg5 (13)
P

To complete the nonlinear state-vector differential
equation (8), the approximations

fu2+v2+W2 =u
an_l(w]u) =
Lo 2

sin

Vv =

T

wiu

v/u

™
i}
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are used in most instances, The resulting highly non~
linear model with k, suitably evaluated in the curve
fit relations as in'(13) is realistic for the aircraft
considered at angles of attack between 15 and 30 deg.

The nonlinearities in (8) which were selected for
study are (-t sin ¢}, (I,~I,)pr, Z, ¥, and 1. These
five terms are potentially important in studying lat-
eral-mode oscillations, including possible "wing rock"
mechanisms, so they were quasi-linearized; the remain-

ing terms in (B) were handled by small-signal linear—
ization.

THE MULTIVARTABLE LIMEI CYCLE ANALYSIS METHOD

Before LC analysis is undertaken, it is useful to
obtain the complete equilibrium or trim conditiom,
i.e., the values of %y and Yg that satisfy

Fx, =0 (15)

50)

determined according te {(8). In a preliminary investi-
gation of aircraft behavior for various flight regimes,
small-signal linearization is useful: the {(n*n) matrix
F0 defined by

3 3t

£

F

0 (16}

X%y, umw
determines the dynamic properties of the perturbation
equation corresponding to (8). The small-signal eigen-
values, or solutions AO K k=1, 2,.. .,n, to the char-
acteristic equation 4

det(AUI - FO) =0 17"

govern the transient response of the aircraft to small
perturbations for a fixed control setting u{t) = Uy

the eigenvalues given by small-signal
generally moderately well damped, and
nonlinear effects may not be important. As o increases
damping generally decreases, so the nonlinear effects
become critical in determining the behavior of the air-
craft, and LC conditions may exist.

For small o,
linearization are

IThe iterative solution of condition (7} precedes
as follows: First, assume that an oscillation exists
in the system. For the present problem, it is natural
to assume that the steady-state angle of attack satis-
fies

o= ao(l + K sin wot) {18)
whgre o, is moderate and K is gemerally less than uni-
ty The assumed frequency, w., is initially the imag-
inary part of the most lightly damped eigenvalue given
by small-signal linearization; w, will dbe adjusted in
the subsequent iterations. The goal of the limit cycle
investigation is to determine either that some ¥ {or
several values of k) exists such that (18) is a valid
assumption {limit cycles are predicted), or that no
value ¥ can be found for which (18) is consistent with
condition (7) (limit cycles probably are not present).
The IC analysis computer program developed for such a
determination is doubly iterative, and includes the
following additional steps:

3 Choosing the sinusoidal component amplitude to
be ko, often leads to a convenient normalization.
For 1limit c¢ycle amalysis about a zero center
value, it would not be appropriate.

Stégwg; Start the procedure with x. from (15) and F
determined by small-signal linearization (lg);
set i =10,

Step 1: Choose a trial value of k in (18}, e.g., K =
0.1.

Step 2: Based on the assumed oscillation {18) and the
current quasi-linear system dynamics matrix Fi’
determine the amplitudes of oscillation
throughout the system model by finding 2, in
the steady-state solution

=X g + Re (gi exp (iwt)) (19)

Step 3: Using the quasi-linear system model, determine

the adjusted center Ec,i+1 satisfyiag
Epp,1 %, 1410 B08g) = 0 (20)

which reflects the change in % caused by the

postulated sinuscidal component of x.

Step 4: Obtain the adjusted quasi-linear system dyna-
wics matrix F . X ,a.,u.} which con-
tains the sin%géi3%i:36%3%n5%t_gescribing func~
tion gains for all nonlinearities. Reset 1 =
i+l

Step 5: Calculate the adjusted frequency, ®,, which is
the imaginary part of the most ligh%ly damped
of the new quasi-linear eigenvalues.

Step 6: Check to see if the iterative center determi-
nation procedure has converged; if not, return
to Step 2; if so, continue to Step 7.

Step 7: Compare the most lightly-damped eigenvalues
with those obtained for the previous trial
value of k, denoted Kk~ (in the first trial
¥~ =0, i.e., the eigeavalues are as obtained

by small-signal linearizatiom {17)):

+ If the pair of eigenvalues near the
imaginary axis has crossed the axis,
then some value of k exists in the
range (K , k) such that one pair of
the adjusted quasi-linear eigenvalues
A4 (¥} is on the imaginary axis —
a limit cycle is predicted. The value of
Kk, denoted k., can be found by further
iteration on K.

