Rigorous Hybrid Systems Simulation with Continuous-time
Discontinuities and Discrete-time Components

James H. Taylor and Jie Zhang
Department of Electrical & Computer Engineering
University of New Brunswick
Fredericton, NB CANADA E3B 5A3

Abstract— Previous research in the modeling and sim- done in AcSL, but not cleanly and reliably, and again, it
ulation of hybrid systems led to the development of a cannot be done imMATLAB ; here we use a strict protocol
general hybrid systems modeling languageHsML). In that permits state reset in a general yet reliable way. The
more recent work, we have implemented this concept in ideas and algorithmic requirements underlyirgML can be
software. The standard MATLAB model framework and translated into any modeling and simulation environments,
integration algorithms have been extended to support assuming that a developer can gain access to the necessary
state-event handling in continuous-time components and internal “machinery”, as demonstrated here.
to deal with embedded discrete-time components, with This paper overviews our work to implement new features
utmost accuracy and efficiency. of HSML in the MATLAB environment [5]. It focuses on

In this paper we overview the algorithmic imple- requirements, our approach and implementation, and it
mentation of the HsML ideas and language constructs presents a detailed application involving significant estat
for dealing with state events and embedded discrete- event handling in the continuous-time part as well as dgalin
time components in MATLAB. A practical example (a with a discrete-time part associated with a digital comgrol
separately-excited DC motor coupled via a gear-train thus providing a complete demonstration of the use and
to a load driven by a digital controller) is presented to effectiveness of our algorithms, which are available on the
demonstrate the efficacy of these extensions. first-named author's website.

Il. HSML OVERVIEW

)) HSML is designed to be a rigorous and modular hierarchi-

The hybrid systems modeling languagesiL), as de- cal scheme for modeling hybrid systems. At the lowest level
scribed previously [1], [2], [3], was designed to SuPporhSML components are “pure” continuous-time components
a broad definition of a hybrid system, which we may(CTCS) and discrete-time componentsTEs) [1]. These
express informally as being an arbitrary interconnectibn Llements are assembled into composite components, and
components that are arbitrary instances of continuous- aﬂ‘f’en systems.
discrete-time subsystems. Requirements HemL partic- Glossing over state events and state reset for the time
ularly focused on rigorous characterization and executiogeing, we considecTcs that may be represented-as
of “events”, both discrete- and continuous-time, that eaus
discontinuous changes in system trajectories and/or the e = fe(Te,ue,m,t)
model structure itself. Yo = Ge(Teyue,m,t) Q)

One can rigorously model hybrid systems using certain
R where z. is the continuous-time state vectay, is the
other, extant languages (with limitations). For example, . . :)
. ?utput vectoryu, is a numeric input vector (continuous-time
ACSL [4] can be used to model and simulate state events | L .
: variables or, if discrete-time, sampled and held outputs of
in a hybrid system with considerable generality; however

. . DTCS), m is comprised of a finite alphabet of numeric or
many other packages (especially commercially-supported

. - symbolic input variables that characterizes the “mode” of
ones such amATLAB) lack even the basic provisions for
. . . the model, and is the time. Of particular importance to the
state-event handling. Also, the high-level features aridtst

semantics and syntax formulated fasmL facilitate and 1The specific class o€Tc that can be modeled depends on the sim-

enforce a higher degree of rigor in hybrid systems mode"nq!ator’s irjltegrati_on method_s; stand_amd\TLAB routines currently cannot
h b . babili f del andle differential algebraic equations (DAES), so werigsburselves
thereby ensuring a greater probability of mode Correanes(o ordinary differential equations and simplify the vat@btypes in

For example, resetting the state after a state event can daparison with [1], [2].

I. INTRODUCTION

present exposition, thmodeinputm is included to provide and mechanical components engaging/disengaging. The na-
means of controlling the model’s structure and coordimgtinture of the problem and an approach for proper handling
its behavior with the numerical integration process inestat of such events has been detailed previously [6], [7]; in

event handling, as described below. this context, it suffices to observe that blindly integrgtin
State events may be characterized very generally in terrascTc by stepping from a point before switching to
of zero crossings, t + h after the discontinuity, wheré is the integration

