Appeared in Proc. National Aerospace Electronics Conference (NAECON), Dayton Chio, May 1989. © IEEE

A COMPUTER-AIDED CONTROL ENGINEERING ENVIRONMENT FOR
MULTI-DISCIPLINARY EXPERT-AIDED ANALYSIS AND DESIGN (MEA!)T)

James H. Taylor
Control Systems Lab / KWD-209A
GE Corporate R & D
PO Box 8, Schenectady, NY 12301

ABSTRACT - The MBEAD Project (MEAD = Multi-
disciplinary Expert-aided Analysis and Design) involves
integrating computer-aided control engineering (CACE)
packages under a snpervisor which coordinates the use of
these packages with a data-base manager, an expert
system, and an advanced user interface. In brief,

o The supervisor is the “shell” or package integrator
for the underlying CACE packages and coordinates
all activity within the MEAD environment.

e The data-base manager keeps track of system models
that evolve over time (¢.g., as betler modeling
information becomes available) and relates each
analysis or design result to the right model instance.

e The expert system provides “expert aiding” for
clear-cut but complicated procedures that would
otherwise involve unnecessary low-level detail.

» The user interface facilitates access to the CACE
package capabilities by users with widely different
levels of familiarity with the environment, and
simplifies the use of the expert system and data-bage
manager. These goals are achieved by permitting the
user to work in several modalities:

— a menu/forms style Ul for basic CACE activity,

— using MEAD commands when this mode
expedites CACE work compared with the more
user-friendly menu/forms mode,

— using the core packages’ nafive commands when
the exact desired functionality is not conveniently
available via MEAD Commands, or

— using the MEAD Macro Facility (which includes
both a macro-execute mode and a flexible
macro-edit mode),

The availability of a variety of interaction modes as
listed above supports the inexperienced user as
conveniently as possible, while providing the more
experienced MEAD user with a flexible and effective
environment for CACE.

T This work was sponsored in part by the Flight Dynamics Laboratory,
Wright Research and Development Center, Aeronautical Systems
Division (AFSC), United States Air Force, Wright-Patterson ATB,

Ohio 45433-6523, under contract F33615-85-C-3611.

Phillip D. McKeehen

Flight Dynamics Laboratory / FIGCA

Wright R & D Center

Wright-Patterson AFB, OH 45433-6523

The resulting CACE environment is currently developed
for flight control engineering, although the uvltimate aim
is to support the integration of flight, propulsion, and
structural control.

1. INTROCDUCTION
1.1 Motivation

Progress in flight vehicle technology requires better
performance over larger flight envelopes, Thege
increasingly stringent demands require the application of
advanced control technology to keep pace. In particular,
this translates into the current trends toward integrating
flight, propulsion and structural control (so that beneficial
coupling can be exploited and adverse coupling can be
reduced or eliminated) and toward using recent advances
in control theory to accommodate dynamic variability,
uncertainty, component failures, and other effects and
phenomena that may degrade performance or limit the
flight envelope.

In tom, the demand for advanced integrated control
necessitates improvements in CAD software, so better
designs can be obtained at less cost in terms of time and
effort. In response, the US Air Force initiated the
MEAD Project (Multi-disciplinary Expert-aided Analysis
and Design) to create a computer-aided control
engineering (CACE) environment to facilitate the CAD
of modern flight control systems.

1.2 Goal and Approach

The specific goal of the MEAD project is to develop
both a “conceptual” and a “real” MEAD Computer
Program (MCP) using an interactive data-base manager
and an expert system to achieve a user-friendly tool for
control system design and analysis. The approach to
realizing the MEAD Preject goal can be outlined simply
by listing the MEAD tasks;

Task 1: Define methodology for Integrated Flight,
Propulsion, and Strectural Control (IFPSC)

Task 2: Determine MEAD software requirements,
specifications, and architecture

Task 3: Define and plan implementating an MCP for
flight control systems analysis and design

Task 4: Implement the MCP
Task 5: Test, demonstrate, and deliver the MCP

The purpose of Task 1 was to determine IFPSC
procedures and functions, the IFPSC models used, the
inpat and output data for each step in IFPSC engineering,
and the relations among these entities (steps and data
elements), Task 2 dealt with requirements,
specifications, and architecture for the MEADY Computer
Program, based on the objectives of fanctionality,
functional integration, multicisciplinary integration,
flexibility, modularity, data-base management supportt,
expert-aiding, and specific support for IFPSC. The
output of this pant of the effort was a conceptual
definition of the “ideal” MCP. Task 3 more specifically
defined an “implementable” MCP, in terms of currently
available software and MEATD Project resources. Tasks
4 and 5 encompass implementation through delivery; we
are presently at the culmination of Task 5.