+ If the pair of eigenvalues near the
imaginary axis remains on the same
side of the axis, increment k (for
example, by adding Ak = 0.1} and
repeat Steps 1 to 7.

Steps 2 to 6 represent an iterative solution of
the steady-state conditions for the bias component or
"ecenter" of the assumed oscillatiom; condition (7i) is
thereby satisfied. The term center is used to distin-
guish x_ from the equilibrium x, (15). 6Step 7 is a
test to see if condition (7ii) can be met for some k.

If for a representative set of values of ¥ (e.g.,
k=0, 0.1, 0.2,..., 1.0) the most lightly damped eigen-
value pair does not cross the imaginary axis, then it
is predicted that limit cycles caanot exist for the
particular fixed control setting u,. Otherwise, the
above procedure will iterate to find the value or values

FP9-A




of K which corresponds to probable limit cycle ampli-
tudes.

Some comments and details about the procedure
mentioned in Steps 2 and 3 are in order, since they
are central to this technique., First, consider the
problem of obtaining aj in (19): Given the adjusted
equilibrium and quasi-linear system dynamics matrix
that are known from the previous iteratiom, x_, and
F i plus an assumed oscillation in one stazg;l

L]

DF
X = a cos (mit)

(neglecting the bias component for simplicity), it is
desired to determine the complex vector of amplitudes,
a, such that x = Re [a exp (imit)]u If Wy is a matural

frequency corresponding te x =

, X, then (cf. con-
dition (7)) ?

FDF i

pF,i'2 =2

The latter relation serves to define the entire vector
a, given one of its elements, s by deleting one of
the equations in (21) and solving the remaining (n-1)
equations. The sclution a for specified a_ is not
unique unless @, is actually an eigenvalue of FDF,i;
this will be trile only for a value of k¥ for which limit
cycles are predicted. This approach is dealt with in
more detail in [4,5].

(JmiI—F

The nonlinearities given in (8-14) involve many
multiple-input terms. The general SIDF format is then

n
£2 fpx,a,u)+ Rejglfj (3(1’31’9—0)3]-
where fD and f,, j=1,n are the desecribing function
gains, %he SIDF term f__ for each nonlinearity thus
appears in the quasi-linear system equation for the
adjusted center (20), and each gain f, is used in eval-
uating the quasi-linear system dynamigs matxix F B In
many instances in this study, the nonlinear relaglons
invelve powers of state vagiables; as an example, the
SIDF approximation for x. x. where x, and x., are arbi-
s .12 1 2
trary state variables is
= [x3 x +§x (x ,1..+x T
clc2 27¢2 el 22 Te2712

iexp(lwit)

_ 3 3 .
£,(x) = x;x; )+5ry2T25]

3 3 .
+[xc2+zxczr22] Re [al exp (iwt)]

2 3 3 .
I3 X ¥ 1 T2 9 e p o) Relay exp iur)]

A ) .
=f5DF+f5,1Re[al exp (1wt)]+f5’2Re[a2

exp(iwt)]

where, denoting the conjugate of aj by a?,

= * i, =
rij Re [aiaj] i,j = 1,2
The above result iz obtained by substituting for x us—
ing (5), applying trigonometric identities and discar-
ding the higher harmonic forms. The quantity fSDF is
the (hypotheticcal) fifth element of f and £_.7_, £

c —DF 5,1 75,2
become entries of F__. .

DF

APPLICATION OF IHE MULTIVARTABIE LIMIT CYCLE ANALYSIS
METHOD

The aerodynamic data curve fits obtained by ad-
justing the coefficients k, as in (13) were initially
verified by determining theé eigenvalues cbtained by

small-signal linearization, for varicus trim values of
angle of attack. Good agreement with the empirical aereo
model was obtained; in particular, the Dutch roll mode
stability boundary given by small-signal linearization
of the curve fit model agreed with that given by the
experimental aerodynamic model which showed marginal
stability for a = 19.6 deg. This case (o = 19.6 deg)
corresponds to the nearly straight-and-level flight
condition specified in Table 1; the corresponding con-
trol setting u, was therefore chosen for study since
small-gignal linearization leads to nearly marginal sta-
bility and higher-order nonlinear terms thus become
critical in determining the aircraft performance. The
corresponding eigenvalues associated with the Dutch roll
mode are A R 0.0366 + 1.52i, which for small perturb-
ations preglcts an unstable respomnse. It should be
observed that there is a much slower unstable lateral
mode ("lateral phugoid"), with eigenvalues A _ = 0.0187
+ 0.131i. In most instances, a mode which is as slow

as the lateral phugoid in the present case is not a con-
cern, so attention is generally restricted hereafter to
the behavior of the Dutch roll mode.

