
Rigorous Hybrid Systems Simulation with Continuous-time

Discontinuities and Discrete-time Components

James H. Taylor and Jie Zhang
Department of Electrical & Computer Engineering

University of New Brunswick

Fredericton, NB CANADA E3B 5A3

Abstract— Previous research in the modeling and sim-
ulation of hybrid systems led to the development of a
general hybrid systems modeling language (HSML). In
more recent work, we have implemented this concept in
software. The standardMATLAB model framework and
integration algorithms have been extended to support
state-event handling in continuous-time components and
to deal with embedded discrete-time components, with
utmost accuracy and efficiency.

In this paper we overview the algorithmic imple-
mentation of the HSML ideas and language constructs
for dealing with state events and embedded discrete-
time components in MATLAB . A practical example (a
separately-excited DC motor coupled via a gear-train
to a load driven by a digital controller) is presented to
demonstrate the efficacy of these extensions.

I. I NTRODUCTION

The hybrid systems modeling language (HSML), as de-
scribed previously [1], [2], [3], was designed to support
a broad definition of a hybrid system, which we may
express informally as being an arbitrary interconnection of
components that are arbitrary instances of continuous- and
discrete-time subsystems. Requirements forHSML partic-
ularly focused on rigorous characterization and execution
of “events”, both discrete- and continuous-time, that cause
discontinuous changes in system trajectories and/or the
model structure itself.

One can rigorously model hybrid systems using certain
other, extant languages (with limitations). For example,
ACSL [4] can be used to model and simulate state events
in a hybrid system with considerable generality; however
many other packages (especially commercially-supported
ones such asMATLAB) lack even the basic provisions for
state-event handling. Also, the high-level features and strict
semantics and syntax formulated forHSML facilitate and
enforce a higher degree of rigor in hybrid systems modeling,
thereby ensuring a greater probability of model correctness.
For example, resetting the state after a state event can be

done in ACSL, but not cleanly and reliably, and again, it
cannot be done inMATLAB ; here we use a strict protocol
that permits state reset in a general yet reliable way. The
ideas and algorithmic requirements underlyingHSML can be
translated into any modeling and simulation environments,
assuming that a developer can gain access to the necessary
internal “machinery”, as demonstrated here.

This paper overviews our work to implement new features
of HSML in the MATLAB environment [5]. It focuses on
requirements, our approach and implementation, and it
presents a detailed application involving significant state-
event handling in the continuous-time part as well as dealing
with a discrete-time part associated with a digital controller,
thus providing a complete demonstration of the use and
effectiveness of our algorithms, which are available on the
first-named author’s website.

II. HSML OVERVIEW

HSML is designed to be a rigorous and modular hierarchi-
cal scheme for modeling hybrid systems. At the lowest level
HSML components are “pure” continuous-time components
(CTCs) and discrete-time components (DTCs) [1]. These
elements are assembled into composite components, and
then systems.

Glossing over state events and state reset for the time
being, we considerCTCs that may be represented as1:

ẋc = fc(xc, uc, m, t)

yc = gc(xc, uc, m, t) (1)

where xc is the continuous-time state vector,yc is the
output vector,uc is a numeric input vector (continuous-time
variables or, if discrete-time, sampled and held outputs of
DTCs), m is comprised of a finite alphabet of numeric or
symbolic input variables that characterizes the “mode” of
the model, andt is the time. Of particular importance to the

1The specific class ofCTC that can be modeled depends on the sim-
ulator’s integration methods; standardMATLAB routines currently cannot
handle differential algebraic equations (DAEs), so we restrict ourselves
to ordinary differential equations and simplify the variable types in
comparison with [1], [2].

present exposition, themode inputm is included to provide
means of controlling the model’s structure and coordinating
its behavior with the numerical integration process in state-
event handling, as described below.

State events may be characterized very generally in terms
of zero crossings,

S(xc, m, t) = 0 (2)

A mode-change in aCTC can be classified as anegative-
going event (i.e., one in whichS changes from posi-
tive to negative), anon-constraint event (whereS

remains equal to zero until another state event occurs), or
a positive-going event. Finally, we include provision
for instantaneous reset of the model state variables at a state
event:

r = xc(t
+
e) = r(xc(t

−

e), m, t−e) (3)

wherete is the event time. This feature is useful in resetting
velocities after objects engage to conserve momentum, for
example. In accordance with this scheme for state-event
definition, we permit elements ofm to take on the values
−1, 0, +1.