1.3 Architecture

The MEAD Project approach to creating the MCP is to
take maximum advantage of existing software modules.
Implementing the MCP thus entails the integration of
several CACE packages under a Supervisor which
coordinates the execution of these packages with a data-
base manager (DBM), an Expert Systerm, and an
advanced User Interface. The resulting CACE
environment architecture is depicted in Fig. 1. The
underlying CACE tools (“core packages™) include
MATRIX,™ for linear analysis and design, ALLFIT and
AUTOSPEC for flying qualities assessment, and
GENESIS for nonlinear simulation and linearization.
The last three packages were supplied by Northrop Corp.
Aircraft Division (see Acknowledgements).

1.4 Outline

The MEAD Project and MCP development are discussed
within-the following framework:

Section 2: overall MCP functionality,

Sectton 3: MCP supervisor,

Section4: MCP data-base manager,

Section 5: MCP expert system,

Section 6: MCP user interface,

Section 7: hardware and software requirements,
Section 8: multidisciplinary integration, and

Section 9: conclusions,

2. OVERALIL MCP FUNCTIONALITY

MEAD Task 1 reviewed and systematized the CACE
approaches and procedures wused in the various
disciplines of IFPSC. Control engineers from GE
Aircraft Engine and Northrop Corp. Aircraft Division
played a .pivotal role in this effort (see
Acknowledgements). The following list captures the
basic IFPSC functions that must be performed by the
MEAD Computer Program:

1. Modeling: nonlinear and linear aicframes,
nonlinear and linear engines, linear structural
models, and nonlinear and linear controller(s), both
discrete- and continuous-time; building arbitrary
models from components

2. Simulation: initialize sysfem state variables, set
system parameters, define input signals, designate
sitmulation variables for storage, ran a simulation,
and display (plot or list) simulation variables

3. Trimming (nonlinear airframe) or steady-state
determination

Linearization of nonlinear models

5. Linear analysis: eigenvalues /[eigenvectors,
controllability and observability, model reduction,
model transformations, root locus, and frequency
response (Bode plots, Nyquist plots, gain and
phase margins)

6. Linear control system design (“point designs™):
frequency-domain methods for single-input /
single-output designs (manuvally, by adding user-
specified leadflag or PID compensation); time-
domain methods (pole placement, LQR, LQG, LQ
output feedback)

7. Control system validation: frequency-domain
analysis of linear models, and time-domain
analysis (simulation) of linear and nonlinear
models.

8. IFPSC-specific CACE functions: equivalent system
fitting (e.g., fitting Bode-plot data for a high-order
model of an airframe with stability angmentation
system with equivalent low-order transfer
functions), and MIL spec verification (checking
such low-order equivalent system models for
compliance with MIL-F-8785C)

Note that the above list is not all-inclusive. The
objective of MCP-1.0 is to create a state-of-the-art
environment that directly supports basic CACE for flight
control systems, Furthermore, the nature of CACE is
such that creating an exhaustive catalog of functionality
would not be possible (or would at least be the subject of
much debate), and new approaches and theories are
being added on a continuing basis. The MCP
environment has thus been designed to be “open”, in the
sense of being extensible either by adding built-in
functionality or by the higher-level use of MEAD macros
or the “Package Mode™ access to modern linear analysiy
and degign software, The MEAD Macro Facility and
Package Mode are discussed further in Section 6.1,

3. MCP SUPERVISOR

The MCP Supervisor provides the “shell” or package
integrator for the underlying CACE packages. Multiple
packages can be mn under the supervisor, and data
formatting is converted, when necessary, to ensure
compatibility between packages. The MEAD supervisor

accepts “MEAD commands” and translates these into
“package commands”; therefore, the user does not have
to leam all of the intricacies involved in wsing each
package unless advanced functionality is to be accessed
via Package Mode (using a core package under the MCP
using its own interface - see Section 6.1).

