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A NEW ALGORITHMIC LIMIT CYCLE ANALYSIS METHOD
FOR MULTIVARIABLE SYSTEMS®

James H. Taylor*

SUMMARY

The sinusoidal-input describing function (SIDF) tech-
nique is a well-known approach for studying limit cycle phen-
omena in nonlinear systems. In recent years, a number of
extensions of the SIDF method have been developed to permit
the analysis of systems with more than one nonlinearity. In
general, the nonlinear system models that can be treated by
such extensions have been quite restrictive (limited to a few
nonlinearities, or to certain specific block diagram configura-
tions). Furthermore, some results involve only conservative
conditions for limit cycle avoidance, rather than actual limit
cycle conditions. The technique described in this paper re-
moves all constraints: Systems described by a general state
vector differential equation, with any number of nonlinearities,
may be analyzed. In addition, the nonlinearities may be multi-
input, and bias effects can be treated.  To the author's knowledge,
this is the first instance of the SIDF limit cycle analysis of
such systems.

The new SIDF methodology is fully developed in this
paper, and its power and use are illustrated by application to a
highly nonlinear model of a tactical aircraft in a medium angle-
of-attack flight regime. Some problems associated with direct
simulation (especially "obscuring modes'" and the initial condition
problem) are also discussed. Finally, combining the new tech-
nique with recent pole positioning methods based on state vari-
able feedback is suggested as a very general way to approach
multivariable nonlinear systems synthesis.
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1. INTRODUCTION

The study of limit cycle (LC) condifions in nonlinear
systems is a problem of considerable interest in engineering.
An approach to LC analysis that has gained widespread accep-
tance is the frequency domain/sinusoidal-input describing
function (SIDF) methodology [1-4]. This technique, in simple
terms, involves formulating the system as a feedback control
system with single-input/single-output (SISO) linear dynamics
W(s) in the forward path and an SISO nonlinearity f(e) in the
return path. It is then assumed that the input e is sinusoidal,

e.g., e = ag sin wt, and the approximation

e

f(e) wl sin wt

ne

" .
nl(ao) aq §1n wt (1)

is made*. The fourier'coefficient wl (and thus nl) is gener-
ally complex (unless f(e) is single-valued); the real and
imaginary parts of wl represent the in-phase and gquadrature
fundamental components of f(ao sin wt), respectively. The
so-called describing function nl(aO) in (1) is "amplitude
dependent', thus retaining a basic property of a nonlinear
operation. By the principle of harmonic balance, the assumed
oscillation -- if it is to exist -- must result in unity open-

loop gain,

-W(jw) ny(ay) = 1 (2)

Condition (2) is easy to check using the polar or Nyquist
plot of W(jw) [1-4].

*If f(e) is not odd (f(-e) # - f(e)), a constant term ('"bias'" or
"D.C. value'") must occur in (1); such cases present no diffi-
culty [1-4], but are omitted to simplify the discussion.
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It is generally well-understood that SIDF analysﬁs
as outlined above is only approximate, so caution is always
recommended in its use. The standard caveats that W(s) should
be "low pass to attenuate higher harmonics'" and that f(e) should
be ”well—behaved*” (so that (1) ié nearly true) indicate that
the analyst has to be familiar with the system behavior, by
direct experience or by simulation. Given an appreciation of
these warnings, SIDF LC analysis has proven to be a very power-

ful engineering tool.

The utility of SIDF analysis for systems with one
significant SISO nonlinearity has naturally resulted in a
number of attempts to generalize the technique to the multiple-
nonlinearity case. One generalization of the model described
above is depicted in Fig. 1. The linear plant is modeled as
a matrix of transfer functions W(s) representing the dynamic
relations between & inputs (the vector p) and m outputs (the
vector r). The output vector r is operated on by £ nonlineari-
ties, the elements of f(+), and the result is fed back in the
standard negative feedback configuration (Fig. 1). For com-
pleteness, a bias input (possibly a fixed control vector EO)

may be present.