In the present stage of development, aDTC is a general
algorithm which we can characterize in terms of internal
variables called “discrete states” and outputs that also
change discretely (instantaneously) at each execution:

xd,k = fd(xd,k−1, ud,k−1, m, tk) (4)

yd,k = gd(xd,k, ud,k, m, tk) (5)

where xd,k is the discrete state vector,k is the index
corresponding to the discrete time pointtk at which the
state takes on the new valuexd,k, ud,k is a discrete-time
input vector (which may contain outputs ofCTCs sampled
at timetk), andyd,k is theDTC output. The update in Eqn.
4 can also be expressed as:

xd,k+1 = fd(xd,k, ud,k, m, tk+1) (6)

as is conventional in discrete-time filters. The timestk are
usually - but not necessarily - uniformly spaced; in any case,
we assume that the update times can be anticipated and thus
programmed in theDTC model. Corresponding to this, we
define the vectorte which at any time is comprised of the
next execution times for everyDTC in the system.

III. HSML E VENT HANDLING

A. State-Events

TheHSML features for modeling state events are designed
to permit the accurate and efficient integration ofCTCs that
may exhibit discontinuous behavior such as relays switching

and mechanical components engaging/disengaging. The na-
ture of the problem and an approach for proper handling
of such events has been detailed previously [6], [7]; in
this context, it suffices to observe that blindly integrating
a CTC by stepping from a pointt before switching to
t + h after the discontinuity, whereh is the integration
step, usually produces results that are both inaccurate and
inefficient (in the sense of consuming an inordinate amount
of computation).

The appropriate handling of state events requires coor-
dination between the model and simulation package. This
is achieved inHSML via flag variables in the model (S
in Eqn. 2), and the model input variablem that can be
used to control model switching. State-event handling then
proceeds as follows:

1) Integrate as usual as long as theflag variables do
not change sign. Each integration point is treated as
a “trial” point until the sign condition is checked; if
no sign change occurred, the point is “accepted”.

2) When a sign change is detected, the trial point is dis-
carded and an iterative procedure is initiated (within
the simulator) to find the exact steph∗ such that the
flag variable is zero (within a small toleranceε “on
the other side”). The modeldoes not switchduring
this part of the procedure.

3) The integrator produces an accepted point just past the
switching curve (Eqn. 2) and then signals the model
to switch (e.g., by changingm from 1 to−1 or vice
versa if the boundary is to be crossed, or to 0 if the
trajectory is to be confined to the boundary until the
next state event).

4) The integrator then calls the model to determine if
state reset is required, and if so executes it.

5) Normal integration proceeds from that point until the
next state event is encountered and handled in the
same way.

B. Time-Events

The approach and conventions needed to handle time
events are much simpler than those required for state events,
since we are merely emulating the execution of a computer
algorithm in a digital setting (but without actual real time
considerations). Time-event handling proceeds as follows:

1) EachDTC “notifies” the higher-level system integra-
tion block (SIB, see section IV-A) about its next
execution time at the beginning of the simulation and
at every subsequentDTC execution.

2) TheSIB determines the earliest of the anticipated time
events (if there is more than onDTC), and signals the
numerical integrator to stop at that time.

3) At such a stopping point theSIB is invoked and it
proceeds to execute the appropriateDTC(s), handling
priority issues as specified in the model.

At eachDTC execution this process is updated and contin-
ued until the end of the simulation run.

IV. MATLAB E XTENSIONS FOREVENT HANDLING

The above outline ofHSML and it’s approach for char-
acterizing state and time events provides a clear set of
requirements for implementation in a software package.
We have focused onMATLAB for this purpose, since it
is so readily extensible. Generalizations are needed in two
major areas: modeling schemes and numerical integration
methods.

A. Extended Model Schema

The model input/output framework from previous work
in state-event handling [7] had to be extended to allow
coordinated state event and time event handling. The orig-
inal MATLAB schema was to create models in the form of
functions with two inputs (t, x) and one output (̇x), and for
continuous-time systems with state events this was extended
by adding the inputm, mode, and outputsS, the state-event
zero-crossing function, andr, the state reset.

To further extend the model input/output framework,
we added four new input variables. The first new input
variable isxd,k, which is used to calculatexd,k+1 when
the correspondingDTC(s) is (are) updated. The second
one is theDTC output yd,k, which can be involved in the
calculation ofẋ. The third iste, which is comprised of the
next execution times for everyDTC. The last one isndtc,
which indicates whichDTC(s) should be updated, if any.

In addition, three new output variables were added:
xd,k+1, the DTC state vector attk+1 in Eqn. 6, yd,k, the
updatedDTC output vector, andte,new, the updated next
execution time variable.