The use of MEAD Commands in the MCP Supervisor
facilitates the unification. of the MEAD user interface for
dual functions such as nonlinear and linear simuiation.
The distinction is made by entering either L. or NL with
comumands relating to that activity (e.g., defining system
input signals and actually executing the simulation). The
Ul further simplifies this management of linear and
nonlinear systems functionality by keeping the “context”
of the user’s present work (L or NL} in focal memory
and inserting L or NL in the user’s commands as they
are generated via the mouse-driven Ul screens,

The supervisor contains most of the “intelligence™ of the
MCP. 1t uses its buili-in knowledge about how to use
the underlying packages, how to direct the activity of the
DBM, and how to manage the command and data flow
between itself and the user interface. It tracks the high-
Ievel activity of the user, including knowing what
model{s) have been configured (the user may have one
linear model active in the MATRIX,™ workspace and
one nonkinear model in use represented by one version of
GENESIS running as a subprocess). Finally, the
supervisor controls the invocation. and use of the expert
system by activating it, telling it what rule base to load
and execute, serving as the conduit for communications
between the user and expert system, and handling the
expert system’s results when it is finished.

4. MCP DATA-BASE MANAGER (DBM)

Data-base management requitements for CACE were
determined as part of Task 1. Data-base elements were
catalogued and categorized, and the relations among
them were established. In terms of data element
categories, there are models which are comprised of
components and a description (containing type,
connection definition, etc.). Associated with each model
there are results (e.g., files containing frequency
tesponse data or time-history data). Models and results
are generally organized according to Projects (e.g.,
project = FI8FCS for the analysis and design of a Flight
Control System for the F18). These considerations led to
the basic DB organization portrayed in Fig. 2; this
hierarchy reflects the observation that control engineers
naturally think of projects and models as being of
patamount importance; afl data clements produced
during CACE activity are “children” of these entities.

A class of secondary data element is not shown in Fig. 2:
the condition specification, This element contains
information regarding operations performed on a model
before a result is obtained; these include actions such as
changing a parameter from its nominal value, specifying
an initial condition and/or input signal before performing

a simulation,' defining a frequency list before obtaining
Bode plot data, etc. The condition specification also
records numerical conditions, such as setting a tolerance
for determining controHability or observability, selecting
an integration algorithm for simulation, etc. Capluting
this data is critical, since it is the combination of model
instance and condition specification that determines the
result and thereby allows the engineer to document or
repeat the result. Condition specs are stored in the
MEAD data base and may be recovered for any result
that has been saved.

‘While the CACE database categories are few in number
and simple, there are several factors that complicate. the
DBM problem: Models tend to change over the life-time
of the project, some results are also models (e.g.,
linearizations of nonlinear models or transformed linear
models), and components tend to be used in several
models yet they should be stored in one location to
simplify their maintenance, The MCP DBM includes
mechanisms to handle all of these situations with little or
no burden on the user. This was in accord with the
specific design goal of providing DBM support with
minimal changes in the way the IFPSC engineer works
and minimal added overhead. Further details regarding
the MEAD DBM are provided in [1,2].

The primary need for “version control” in the
conventional sofiware engineering sense exists in the
model level of the hierarchy. The DBM muyst be able to
keep track of system models that evolve over time (e.g.,
as better modeling information becomes available or as
preliminary modeling errors are corrected) so that each
analysis ot design result can be associated with the
correct model instance. This observation motivated the
use of a tool that tracks each version of a model
component {(e.g., airfratne model} so that version = 1, 2,
3, ... refers to the original and subsequent refinements of
this component model, and each class of a model (e.g.,
flight-control system) that incorporates the component.

The CACE DBM requirement for tracking models also
gives rise to the need for non-redundant model
management, since maintaining the integrity of the
Model level of the data base is nearly impossible if
several copies of various components are separately
stored and maintained. The MCP DBM supports this via
finks, which allow the engineer to maintain each
component in one model (the “home” model) and use it
elsewhere by bringing it out of the home DB and
incorporating it in other models.