step, usually produces results that are both inaccurate and

S(@e,m,t) =0 &) inefficient (in the sense of consuming an inordinate amount
A mode-change in aTc can be classified asreegat i ve- of computation).
goi ng event (i.e., one in whichS changes from posi- The appropriate handling of state events requires coor-
tive to negative), aron- constrai nt event (whereS dination between the model and simulation package. This
remains equal to zero until another state event occurs), & achieved inHswmL via f | ag variables in the modelY
aposi ti ve- goi ng event. Finally, we include provision in Eqn. 2), and the model input variabte that can be
for instantaneous reset of the model state variables atea stised to control model switching. State-event handling then
event: proceeds as follows:
1) Integrate as usual as long as thleag variables do

not change sign. Each integration point is treated as
wheret, is the event time. This feature is useful in resetting a “trial” point until the sign condition is checked; if
velocities after objects engage to conserve momentum, for ~ NO sign change occurred, the point is “accepted”.
example. In accordance with this scheme for state-event2) When a sign change is detected, the trial point is dis-

r=wo(tl) = r(ze(ts).mit,) ©)

e

definition, we permit elements of, to take on the values carded and an iterative procedure is initiated (Wlthln
—1, 0, +1. the simulator) to find the exact stég such that the
In the present stage of developmenp®c is a general f 1 ag variable is zero (within a small tolerane€on

algorithm which we can characterize in terms of internal ~ the other side”). The modeloes not switchduring
variables called “discrete states” and outputs that also this part of the procedure.

change discretely (instantaneously) at each execution: 3) The integrator produces an accepted point just past the
switching curve (Egn. 2) and then signals the model
Tap = Ja(@ar-1,uak-1,m,tk) (4) to switch (e.g., by changing: from 1 to —1 or vice
Yare = Ga(Tdk,Udk, M, tx) (5) versa if the boundary is to be crossed, or to 0 if the

trajectory is to be confined to the boundary until the
next state event).

4) The integrator then calls the model to determine if
state reset is required, and if so executes it.

5) Normal integration proceeds from that point until the
next state event is encountered and handled in the
same way.

where x4 is the discrete state vectok, is the index

corresponding to the discrete time point at which the

state takes on the new valug i, uq IS @ discrete-time
input vector (which may contain outputs offcs sampled

at timety), andy, i is theDTC output. The update in Eqn.
4 can also be expressed as:

Tdk+1 = fa(@d ke, Udk, M, teg1) (6) B. Time-Events

as is conventional in discrete-time filters. The timgsare The approach and conventions needed to handle time
usually - but not necessarily - uniformly spaced; in any cas@vents are much simpler than those required for state gvents
we assume that the update times can be anticipated and tRusce we are merely emulating the execution of a computer
programmed in theTc model. Corresponding to this, we algorithm in a digital setting (but without actual real time
define the vectot. which at any time is comprised of the considerations). Time-event handling proceeds as follows

next execution times for everyTc in the system. 1) EachpTc “notifies” the higher-level system integra-
tion block (si1B, see section IV-A) about its next
execution time at the beginning of the simulation and
at every subsequemrc execution.

TheHsML features for modeling state events are designed 2) Thesis determines the earliest of the anticipated time
to permit the accurate and efficient integrationcafcs that events (if there is more than @Tc), and signals the
may exhibit discontinuous behavior such as relays switghin numerical integrator to stop at that time.

I1l. HSML EVENT HANDLING
A. Sate-Events

3) At such a stopping point theiB is invoked and it « If multiple bTCs are to be executed &f, then thesis
proceeds to execute the appropriatec(s), handling has the duty to call them in the correct priority order.
priority issues as specified in the model. « The continuous-time dynamics can reside in te

At eachpTC execution this process is updated and contin- if they are simple; for more complex systems it may
ued until the end of the simulation run. be helpful to create one or several separatecs,
as diagrammed in Fig. 1 (note that this necessitates

IV. MATLAB E XTENSIONS FOREVENT HANDLING CcTcs having inputs and outputs that are defined at the

)) interface as shown).
The above outline ofismL and it's approach for char-)

acterizing state and time events provides a clear set gf Exiended MATLAB Integrators
requirements for implementation in a software package
We have focused omATLAB for this purpose, since it
is so readily extensible. Generalizations are needed in t
major areas: modeling schemes and numerical integrati
methods.