When the multivariable nonlinear system model of
Fig. 1 is treated with any configurational generality, e.g.,
neither W nor f are assumed to be diagonal, cf. [5,6], then
the existing SIDF results are generally conservative conditions
for limit cycle avoidance. Actual limit cycle conditions
have been given only for specific restrictive configurations,
e.g., a single closed loop of alternating linear dynamic blocks
Wi(s) and nonlinear characteristics fi(-) [7,8,9], or a unity
scalar feedback path around a forward path made up of a parallel
network of the form Gi(s) followed by fi(-) followed by Hi(é)

*I.e., the first harmonic in (1) should be dominant in some
sense.
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[7,8,10]1, or for a rather small number of nonlinearities [11].
In every 'multivariable'" case reviewed by the author, Qﬁly
SISO nonlinearities were considered, and bias effects (either
due to constant inputs u, or to 'rectification" caused by non-
linear effects) were excluded. The LC analysis approach
described in this paper removes all restrictions with respect
to model configuration, nonlinearity type, or the presence of

biases.

The organization of the remainder of this paper is
as follows: In Section 2 the need for more powerful SIDF LC
analysis methods is motivated by outlining a system model repre-

senting aircraft dynamics in moderate angle-of-attack flight

conditions for which available SIDF approaches are completely

inadequate. The new approach to SIDF limit cycle analysis

which permits very general nonlinear system models to be

treated is presented in Section 3. In Section 4 the appli-

cation of the new LC analysis method to the aircraft dynamics ‘
problem of Section 2 is illustrated, and direct simulation of 1
the nonlinear equations of motion both as an SIDF analysis |
verification technique and as an LC study method in its own

right is discussed. In Section 5 the status of the develop-

ment of the new LC analysis technique and some preliminary

conclusions about its efficacy are outlined.

2. A HIGHLY NONLINEAR AIRCRAFT DYNAMICS MODEL

In a realistic system model that represents the dy-
namics of a high-performance aircraft at moderate angle of
attack, the analyst is confronted with a large number of non-
linearities. These nonlinearities arise in the characteriza-
tion of both the empirical aerodynamic data for the specific
aircraft (aerodynamic coefficients and stability derivatives)

and dynamic and kinematic effects., The combined nonlinear
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state equations for the aircraft motion can be written in‘body
axes as in (3) if the generally small off-diagonal moment-of-

inertia terms and non-axial thrust components are neglected [12].

6 q cos ¢ — r sin ¢
u (X+T)/m + rv - gw - g sin ©
q ((I,-I Dpr + M)/Iy .
X 2w - |Z/m + qu - pv + g cos 6 cos © = f(x,u)
v Y/m + pw - ru + g sin ¢ cos 6
r ((IX—Iy) pg + N)/IZ
p ((Iy~IZ)qr + L)/,
_é_ | P + g sin ¢ tan 6 + r cos ¢ tan 0| (3)

The state variables are the aircraft velocity components in
body axes (u,v,w), the rotational rateshabout the body axes
(p,q,r), and the pitch and roll Euler angles (0,¢). The para-
meters g, m, IX, Iy, IZ denote the acceleration due to gravity
and the aircraft mass and moments of inertia.

Most of the dynamic and kinematic nonlinearities are
expressed explicitly in (3), with terms that include products
of states, states times trigonometric functions of states, and
products of trigonometric functions of states. The aircraft
data and response characteristics are associated with the force
and moment components, X, Y, Z, L, M, N; these contributions
are expressed in terms of non-dimensional aérodynamic force

and moment coefficients as
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X = %pVZSCX L = %szstQ
T T
_ 1y2 _ 1ov2as
Y = 3pV7SCy M = 3pV-ScC , (4)
T D
7 = %pvzscZ N = %QVZSan
T T
where p represents air density, V is the velocity vector mag-
1 —
nitude, V = (u2 + v2 + wz)z, and S, b and ¢ denote reference

area, wing span, and mean aerodynamic chord. The aerodynamic

coefficients are determined by the aircraft control settings,
T _
uT = [as Sap S ar] (5)

which are stabilator, spoiler, differential stabilator and
rudder, respectively. In addition, they are highly nonlinear
functions of angle of attack and sideslip angle,

»

o = tan T (w/u) B = sin~1 (v/V) (6)

The nonlinearities in (3) which were singled out in

applying the new LC analysis method are (-r sin ¢), (IZ—IX)pr/Iy,

Z/m, N/IZ, and L/IX. These five nonlinear terms are potentially
of importance in studying lateral-mode oscillations, including
possible "wing rock'" mechanisms, so they were chosen for des-
cribing function treatment; the remaining terms in (3) continue
to be handled by small-signal linearization. Finally, the

force and moment contributions indicated above were represented

as

cq
()6 +<4 Czq<°°>}

8
_ 1 2 sp
-2H1pV S{jz(a)-+ACZ,Sp(u) 55 +-ACZ

=4I\

$
S

(@3]
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L _ 1 2
T; = 57 pV Sb{Cz(q,B) + Cz