One remaining relation that complicates the hierarchical
DB otganization is that which associates a linearization
as a result obtained using a nonlinear model with a
linearization used as a model component. The same
situation exists with regard to linear model transforms:
For example, one may create the controllable and
observable part of a linear model, and desire to save this
as both a result and model for further study, These
associations are tracked in the MCP DBM using a

mechanism called the reference. The engineer may
inspect a linearization result and check the reference to
see if it exists as a component in any model;, from the
other perspective, a linear model component may be
checked to determine if it was obtained as a result
generated with a particular ponlinear model and trace
that result back to- determine how it was obtained (e.g., at
what flight regime). The value of a linear model is
greatly reduced if component traceability in this sense
cannot be assured.

In summary, there is a straightforward hierarchical
organization of Projects, Models, Components, and
Results + Condition Specifications in the MEAD
database. Models are tracked over time via class number
and version control, In addition, there are relations
called links and references to completely maintain the
integrity of the database.

The DBM functionality outlined above is provided by the
MCP at virtually no cost to the user. The supervisor and
DBM perform all database organization and version
control with no effort from the user beyond supplying
personally meaningful names for new elements. In fact,
accessing the database via the MCP Browsing Facility
and the ability to make direct use of data elements from
that facility makes the DBM an asset rather than a
liability in terms of overhead, as discussed in Section 6.
Finally, we have designed the MCP so that even
“Package Mode” activity (using the core interactive
packages directly) receives basic data-base management
functionality; see also Section 6.

5. MCP EXPERT SYSTEM

The expert system (ES) provides “expert aiding” for a
set .of clear-cat but complicated procedures that would
otherwise involve the wuser in unnecessary low-level
detail. The concept of expert-aided CACE was
originally defined in [3]; the primary difference in
MEAD involves adopting a less ambitious model for
expert aiding that makes the expert system the user’s
assistant [4] rather than putting it in charge of the CACE
effort being performed. This change in perspective was
motivated by the specific goal of providing suppost
without getting in the TFPSC engineer’s way; it is called
the “control engineer’s assistant™ paradigm.

A second noteworthy feature of the integration of the
expert system with the MCP is that the BS interfaces
with the MCP supervisor in exactly the same fashion as
the user working through the user interface. The ES
outputs MEAD commands and/or package commands to
the supervisor, and gets the same return as the Ul, ie., a
result (if little data is involved), a file name (for larger
results), or messages {(errors or information), This
simplifies “knowledge capture”, since this is exactly the
output and input of the supervisor when the expert user
performs the task at hand.

A survey of tasks that might be expert-aided was
conducted under Task 1, A pumber of CACE operations

were identified as candidates for expent aiding, and then
a pair of indices was established for each candidate
according to the value of expert aiding (e.g., time
savings) and the feasibility. The specific functions
selected for implementation in MCP-1 were MIL_Spec
high-order system Bode-data fitting (frequency-domain
fiting according to MIL-F-8785C via ALLFIT), and
flying quality assessment using AUTQSPEC combined
with control system design iteration to bring the flight
control system into compliance with specifications.

6. MCP USER INTERFACE

The MCP user interface (UI) is designed to facilitate
access to the CACE package capabilities by users with
widely different levels of familiacity with the
environment, to unify access to the core packages despite
very different package interfaces, and to simplify the use
of the data-base management capabilities by taking
advantage of the synergism among these functionalities
(see [2], for example).

6.1 User Accessibility

The goal of achieving a Ul accessible to users of widely
different levels of expertise was achieved by permitting
the user to work in a number of modes:

» AIDE Mode (AIDE = Aircraft Integrated Design
Environment), from a menu/forms style UI for basic
CACE functionality,

o M_Command Mode, ie., using MEAD commands
when this expedites CACE work compared with the
more user-friendly menu/forms Ul,

s Package Mode, ie., using an interactive cote
packages’ native commands when the exact desired
functionality is not available via M_Commands, and
use of the

o MEAD Macro Facility, which includes both a
macro-execute mode and a flexible macro-edit mode
and is based on M_Commands, Package Mode
commands, or a combination of these.

The opportunity to use a variety of interaction modes as
outlined above supports the inexperienced user as
conveniently as possible (primarily via AIDE), while
providing the more experienced MEAD user with a
flexible, effective environment for CACE.