" Significant extensions must also be made in an appro-
v\%iate MATLAB numerical integration algorithm such as
8rge45, which we selected for its outstanding numerics.
There are three features needed to permit thaLAB
integration routines to deal with state and time events:

A. Extended Model Schema 1) The Numerical Integrator must coordinate with the
extended model to establish the initial values of the
CcTC modes,m, andDTC next execution times,.;

2) The routine must continuously test for the occurrence
of events by:

The model input/output framework from previous work
in state-event handling [7] had to be extended to allow
coordinated state event and time event handling. The orig-
inal MATLAB schema was to create models in the form of

functions with two inputs#() and one outputi(), and for a) ensuring that stops at timef,, defined byt _n
continuous-time systems with state events this was extende = min(t_e) in order to execute the next time
by adding the inputr, mode, and outputS, the state-event event(s) in the correspondingrc(s), and/or
zero-crossing function, and the state reset. b) watching for zero crossings i, iterating to

determine the exact switching point and then
changingm according to the logic in the model;
and

To further extend the model input/output framework,
we added four new input variables. The first new input
variable isxz4 , which is used to calculate, ;11 when
the correspondingpTc(s) is (are) updated. The second 3) It must execute a state reset operation after a state
one is theDTC outputyg x, which can be involved in the event, if it is called for by the model.
calculation ofi. The third ist., which is comprised of the To support this functionality, the following conventions
next execution times for everyTc. The last one i, are imposed: The value of, for initialization is “empty”
which indicates whictpTc(s) should be updated, if any. (= []). The model must return the appropriate value of

In addition, three new output variables were addeds, based on the stipulated initial conditiar. From this
Tqk+1, the DTC state vector aty1 in EQn. 6,y4x, the information, the integration routine will set = sign(S).
updateddTC output vector, and. ..., the updated next During normal integration the value of’'s elements will be
execution time variable. —1, 0, +1. When a state event is detected and deternined

Note thatS andm may be vectors, to support multiple the corresponding element of. is switched; thenm is
state event mechanisms (switching conditions), anchay temporarily made complex and the model should respond

also be a vector of length equal to the numbepo€s. This by returning the reset value (Eqn. 3) orr = [] if no
scheme is portrayed in Fig. 1 (at the end of the paper). lieset is to be done. Finally, that elementsofis returned
this diagram, observe that: to —1, 0, +1 and numerical integration is resumed with

« The Numerical Integratom() must now serve as the the indicated mode change. The valuengf. is set by the
“memory” for the aggregate discrete component state integrator to inform the system model whiofrc(s) should
(z4.1), the DTC’s output (y,,1) and for thepTc’s times be updated. The dimension ef;. is equal to the number
of next execution ¢.. The NI has the requirement of Of DTCs; elements of.4;. are changed from 0 to 1 by the
stopping exactly at,,, the earliest of the elements of integrator forbTc(s) which should be updated. Then, the

te, and the “System Integrator Block’s(g) has the)]) -
2We determine zero crossings by embedding a modified version o

respon5|b|I|ty of executing the corretl:ITc(s) when MATLAB's f zer o algorithm within the integrator; it determinds® such
t=1,. that S = 0 within machinee.

model should respond by executing the approprizite
updating section.

to a very small value when the motor stops, and it remains
infinitesimal until the torque can overcome the stictionisTh
problem is depicted in Fig. 3, which is the simulation result
generated bysIMULINK using the informal model above;
The extensions tavATLAB outlined above were done thjs simulation took 247 seconds and the “chattering” due

in two stages: the first stage is the extension for handling the extremely small step size is clearly evident.
state events [7]; the second is the extension for handling

V. EXAMPLE APPLICATION

time events. The extension for handling state events wi
tested using a number of simple switching systems [6], [8
The extension for handling time events was done recentl
and it was also tested using a number of hybrid systen
[9]. In addition, we will demonstrate the modeling and

2

1

> 0

-1

Simulation result generated by SIMULINK
T

simulation of a more realistic (and difficult) application, -
a feedback speed-control system for a separately-excit
DC motor coupled via a gear-train to a load, with a digita
compensator. The model is illustrated in Fig. 2. The errc
signal ise = r—y = wsp—wr,, Wherewy, is the load angular

velocity andw,,, is the corresponding set point. The digital

10

10.2
Time (s)

10.4 10.6 10.8

Fig. 3.
SIMULINK

DC Motor Control System Simulation Result Generalsd

For this system, the extended integrator is much more
efficient thansIMULINK, since it has a state event handler,
which can recognize different stages of the motor motion
(moving, stuck) and eliminate the chattering. Figure 4 show
the simulation result generated by the extended integrator