X

(u)éds + C26 (u)dsp;

ds sp

(ah%} (7)

S

b [
+ c% ()8, + 5% [cﬁ (a)r + C,
r r p

p

N

N _ 1 2
T = 37 oV Sb{Cn(a,B) + Cn ‘(u)éds + Cn (a)és
z 8 §
ds sp

" Oy (@) + = [cnrm)r + cnpcoc)p]}

r

The nonlinearities given in (7) are supplied in the
form of empirically determined values of the aerodynamic
coefficients and stability derivatives at various flight con-
ditions. Based on this information, the following representa-

tions were developed by curve fitting:

- 2 2
= - 1~ = o =
¢y kja(l-ky,o) cQ kgq (1+kyqatkyaa™)8 c, 2 kg(l-kga)8
AC 2 g, (1-k,a%) = 14k ko a) = 2
7,sp = K317y Cp T ~kpg(ltkggatkyga Cp. = TRyoli-kyy@)
84 s
s 9 ds
ACZCS = -k5(1+k6a) CQ@ = -k27(1+k28q+k29a ) Cn(g z klz(l"klsa)
s sp Sp (8)
z. = Tk T Co, = “Fpali-kys®)
q § 8
I r
c, % -kyy(l-kyge) C, k(1)
r T
c = k., (1+k, 0+k, .a2) c Dok (1+k, catk. a2)
L 34 35%7 %36 n, 18 19% %20

To complete the nonlinear state-vector differential equation (3),

the approximations
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Vu2+v2+w2 = u

V:
 can-l - |

o = tan (w/u) = w/u ; (9)
_ -1 .

B = sin “(v/V) = v/u

are used in most instances. The resulting model still retains :
the highly nonlinear nature of the aircraft dynamics, and for
ki suitability evaluated, is realistic for the aircraft con-

sidered at angles of attack between 15 and 30 deg.

3. A NEW MULTIVARIABLE LIMIT CYCLE ANALYSIS METHOD

The need for a fresh LC analysis approach is evident
from Sections 1 and 2. In summary, the existing DF methodolo-
gies based on the frequency domain cannot handle system models
which realistically represent aerodynamic effects, where biases
are important, and there are a number of_multiple—input non-

linearities.

Before an LC analysis is undertaken, consistent input
data should be specified such that an iterative technique may
be used to obtain the complete equilibrium or trim condition;

the values of Xq and u, that satisfy

0
(x5, uy) =0 (10)
are determined according to (3). In a preliminary investiga-

tion of aircraft behavior for a given flight regime, small-

signal linearization is useful: the (nxn) matrix FO defined by
A 9%
Fo = 3% (11)
X=Xy, U4,
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determines the dynamic properties of the perturbation equation
corresponding to (3). The small-signal eigenvalues, or‘Solu—

tions XO K’ k=1,2,...,n, to the characteristic equatién
det(xOI - FO)/= 0 (12)

govern the transient response of the aircraft to small pertur-

bations for a fixed control setting, u(t) = Yy

For small o, the eigenvalues given by small-signal
linearization are generally moderately well damped, and non-
linear effects may not be important. As o increases, damping
generally decreases, so the nonlinear effects become critical

in determining the behavior of the aircraft.

As in all SIDF analysis for limit cycle conditions,
the first step is to assume that an oscillation exists in the
system. For the present problem, it may be natural to assume

that the steady-state angle of attack satisfies
o = a (1 + k sin wot) (13)

where o, is moderate and k is generally less than unity*. The

assumed frequency, We > is initially the imaginary part of the
most lightly damped eigenvalue given by small-signal lineari-

zation; w, will be adjusted in the subsequent iterations. The

0]
goal of the 1limit cycle investigation is to determine either
that some k (or several values of k) exists such that (13) is

a valid assumption (limit cycles probably are present), or that

no value k can be found for which (13) is consistent with the

quasi-linear system dynamic equations (limit cycles probably

are not present). The describing function analysis technique

developed for such a determination is iterative, and includes

the following steps, which are portrayed in Fig. 2.