The AIDE Moede was designed to be the most “user
friendly”. An example of the use of the MCP for
frequency-domain analysis of a near model is illustrated
in Fig. 3. The entite menu tree down to the desired
functionality is visible, and the operations are defined by
mouse operations (point and click) down to the bottom
level where command parameters must be defined (e.g.,
Wy Opys And the number of points). The user does not
need to know any commands or syntax, and the menu
tree hierarchy is designed so that there is a natural path
to the desired functionality (Linear Analysis — Freq
Response — Bode Analysis),

The command modes were implemented to expedite the
work of users who are familiar with the MCP and/or the
underlying packages or to allow the user to perform
activity not available in the AIDE Mode. M_Command
Mode wag designed primarily for use in macros (below);
Package Mode was incorporated to provide access to any
functiona]iq.(supported in the interactive core packages
(MATRIX, ™ and GENESIS in MCP-1).

Package Mode is curnently available only for
MATRIXXTM. The reason for this is that MATRIXXTM IS
itself more open than GENESIS (i.e., it can support the
generation of arbitrary resulis), and its interface is better
suited for DBM support. One can obtain basic data-base
management functionality in Package Mode under the
following general conditions: The user must configure a
linear model within the ATDE Mode before beginning to
work within the enviromment provided by MATRIXXTM,
and the user must designate those elements that are to be
managed (saved in the data base as results or ag models).
The way this works is as follows:

« The user invokes the MCP, selects a Project, and
configures a linear model.

s The user may perform any MCP operations on this
model, and save results in the DB automatically.

» Whenever the user desires to catry out an operation
that is not readily available in the MCP, the
‘Package’ button on the Resource Bar is clicked to
open a Package Command window (see Fig. 4).

» The user may execute any sequence of MATR]XXTM
commands and thereby create any data objects
{arrays) in the MATRIXXWI workspace.

» DBM functionality is obtained as follows:

— A data object may be saved in the data base for
the configured model by entering a simple
M_Command that is intercepted, interpreted and
executed by the supervisor. For example, if the
result is comprised of the arrays @ and K, then
the user may enter MEADSAVE(Q, K, r=thisdata)
and the. result will be stored in the DB with the
user-supplied name thisdata.

— A data object may be saved in the Project DB as
a new model via a second M_Command, For
example, if the pew system is represented in
state-space form by Anew, Bnew, Cnew, Dnew,
then the model is inserted in the Project DB by
first issuing the MATRIX,™ command Snew =
[Anew , Bnew ; Cnew ,Dnew] and then the
M _command MEADMDI (ABCD, Snew, nS,
nl, nO , m = thatmdl). The significance of this
notation is that ABCD is the type of model, Snew
is the model in standard packed form as defined
above, nS, nl, nO, represent the numbers of
states, inputs, and outpuis, respectively, and
thatmdl] will be the name assigned to the model
in the database.

{Note from the above examples that the user has to

be ap experienced uger of the core package in order
to use this facility effectively.)

Finally, the Macro Facility provides the “power user”
with the capability to streamline CACE by using custom
macro procedures. Macros may be set up to initialize the
MCP (e.g., to select a project of current interest and
configure a key model), to perform a procedure defined
by a sequence of M_Commands, to execute a task that
may require the use of Package Mode, or to carty out a
combination of these activities, Table 1 provides simple
Hlustrations of MCP macros for start-up, for nonlinear
simulation, and for evaluating the singular value
decomposition of a linear model. Note that macros may
be invoked directly, or they may be loaded into the
editor, modified for the task at hand, and then executed,

Table 1. MCP Macro Facility Tllustrations

MCP Initialization Macro;

* initialize in project and configure models:

* (YF16 is the project name)

projectid YFi6

* 0" — uvse highest class of model LinFCS
config YF16 LioFCS 0

* Bring up second class of model YF16mdl
config YF16 YF16mdi 2

* ... now start interactive use of these models

MCP Simulation Macro:

* config YF16MDL; trim, define input, simulate
* JH Taylor 16 Feb 1989

config Febl1 yflémdi 0

* invoke DCL to place desired trimdef.dat file:
copymytrim _17.datmead work:mytrimder.dat
trim mytrimdef.dat r=nomtrim