_4z-31 it only takes 2.4 seconds. More detailed models built for
E(z) 2-01 SIMULINK and the extended integrator can be found in [9].
and the sampling frequency is 10 Hz. The motor/load gear
ratio is N = 10, the back emf coefficient iFgg = 2 v-
sec/rad, and the torque coefficient i&r = 2 N-m/amp.
Other parameters arBy = 0.4€2, Ly = 0.02 H, Jgg = The MATLAB implementation presented above provides
570 kg-m?, and B = 280 N-mrsec/rad. There is also a a demonstration ofisMmL in general and of the importance
nonlinear effect informally modeled &3,¢sign(y), where of careful time- and state-event handling in particular.
Bsyc is the motor static friction coefficient (also calledIntroducing the concept “mode” and the carefully presatibe
“stiction”) that often cannot be neglected. Here we modé€ireset” protocol are both contributions toward making the
it more rigorously using state events, where the motanodeling and simulation of switching in hybrid systems
“sticks” whenever the angular velocity goes to zero, i.einore systematic and rigorous. These features permit the
the switching function isS = y = wy, and it starts to study of systems that are well beyond the capabilities
move again only when there is sufficient torque to overcomef the standardvATLAB integrators such asde45 and
stiction (S = | 7. | — B2c Where . is the motor torque, SIMULINK.
7. = NKria). When the stiction term is large, for example Extending this modeling approach and associated numer-
Bye = 1500 N-m, it will cause the simulation process toical integration routines can be pursued in several obvious
be extremely slow if the integrator does not include thevays, e.g., they can be inserted into more sophisticated
state event handler, since the integration step is reducetbdeling environments (like thesiMULINK framework

Fig. 2. DC Motor Control System Schematic

compensator is
U(z)

D(z) =

VI. CONCLUSION

Simulation result generated by ode45_sth
3 T T T

-3 Il Il Il L L
0 5 10 15 20 25 30
Time (sec)
x10™
15F-T ! H
1+ .l
£ 05¢ 7
£
8 of A
N
-0.5 —
1k 4
Il Il Il Il Il Il Il Il Il
9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11
Time (sec)

Fig. 4. DC Motor Control System Simulation Result Generatgdthe
extended integrator

[10]). A more important extension would involve the de-
velopment of a HsML compiler”, that would take the
more rigorousHsML formulations and autocode extended
MATLAB models.

REFERENCES

[1] Taylor, J. H. “Toward a Modeling Language Standard forbigt
Dynamical Systems”Proc. 32nd 1Eee Conference on Decision and
Control, San Antonio, TX, December 1993.

[2] Taylor, J. H. “A Modeling Language for Hybrid SystemsProc.
IEEE/IFAC Symposium on Computer-Aided Control System Design,
Tucson, AZ, March 1994.

[3] Taylor, J. H.A Rigorous Modeling and Smulation Package for Hybrid
Systems, US National Science Foundation SBIR Report, Award No.
111-9361232, Odyssey Research Associates, Inc., June.1994

[4] Advanced Continuous Smulation Language (AcCSL), Reference Man-
ual. Mitchell & Gauthier Associates, Concord MA 01742.

[5] MATLAB User’s Guide, The MathWorks, Inc., Natick, MA 01760

[6] Taylor, J. H., “Rigorous Handling of State Events WMATLAB”,

Proc. IEEE Conference on Control Applications, Albany, NY, 28-29

September 1995.

Taylor, J. H. and Kebede, D., “Modeling and Simulation é§brid

Systems”, Proc. IEEe Conference on Decision and Control, New

Orleans, LA, 13-15 December 1995.

Taylor, J. H., “Rigorous Handling of State EventsNmTLAB ", Proc.

IEEE Conference on Decision and Control, New Orleans, LA, 13-15

December 1995.

[9] Zhang, J. “A Creation of Hybrid System Modeling and Siaul
tion Environment inMATLAB", MSCEng Thesis University of New
Brunswick, September 2005.

[10] sIMULINK User’'s Guide, The MathWorks, Inc., Natick, MA 01760.

[7

[8

Numerical Integrator (NI)

Te

Y

Td,k

Y

Y

Ndtc N

A

Ze

Td,k+1

A

A

A

A

Y

Yd,k

Y

System
Integrator Block (SIB)

u® =l =

xTg = [a:((il) a:((f) LT

te=[t ¢ T

1 2
yar =Ly v "

etc.

A

cTc)

A

cTc®

pTc®

Fig. 1. NewMmATLAB model component input/output structures

DTC®

A

Ze = f(Te,ue,m,t)
Yo = ge(Te, Ue, M, 1)
S = S(xc, ue,m, t)
r=1(Te, U, M,)

cTCc®

Td k1 = fa(Zd ke, Udk, M, tegt

Yd,k = 9a(Zd k> Ud,k, M, L)

te = ...

DTC® (k)