*Choosing the sinusoidal component amplitude to be kay often
leads to a convenient normalization. For limit cycle analy-
sis about a zero center value, it would not be appropriate.
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Step 0: Start the procedure with xg from (10) and Fg deter-
mined by small-signal linearization (11); set i = 0.

Step 1: Choose a trial value of k in (13), e.g., Kk = 091.

Step 2: Based on the assumed oscillation (13) and the
current quasi-linear system dynamics matrix Fi,
determine the amplitudes of oscillation throughout
the system model by finding aj and by in the steady-
state solution

X = X + ay Sln(wit) + Ei cos(wit) (14)
Step 3: Using the quasi-linear system model, determine the
adjusted center X1 satisfying

(X410 8g) = 0 ' (15)

which reflects the change from equilibrium caused by
the postulated sinusoidal component of the state
vector. In the same procedure, one obtains the ad-
justed quasi-linear system dynamics matrix Fi.q(x),
which contains the sinusoidal-component describing
function gains for all nonlinearities. Reset i = i+1.

Step 4: Calculate the adjusted frequency, wi, which is the
imaginary part of the most lightly damped of the
adjusted quasi-linear eigenvalues, Ay 1(x),

det (A1 - Fi(K)) = 0 (16)

Step 5: Check to see if the iterative center determination pro-
cedure has converged;T if not, return to Step 2; if so,
continue to Step 6.

Step 6: Compare Xji,p(k) with eigenvalues obtained for the
previous trial value of k, denoted KyasT (in the
first trial kyppgm = O, i.e., the eigenvalues are as
obtained by small-signal linearization (12)):

*Determining aj and b; in (14) is an important step, since
quasi-linear models of nonlinearities require knowing the
nonlinearity input amplitudes, as is demonstrated in the
next section, and it is desired to be able to treat any non-
linearity which is a function of any state variables(s).

+Steps 2 to 5 represent an iterative solution of the steady-
state conditions for the bias component or 'center'" of the
assumed oscillation; the term center is used to distinguish
this point from the equilibrium Xg (10).
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° If the pair of eigenvalues near the
imaginary axis has crossed the axis,
then some value of k exists in the
range (K]AST, k) such that one pair of
the adjusted quasi-linear eigenvalues ‘
Ai x(k) is on the imaginary axisT-- |
a limit cycle probably exists. . The |
value of k, denoted kg, can be found
by iteration on k.

. If the pair of eigenvalues near the
imaginary axis remains on the same
side of the axis, increment k (for
example, by adding Ak = 0.1) and repeat
Steps 1 to 6.

If for a representative set of values of k (e.g.,
k =0, 0.1, 0.2, ..., 1.0) the lightly damped eigenvalue

pair obtained by solving (16) does not cross the imaginary i
axis, then it is probable that limit cycles cannot exist for |
the particular fixed control setting Yo Otherwise, the i
above procedure will iterate to find the value or values of

k which corresponds to probable limit cycle amplitudes.

Some comments and details about the procedures mentioned
in Steps 2 and 3 are in order, since they are central to the
new technique. First, consider the problem of obtaining ay
and Ei in (14): Given the adjusted equilibrium and quasi-
linear system dynamics matrix that are known from the previous
iteration, X5 and Fi,‘plus an assumed oscillation in one state,

X, = a

Kk 51n(wit)

k

(neglecting the bias component), it is desired to determine

X
the complex vector of amplitudes, a , such that x = a* sin wit.

*
The use of the complex amplitude vector a corresponds to the

standard phasor representation, a* = a. + jb;. If w; is a

natural frequency corresponding to X = Fi§, then

+This condition corresponds to satisfying (2) for some value

of aO = Kao.

10
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* %
(JuyI-F 2" 2 M (wa" = 0 (17)

The latter relation serves to define the entire vector g*,
given one of its elements, AP by deleting one scalar réla—
tion and solving the remaining (n-1) equations. This approach
is dealt with in some detail in [183, 14].