* ramp: ampl = 15, start at T=1, rise-time=5
input nl PDAF ramp 15.0 1.05.0 1

simu nl 15. (.015 r=pdafsim 15

MCP Singular Value Decomposition Macro:

* config a linear model before using this macro
* use package mode to get sing. value decomp.
setmode pkge matrixx

[a, b, ¢, d} = split(S,nS)

[u, 8, v] = svd(a) /f get the SVD
meadsave(u,s,v.r=svdecomy)

/f (Result_name = gvdecomp in DBM)

setmode aide

* "setmode aide’ -> return to AIDE mode

6.2 Data-Base Access

The original MEAD Project goal was to design the UI to
provide access to the DB management functionality with
minimal user overhead. In fact, we found that it was
possible to design the UI so that the DBM is an asset
with respect to overhead, rather than a liability. This is

due in part to the natural hierarchical data-base system
organization, and in part to the use of “object-oriented
design” features in the UL

The. first pivotal decision was that a query language
wonld be excessively difficult to implement. and use for
DB access. This led us to display data element
information much as one displays file information in any
computer environment via a “Directory” command, For
our purposes, we created hierarchical “Browsing
Screens” to list the user’s projects, the models within
each project, and the elements below each model
{components and results, see Fig. 2). A sample screen
for Result Browsing is depicted in Fig. 5.

The second realization that streamlined the UI in relation
to the DBM was that we could use the browsing screens
for functionality in addition to display. Thus one may
browse the models in a given project and immediately
designate a model for use (analysis and design); this is
called “configuring a model”, and may be done by
hitting the CONFIG button shown in Fig, 6. One may
also create new models, edit models, purge models, and
add, modify, or delete model notes from the same screen,

7. HARDWARE AND SOFTWARE REQUIREMENTS

The official hardware platform for the MCP is the VAX
computer under the VMS operating system, with user
interface via a Tektronix 4107 terminal (or higher model
namber) or an IBM PC or PC clone running a Tektronix
4107 (or higher) emulator. This platform is adequate for
the type of UI and functionality needed for the MCP,
although we recognize the UI could be more powerful
and “fancy” (e.g., faster and more flexible in layout) if
we had a true workstation environment at our disposal
with.-high-resolution graphics and window management.

MCP software needs were primarily driven by
functionality, the hardwasre platform, and the availability
of existing software modules suitable for the tasks at
hand. Software incomporated in the MCP may be
categorized as core packages and support software,

We performed a survey of core CACE software
packages in Task 2, including the following 1%ganeric
CACE packages: MATRIX, ™, PRO-MATLAB™, and
Cul-C™ for linear analysis and design, and EASY-5,
ACSL, and SIMNON for nonlinear gsimulation, Several
IFPSC-specific packages were also reviewed, such as
IFPCSIM (recently revised to create GENESIS, a
nonlinear. simulator for nonlinear fight-and-engine
contrel systems), ALLFIT (for equivalent system fitting,
ie., fitting Bode-plot data for an airframe with stability
augmentation: system with equivalent low-order transfer
functions), AUTOSPEC (for MIL spec vesification, i.e.,
- checking low-order equivalent system models from
ALLHFT for compliance with MIL-F-8785C), COMET
(for control mode analysis of aircraft engines), and

MFAP (for structural modeling). For a variety of

reasons, including fonctionality, the technical merifs of
each packages, cost, availability, and site-specific

considerations, the core packages presently in the MCP
are MATRIX, ™, GENESIS, ALLFIT, and AUTOSPEC,
as portrayed in Fig, 1,

Support software selected for use in the MCP include:
Delphi® (proprietary GE software) for the ES shell, the
Computer / Human Interface Development Environment
(CHIDE; proprietary GB software) for the VI, the
Relational Object System for Engineering (ROSE) 5]
for the DBM, and the DEC Code Management System
(CMS) for version control,

The MCP Supervisor was created from scratch, The first
decision was the selection of a programming language,
given the problem of developing a shell for existing
software for CACE under the constraints that:

« the analysis and design codes (core packages) are in
FORTRAN,

» the expert system shell is in Lisp, and
» the DBM and UT are in C and ROSETALK [5].