Iable 1. Selected Equilibrium Condition
R B
90 17 .46 deg
uy 81.7 w/sec
4 0.296 deg/sec
Vi 29.1 mfsec
Yo 6.04 m/sec
L -0.033 deg/sec
Py -0.011 deg/sec
¢0 ~5.303 deg

The multivariable 1C analysis computer program was
then used to find limit eycle conditioans. It was found
that ADR is virtually on the imaginary axis, A,

s i,DR
4x]10 7 ¥ 1.4951 for k equal to 1.20. Corresponding to

this value of kK, the 'center” value x_ and oscillation

component a for the state vector are given in Table 2.
Table 2. Center and Predicted Limit Cycle

Amplitude for the Stable Limit Cycle

STATE VARIABIE CENIER | g (a) Ina) UNIIS
(ELEMENT OF Ec) — =
Bi 18.35 0.259 -0.234 deg
u, 80.25 -0.177 0.165 m/sec
q 0.174 0.219 0.182 deg/sec
L 28.80 -0.810 -0.718 m/sec
vy 6.14 7.38 0.0 m/sec
T, 0.792 -1.79 -1.89 deg/sec
Py -0.310 ~7.35 14.90 deg/sec
¢i 8.55 9.55 5.293 deg

Checking the limit cycle prediction requires that
nonlinear simnlations of the dynamics specified in
(8-14) be performed. Choice of the initial condition
for this procedure is critical, because there also ex-—
ists an unstable mode, a slow spiral mode which for K =
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1.2 is governed by ls = 0,0618. If this mode is exci-
ted appreciably, its growth will completely obscure the
fast limit cycle that is sought. Fortunately, choosing
x(0) = Re a will make the limit cycle in the Dutch roll
mode be the dominant mode.

This limit cyecle prediction shown in Iable 2 was
checked by choosing x(0) = 0.8 Rea. The resulting time
histories of pltch angle &,y body-axis velocity v, and
z body~axis velocity w, are portrayed4 in Fig. 1. The
plot of © shows that the solutions do diverge very
slowly, due to a small unavoidable excitation of the
spiral mode. The time histories of v and w show that
the dominant Dutch roll mede is very slowly growing for
the first 25 sec of the simulation, as would be exXpec—
ted for an initial econdition that is slightly interior
to the predicted limit eycle. The predicted center
value of v is nearly exact, while that for w is in
error by about -0.5 m/sec, or about -1.4 percent.
Finally, the predicted limit cycle frequency is 1.495
rad/sec, while the observed frequency is 1.497 rad/sec;
the agreement is excellent. After 25 sec of simulatiom,

2
E? -_kzﬂ\hz"\/’\\,f\\’r
=
o 4]
o
=
aQ
=
<€
- -10-
15
E
(-9
16 :
[} 20 40
TIME. t {sec}
{a} PITCH ANGLE TIME HISTORY
10
‘:.u: __l_“______._‘_—____.-—l.-'—'
m--"_’
% £
>
wr °
-
O —
] [8]
@9 \/ U U U v \/ v V V
rY
> L e e e e e
10 PREDICTED LIMIT CYCLE ENVELOPE
T
0 20 40
TIME, t {sec)
{b} BODY Y-AXIS VELQCITY TIME HISTQORY
1.5
)
3
0w g
x=
iz I\ A I f\
N o n n n
- >
-
D —
o] Q
T
-
-1.5
1] 40
TiME,t [sec)

{c} BODY Z-AXIS VELOCITY TIME HISTORY

Fig. 1 Simulation of the Linit Cycle Prediction

The plots show the perturbation of each variable

about the predicted center value, LAY
3

the slow divergence begins to alter the limit cycle
that developed in the first part.