The solution g* for specified ay is not unique un-
less Wy is, in fact, an eigenvalue of Fi‘ This will be true
only for a value of k for which limit cycles are predicted --
i.e., the algorithmic technique should converge to such a
situation, but is will not generally be initialized with (17)
satisfied for FO. The amplitude vector, g*, contains useful
information as to the coupling of the oscillation into all of

the states. This data is approximately equivalent to that

conveyed by eigenvectors, becoming exact when jwi is an eigen-

value of Fi'

The nonlinearities given in (3-9) involve many \

multiple~input terms. The general SIDF format is then

T = fo(ﬁi,ﬁi,_}?_i) + Z nj(?—("—a'i’p'i).(aj,iSlnwit-i-bj

,cosw,t)
L i i i
j=1

)

0]
SIDF term fo for each nonlinearity thus appears in the quasi-

where f_. and nj, j=1,n are the describing function gains. The

linear system equation for the adjusted center (15), and each
gain nj is used in evaluating the quasi-linear system dynamics
matrix Fi(16). In many instances the nonlinear relations in-
corporate powers of state variables; as in example, the SIDF
approximation for x1x3 where x, and X, are arbitrary state

2 1 2
variables is

11
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l 2 3 3 ’
+ 2 e .
+ le,i Xz,i Xl,ir22 + 5 Xz,irlz (az’i sin wit + b2,i cos wit)

where

r = a

ik + b, .b © 3,k=1,2

j,i %k,1 i, ik, 1

SIDF representations for any power series term can be obtained
quite simply as follows: substitute for each state variable
according to (14), multiply out, apply suitable trigonometric
identities to reduce the expression to fourier series form
(i.e., all powers of trigonometric functions are reduced to
bias plus fundamental plus higher harmonic terms), and retain

only the bias and fundamental components.

4. APPLICATION OF THE MULTIVARIABLE LIMIT CYCLE
ANALYSIS METHOD

The aerodynamic data curve fits obtained by adjusting

the coefficients kl through k in (8) were initially verified

by plotting the Dutch roll eiggnvalue real part, obtained by
small-signal linearization, versus the trim value of angle of
attack. The curve, shown in Fig. 3, reflects the observation
that the Dutch roll mode stability boundary given by direct
partial differentiation of the experimental aerodynamic data is
very close to 20 deg (a = 19.6 deg). This case (a = 19.6 deg)
corresponds to the nearly straight-and-level flight condition
specified in Table 1; the corresponding control setting Uy
was therefore chosen for study since small-signal lineariza-
tion leads to nearly marginal stability and higher-order non-

linear terms thus become critical in determining the aircraft

12
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performance. The corresponding eigenvalues associated with

the Dutch roll mode are "
ADR = 0.0366 + 1.52]

which for small perturbations predicts an unstable response.

It should be observed that there is a much slower unstable

lateral mode ("lateral phugoid'"), with eigenvalues

XLP = 00,0187 + 0.131]
In most instances, a mode which is as slow as the lateral
phugoid in the present case is not a concern, so attention
is generally restricted hereafter to the behavior of the
Dutch roll mode.

The search for possible limit cycles was conducted by
assuming that the velocity along the body y-axis is given by

Vo=V [1 + K sin(wDRt)}

where w is the imaginary part of the lightly damped Dutch

roll mogg. The parameter k was varied from 0 to 3 in steps
of 0.5; the resulting change in ADR(K) is shown in Fig 4.
Based on these results, limit cycles for x between 1 and 1.5
and for k between 2.5 and 3.0 are anticipated. The smaller
LC is predicted to be stable according to the usual SIDF
argument [1-4], while the larger unstable limit cycle pre-
diction is of no practical interest, because it is beyond the

region where the curve fits in (8) are realistic.

The multivariable LC analysis program was then per-
mitted to iterate to find the exact 1limit cycle condition.

It was found that A is virtually on the imaginary axis,

DR

13
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_ -5
Aj pg = 4x10

for k equal to 1.20. Corresponding to this value of k, :the

+ 1.495j

"center'" value X; and oscillation components a; and b, for the

state vector are given in Table 2.

Checking the 1limit cycle prediction requires that non-
linear simulations of the dynamics specified in (8-9) be per-

formed. To do this, the state equation (3) is recast as
[ -r sin ¢
0

(IZ-—IX)pr/Iy

. Z/m
x=Fx+ 0 * 68 = Fyx + £i(x,u) + Gyu
N/I
i (18)
L/T,
0

where F1 and G1 are constant matrices which capture effects other
than those chosen for study via quasi-linearization, and 31(533)
contains the nonlinearities selected for SIDF treatment. Equation

(18) can then be integrated to yield the desired time histories.