Note thatS and m may be vectors, to support multiple
state event mechanisms (switching conditions), andte may
also be a vector of length equal to the number ofDTCs. This
scheme is portrayed in Fig. 1 (at the end of the paper). In
this diagram, observe that:

• The Numerical Integrator (NI) must now serve as the
“memory” for theaggregate discrete component state
(xd,k), the DTC’s output (yd,k) and for theDTC’s times
of next execution te. The NI has the requirement of
stopping exactly attn, the earliest of the elements of
te, and the “System Integrator Block” (SIB) has the
responsibility of executing the correctDTC(s) when
t = tn.

• If multiple DTCs are to be executed attn, then theSIB

has the duty to call them in the correct priority order.
• The continuous-time dynamics can reside in theSIB

if they are simple; for more complex systems it may
be helpful to create one or several separateCTCs,
as diagrammed in Fig. 1 (note that this necessitates
CTCs having inputs and outputs that are defined at the
interface as shown).

B. Extended MATLAB Integrators

Significant extensions must also be made in an appro-
priate MATLAB numerical integration algorithm such as
ode45, which we selected for its outstanding numerics.
There are three features needed to permit theMATLAB

integration routines to deal with state and time events:

1) The Numerical Integrator must coordinate with the
extended model to establish the initial values of the
CTC modes,m, andDTC next execution times,te;

2) The routine must continuously test for the occurrence
of events by:

a) ensuring thatt stops at timetn defined byt n

= min(t e) in order to execute the next time
event(s) in the correspondingDTC(s), and/or

b) watching for zero crossings inS, iterating to
determine the exact switching point and then
changingm according to the logic in the model;
and

3) It must execute a state reset operation after a state
event, if it is called for by the model.

To support this functionality, the following conventions
are imposed: The value ofm for initialization is “empty”
(m = []). The model must return the appropriate value of
S, based on the stipulated initial conditionx0. From this
information, the integration routine will setm = sign(S).
During normal integration the value ofm’s elements will be
−1, 0, +1. When a state event is detected and determined2,
the corresponding element ofm is switched; thenm is
temporarily made complex and the model should respond
by returning the reset valuer (Eqn. 3) or r = [] if no
reset is to be done. Finally, that element ofm is returned
to −1, 0, +1 and numerical integration is resumed with
the indicated mode change. The value ofndtc is set by the
integrator to inform the system model whichDTC(s) should
be updated. The dimension ofndtc is equal to the number
of DTCs; elements ofndtc are changed from 0 to 1 by the
integrator forDTC(s) which should be updated. Then, the

2We determine zero crossings by embedding a modified version of
MATLAB ’s fzero algorithm within the integrator; it determinesh∗ such
that S = 0 within machineε.

model should respond by executing the appropriateDTC

updating section.

V. EXAMPLE APPLICATION

The extensions toMATLAB outlined above were done
in two stages: the first stage is the extension for handling
state events [7]; the second is the extension for handling
time events. The extension for handling state events was
tested using a number of simple switching systems [6], [8].
The extension for handling time events was done recently,
and it was also tested using a number of hybrid systems
[9]. In addition, we will demonstrate the modeling and
simulation of a more realistic (and difficult) application,
a feedback speed-control system for a separately-excited
DC motor coupled via a gear-train to a load, with a digital
compensator. The model is illustrated in Fig. 2. The error
signal ise = r−y = ωsp−ωL, whereωL is the load angular
velocity andωsp is the corresponding set point. The digital

+
- A

L

1

S

1

S

1

TNK

y

AR

ENK

EQB

CB2 Sign

EQ
J

1

+
+

+
+

+
-

+
-

D(z)
r u

DC motor and load

Fig. 2. DC Motor Control System Schematic

compensator is

D(z) =
U(z)

E(z)
=

4z − 3.1

z − 0.1

and the sampling frequency is 10 Hz. The motor/load gear
ratio is N = 10, the back emf coefficient isKE = 2 v-
sec/rad, and the torque coefficient isKT = 2 N-m/amp.
Other parameters areRA = 0.4 Ω, LA = 0.02 H, JEQ =

570 kg-m2, andBEQ = 280 N-m-sec/rad. There is also a
nonlinear effect informally modeled asB2Csign(y), where
B2C is the motor static friction coefficient (also called
“stiction”) that often cannot be neglected. Here we model
it more rigorously using state events, where the motor
“sticks” whenever the angular velocity goes to zero, i.e.,
the switching function isS = y = ωL, and it starts to
move again only when there is sufficient torque to overcome
stiction (S = | τe | − B2C where τe is the motor torque,
τe = NKT iA). When the stiction term is large, for example
B2C = 1500 N-m, it will cause the simulation process to
be extremely slow if the integrator does not include the
state event handler, since the integration step is reduced

to a very small value when the motor stops, and it remains
infinitesimal until the torque can overcome the stiction. This
problem is depicted in Fig. 3, which is the simulation result
generated bySIMULINK using the informal model above;
this simulation took 247 seconds and the “chattering” due
to the extremely small step size is clearly evident.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3
Simulation result generated by SIMULINK

y

9.4 9.6 9.8 10 10.2 10.4 10.6 10.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

zo
om

 in

Time (s)

Fig. 3. DC Motor Control System Simulation Result Generatedby
SIMULINK

For this system, the extended integrator is much more
efficient thanSIMULINK , since it has a state event handler,
which can recognize different stages of the motor motion
(moving, stuck) and eliminate the chattering. Figure 4 shows
the simulation result generated by the extended integrator;
it only takes 2.4 seconds. More detailed models built for
SIMULINK and the extended integrator can be found in [9].