Further analysis of the simulation results was
undertaken to attempt to separate out the effect of the
slow divergence. The time history depicted in Fig. 1b
was processed_to determine the exponential growth com-—
ponent {(c e%2 }; then the predicted limit cycle eavel-
ope is giVen by the relation

c,t

e .= c.e z

LC 1
where |a.] is the amplitude of the predicted limit cy~
cle in v~ (state 53). This envelope is portrayed in Fig.
1b; within the Iimits of the simulation accuracy, con-
vergence of the time history to the envelope is shown.

+ |ag]

The effort to verify the limit cycle condition by
direct simulation has pointed up a major difficulty in
using the latter technique as an exploratory tool to
locate limit cycles, without recesurse to describing
function analysis. Realistic aerodynamic models such
as those used here often have slow modes that are un-
stable or that are very lightly damped. Initial con-
ditions for direct simulation must be chosen very care-
fully to avoid exciting these modes. In a linear sys-
tem, it is not difficult to use eigenvectoer information
to obtain initial conditions that selectively excite a
desired mode. However, eigenvectors are not rigorous—
ly defined for nonlinear systems.

The concept which was successfully used in this
study may be called the quasi-linear eigemvector; in
essence, the complex vector a, givem as in Table 2, is
in a sense an amplitude-dependent eigemvector, which
specifies an initial condition that excites the predic-
ted oscillation. The fact that the quasi-linear eigen-
vector a is amplitude—dependent is illustrated in Fig.
2, which shows a for three values of kK, corresponding
to the study depicted im Fig. 1. For ¥ = 1.0 and 1.5,
the eigenvector components for O and q are too small to
be shown; the differences between the remaining compo-
nents (which are normalized to make the length of the
v component equal in each plot) are rather small. For

= 2.5, the changes in a are clearly quite substantial.

SUMMARY AND CONCLUSIONS

The SIDF technique described in this paper permits
the investigation of LC conditions in completely gener-
al multivariable nonlinear systems. Restrictions as to
the type and number of nonlinearities, the system con-
figuration, and the presence of constant inputs have
been completely removed.

The study presented here, and the problem solved
in [6], illustrate the effectiveness of the general LC
analysis metheod. The predicted LC frequency and "cen-
ter" value (Fig. 1) are in good agreement with the sim-
ulation results; the accuracy of the amplitude predic-
tion is more difficult to assess quantitatively due to
the simulation problems mentioned previously (see Fig.
1b}. In gemeral, these results bolster the expectation
that the iterative LC analysis technique will be found
to convefge to locate limit cycle conditions, provided
that limit cycles indeed exist. Considerable further
research could be performed to conclusively demonstrate
the power and accuracy of the general SIDF LC analysis
approach, and its limitations,

A major point of departure from previous SIDF
analysis methods is the substitution of root locus-like
plots of "quasi-linear eigenvalues" in lieu of frequen-
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p/5

P/5 P/5
U
/5 a_, /5
U $rs5 U ¢
V/10 V10 v/10
8
r
r r
w w
fal =10 (b} =15
w
Fig. 2, Amplitude Dependence of Quasi-Linear
Eigenvector55 {e)x=25

cy domain SIDF techniques for multivariable systems.
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to LC conditions found using this new SIDF technique;

an approach due to Sankaran [8] appears to be partic—
Combining the general
S5IDF 1€ analysis method with an iterative pole position

ularly useful in this regard.

modifying algorithm would result in a very powerful

1]

approach to multivariable nonlinear systems synthesis.

Finally, other benefits of this technique are

* Any number of nonlinear effects can be
investigated, singly or in any combination,
without wanipulating the system model into
the "linear plant with nonlinear feedback™

formulation required in the frequency-domain

approach;

* An iterative algorithmic approach to limit

cycle analysis is desirable for mechanization

on digital computers;

(2]

(3]

[4]

* The amount of computer time regquired to deterw

mine the existence of limit eycles by the gen-

£51

eral SIDF approach should generally be signif-
icantly less than the computer time expenditure

that would be needed using direct simulation

alone,

The last observation is based on the difficulty of
choosing the direct simmlation initial condition

[6]

correctly to excite only the desired nearly oscillatory

mode, as discussed in the preceding section.

[7]

The eigenvectors correspond to the wariables g, u,
4, w, v/10, ¢, p/5, $5; this scaling was performed
to permit all components of & to be showm on the
plots for k = 2.5.

[8]
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