Choice of the initial condition for this procedure is cri-
tical. ‘This is a due to the presence of an unstable mode, a slow
spiral mode which for k = 1.2 is governed by AS = 0.0618. If this
mode is excited appreciably, its growth will completely obscure the
fast 1limit cycle that is sought. One of the benefits of the new
L.C analysis method is that the eigenvector for the predicted limit
cycle is ay + jgi; therefore, if we choose the initial condition
x(0) = a; only the 1limit cycle in the Dutch roll mode should be
excited appreciably.

14
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The stable limit cycle prediction shown in Table 2
was verified by choosing x(0) = O.8§i. The resulting time
histories of pitch angle 6,y body-axis velocity v, and z
body-axis velocity w, are portrayed in Fig. 5*. The plot of
® shows that the solutions do diverge very slowly, due to a
small unavoidable excitation of the spiral mode. The time
histories of v and w show that the dominant Dutch roll mode
is very slowly growing for the first 25 sec of the simulation,
as would be expected for an initial condition that is slightly
interior to the predicted stable limit cycle. The predicted
center value of v is nearly exact, while that for w is in
error by about -0.5 m/sec, or about -1.4 percent. Finally, the
predicted 1limit cycle frequency is 1.495 rad/sec, while the
observed frequency is 1.497 rad/sec; the agreement is excellent.
After 25 sec of simulation, the slow divergence begins to alter

the 1limit cycle that developed in the first part.

Further analysis of the simulation results was under-
taken to attempt to separate out the effect of the slow diver-
gence. The time history depicted in Fig. 5b Wag grocessed to

); then the

predicted 1limit cycle envelope is given by the relation

determine the exponential growth component (cle 2

c2t

e = Cc ¢ + a

LC 5

where ag is the amplitude of the predicted limit cycle in v
(state 5). This envelope is portrayed in Fig. 5b; within the
limits of the simulation accuracy, convergence of the time

history to the envelope is shown.

The effort to verify the 1limit cycle condition by

direct simulation has pointed up the difficulty of using

*The plots show the perturbation of each variable about the
predicted center value, Ei
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the latter technique as an exploratory tool to locate limit
cycles, without recourse to describing function analysis.
Realistic aerodynamic models 'such as those used here often
have slow modes that are unstable or that are very lightly
damped. Direct simulation initial conditions must be chosen
very carefully to avoid exciting these modes. In a linear
system, it is not difficult to use eigenvector information to
obtain initial conditions that selectively excite a desired
mode. However, eigenvectors are not rigorously defined for

nonlinear systems.

A concept which has been used with some success may

be called the quasi-linear eigenvector; in essence, the complex

vector g*, given by ay + jgi as in Table 2, is in a sense an
amplitude-dependent eigenvector, which specifies an initial
condition that excites the predicted oscillation. The fact
that the quasi-linear eigenvector g* is amplitude-dependent

is illustrated in Fig. 6, which shows g* for various values

of k, corresponding to the study depictea in Figs. 4 and 7+.
For k = 1.0 and 1.5, the eigenvector components for 6 and ¢
are too small to be shown,; the differences between the remain-
ing components (which are normalized to make the length of the
v component equal in each plot) are rather small. For x = 2.5
and 3.0, the changes in'g* are quite substantial. For example,
the 6 and g components of 3* are much larger than for small k,
and can be seen to rotate nearly 45 deg for « increased from
2.5 to 3.0.

+The eigenvectors correspond to the variables 6, u, q, w, v/10,
r, p/5, ¢/5; this scaling was performed to permit all com-
ponents of 3* to be shown on the plots for x=2.5 and 3.0.

16
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5. SUMMARY AND CONCLUSIONS

The SIDF technique described in this paper (and in
[13-15]) permits the investigation of LC conditions in com-
pletely general multivariable nonlinear systems; restrictions
as to the type and number of nonlinearities, and the system
configuration, have been completely removed. Since a general
state variable system formulation is used throughout the analy-
sis, there is no need to manipulate a system model into the
form of linear dynamics in the forward path and nonlinearities

in the feedback path, as in Fig. 1.

Naturally, the usual SIDF caveat must be kept in
mind: The inputs to all nonlinearities must be reasonably
approximated by the form bias-plus-sinusoid. The general
state-space formulation of the problem deprives the analyst
of the more concrete alternative statement of this warning,
viz. "the linear dynamics (W(s)) must be low-pass and the non-
linearities must not produce output signals with undue higher
harmonic content'"; however, for high-order systems with a
number of nonlinearities, it is not at all clear how meaning-
ful such a statement might be. It is fair to say that using any
SIDF technique in this context requires some experience, based
on either simulation or direct observation of the system being
analyzed, which can provide some assurance that the assumed

nonlinearity input form is reasonable (e.g., see Fig. 5).