VI. CONCLUSION

The MATLAB implementation presented above provides
a demonstration ofHSML in general and of the importance
of careful time- and state-event handling in particular.
Introducing the concept “mode” and the carefully prescribed
“reset” protocol are both contributions toward making the
modeling and simulation of switching in hybrid systems
more systematic and rigorous. These features permit the
study of systems that are well beyond the capabilities
of the standardMATLAB integrators such asode45 and
SIMULINK .

Extending this modeling approach and associated numer-
ical integration routines can be pursued in several obvious
ways, e.g., they can be inserted into more sophisticated
modeling environments (like theSIMULINK framework

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

Time (sec)

y

Simulation result generated by ode45_sth

9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11

−1

−0.5

0

0.5

1

1.5

x 10
−4

Time (sec)

zo
om

 in

Fig. 4. DC Motor Control System Simulation Result Generatedby the
extended integrator

[10]). A more important extension would involve the de-
velopment of a “HSML compiler”, that would take the
more rigorousHSML formulations and autocode extended
MATLAB models.

REFERENCES

[1] Taylor, J. H. “Toward a Modeling Language Standard for Hybrid
Dynamical Systems”,Proc. 32nd IEEE Conference on Decision and
Control, San Antonio, TX, December 1993.

[2] Taylor, J. H. “A Modeling Language for Hybrid Systems”,Proc.
IEEE/IFAC Symposium on Computer-Aided Control System Design,
Tucson, AZ, March 1994.

[3] Taylor, J. H.A Rigorous Modeling and Simulation Package for Hybrid
Systems, US National Science Foundation SBIR Report, Award No.
III-9361232, Odyssey Research Associates, Inc., June 1994.

[4] Advanced Continuous Simulation Language (ACSL), Reference Man-
ual. Mitchell & Gauthier Associates, Concord MA 01742.

[5] MATLAB User’s Guide, The MathWorks, Inc., Natick, MA 01760
[6] Taylor, J. H., “Rigorous Handling of State Events inMATLAB ”,

Proc. IEEE Conference on Control Applications, Albany, NY, 28-29
September 1995.

[7] Taylor, J. H. and Kebede, D., “Modeling and Simulation ofHybrid
Systems”, Proc. IEEE Conference on Decision and Control, New
Orleans, LA, 13-15 December 1995.

[8] Taylor, J. H., “Rigorous Handling of State Events inMATLAB ”, Proc.
IEEE Conference on Decision and Control, New Orleans, LA, 13-15
December 1995.

[9] Zhang, J. “A Creation of Hybrid System Modeling and Simula-
tion Environment inMATLAB ”, MScEng Thesis University of New
Brunswick, September 2005.

[10] SIMULINK User’s Guide, The MathWorks, Inc., Natick, MA 01760.

System

Integrator Block (SIB)

u(i) = ... u
(i)
d,k = ...

xc = [x
(1)
c x

(2)
c . . .]T

xd = [x
(1)
d x

(2)
d . . .]T

te = [t
(1)
e t

(2)
e . . .]T

yd,k = [y
(1)
d,k y

(2)
d,k . . .]T

etc.

xc

xd,k

m

t

ẋc

xd,k+1

S

r

N
u

m
er

ic
al

In
te

g
ra

to
r

(N
I)

ndtc

te

yd,k

� �

CTC(1)

� � CTC(2)

. . .

� �

DTC(1)

� � DTC(2)

. . .

�

�

�

� CTC(i)

ẋc = f(xc, uc, m, t)

yc = gc(xc, uc, m, t)

S = S(xc, uc, m, t)

r = r(xc, uc, m, t)

xc

uc

m

t

ẋc

S

r

yc

�

�

�

�

DTC(i)(k)

xd,k+1 = fd(xd,k, ud,k, m, tk+1)

yd,k = gd(xd,k, ud,k, m, tk)

te,k = . . .

�

�

�

�

xd,k

ud,k

m

t

�

�

�

xd,k+1

yd,k

te,k

�

�

�

�

�

�

�

�

�

��

��

Fig. 1. NewMATLAB model component input/output structures