A major point of departure from previous SIDF analysis
methods is the substitution of root locus-like plots of 'quasi-
linear eigenvalues'" in lieu of frequency-response plots based
on W(jw); this alternative viewpoint has permitted the break-
through in terms of system model generality in comparison with
frequency-domain/SIDF techniques for multivariable systems

[6-11]. As a result, one loses the ability to modify or remove

17
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LC conditions by the classical methods for altering the ffé—
quency response of W(s) by changing pole locations or adding
"compensation networks'". However, systems designers versed
in the more modern technique of pole placement using state
variable feedback should find fhat mefhod of system response
compensation applicable to LC conditions found using this new
SIDF technique; an approach due to Sankaran (16) appears to
be particularly useful in this regard. Combining the new
SIDF LC analysis method with an iterative pole position modi-
fying algorithm would result in a very powerful approach to

multivariable nonlinear systems synthesis.

The study presented in Section 4 illustrates the
effectiveness of the new LC analysis method. The predicted
LC frequency and 'center'" value (Fig. 5) are in good agreement
with the simulation results; the accuracy of the amplitude
prediction is more difficult to assess quantitatively due to
the simulation problems mentioned previously (see Fig. 5b).

In general, these results bolster the exbectation that the
new iterative LC analysis technique will be found to converge

to locate limit cycle conditions, provided that

e The input equilibrium condition specifica-
tion leads to a pair of small-signal linear
eigenvalues that are lightly damped

e The nonlinearities are well-behaved (e.g.,
realistically modeled by low-order power
series expansions or products thereof)

® Limit cycles indeed exist (as verified by
simulating solutions to the original non-
linear state-vector differential equation,
with suitable initial conditions)

Considerable further research should be performed to

conclusively prove the power and accuracy of the new SIDF LC

analysis approach. As a first step, it would be valuable to
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apply it to a simpler model (fewer states and nonlinearities),
particularly one that does not contain system variablesgfhat
are slowly divergent. The existence of unstable modes, or
even of modes that are slowly decaying oscillations, makes
limit cycle verification by direct simulation very difficult,

since it is impossible not to excite them in the simulation.
Finally, the primary benefits of this technique are

® An iterative algorithmic approach to limit
cycle analysis is much more suitable for
mechanization on a digital computer than
classical frequency-domain techniques, which
are typically graphical in nature;

°® Any number of nonlinear effects can be
investigated, singly or in any combination,
without continually manipulating the system
model into the appropriate "linear plant
with nonlinear feedback'" formulation required
in the frequency-domain approach (Fig. 3);

) The amount of computer time required to
determine the existence of 1imit cycles
by the new SIDF approach should generally
be significantly less than the computer
time expenditure that would be needed using
direct simulation alone.

The last observation is based on the difficulty of choosing
the direct simulation initial condition correctly to excite
only the desired nearly oscillatory mode, as discussed in

the preceding section.
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TABLE 1

SELECTED EQUILIBRIUM CONDITION IN THE

ABSENCE OF OSCILLATION

T-1435

3§5§ﬁ%§%é%§?i;f) VALUE

eo 17.46 deg

U, 81.7 m/sec

4 0.296 deg/sec

W 29.1 m/sec

Vo 6.04 m/sec

Ty -0.033 deg/sec

Py -0.011 deg/sec

¢ -5.303 deg

TABLE 2

CENTER CONDITION AND PREDICTED LIMIT CYCLE
AMPLITUDE FOR THE STABLE LIMIT CYCLE

T-1436
STATE VARIABLE CENTER a. ) UNITS
(ELEMENT OF Ei) =i =i .
ei 18.35 0.259 -0.234 deg A=T
Uy 80.25 -0.177 0.165 m/sec
a; 0.174 0.219 0.182 | deg/sec
W 28.80 -0.810 -0.718 m/sec
vy 6.14 7.38 0.0 m/sec
r, 0.792 -1.79 -1.89 deg/sec
Py -0.310 | -7.35 14.90 deg/sec
¢i 8.55 9.55 5.295 deg
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