The requirement was to achieve a reputable product that
is forward-looking, maintainable, supportable, etc. - ie.,
to meet standard software engineering goals. The
solation: use a “professional” programming environment
that encourages (enforces) amd sopports highly-
disciplined software engineering practices.

The above considerations led us to use Ada' " in coding
the MCP Supervisor. With Ada, we obtained the
following language characteristics: strong typing, in-code
specification, structured programming, information
hiding, data abstraction, and process abstraction. The
results of these characteristics are that compilation
catches many more emors than is tue with less
disciplined languages (so more time can be spent in
design and less in implementation and testing), the use of
“hacks” in code iz discouraged, and the integrity of data
objects is protected. These results are especially
beneficial in developing an embedded system such as the
MEAD Supervisor,

8. MULTIDISCIPLINARY INTEGRATION

Issues pertinent to multidisciplinary integration are manifested
in three arcas:

1. Integration of models:
a. nonlnear-to-linear, finite-element-to-linear
b. aitframe + engine + structures + controls

The MCP accomplishes model integration of both types,
by design. The main issue is tracking relationships, as is
done by the MEAD DBM.

™ Ada is a registered trademark of the U. 8. Government, Ada
Joint Program Office.

2. Integration of tools:

a. nonlinear simulation w1th linear apalysis and
design (e.g. MATRIXX with GENESIS),
finite element modeling with lincar analysis
and design {(e.g. MATRIX ¥ with MFAP)

b. flight-specific + engine-specific + structures-
specific tools

The MCP Supervisor achieves this goal by design.
The integration of nonlinear simulation with linear
analysis and design is implemented, and the
integration of finite element modeling has been
anticipated.

3. Integration of the data base:
a. models maintained with integrity {via links)

b. maintaining model
references)

The MCP DBM achieves this by design.

“lineage” (via

9. CONCLUSIONS

Phase I of the MEAD Project is concluded, as defined by
the tasks listed in Section 1.2. The MCP has been in test
and evaluation at GE Corporate R & D and the USAF
Flight Dynamics Laboratory (FDL) starting in May 1988
(versions “MCP-0.1" to “MCP-0.6"), it has been
demongtrated at FD. in June and QOctober 1988, and final
debugging, refinement, and robustification is being
performed now for the official delivery of MCP-1.0 in
March 1989,

MCP-1 represents a new, more supportive environment
for computer-aided control engineering (CACE). The
most important novel features are an integrated
engineering data-base manager, a built-in expert system,
and a flexible user-friendly user interface including a
“point-and-click” interactive mode, two. command modes
(MEAD and Package), and a Macro Facility. Another
notable attribute is the ability to use the core packages
directly without sacrificing the benefits of data-base
management., In terms of CACE fonctionality, MCP-1 is
a basic CACE package for flight control system analysis
and design, and much functionality is still not
partlcularly “fancy”. The higher-level functionality of
MATRIX, ™ is available through the most user-fiendly
aceess mode alt lower-level primitives may be used via
Package Mode. A number of extensions and refinements
are planned, including the incorporation of a more
flexible general-purpose nonkinear simulator, improved
Ul features, more user-filendly handling of linear
maodels, and additional expert aiding.

The MCP-1 CACE environment is carrently most fully
developed for flight control engineering, although the
ultimate aim is to support the integration of flight,
propulsion, and structural control. The MEAD software
has been designed to meet this objective with the
addition of suitable functionality (new core packages and
associated user-interface extensions). The development
of the MEAD Computer Program brings to fruition many

of the concepts described in {6].

Acknowledgements: A major part of the work described
above was performed for the Wright Research and
Development Center, United States Air Force, Wright-
Patterson AFB, Ohio 45433-6523, under contract
F33615-85-C-3611 by GE Corporate Research and
Development (GE-CRD) as prime cootractor, with
primary subcontract support from Northrop Corporation
Aircraft Division (NCAD), GE Aircraft Engine (GE-
AE), and Aule-Tek Inc. 'The contributions of the
following individuals are most gratefully recognized:
NCAD: Dinesh Joshi, Pierte Wong, Peter Shaw, Juri
Kalviste; GF AE: John Polley, Shrider Adibhatla; Awule-
Tek: David Kassover, James Trojan, Michael
Charbonneau, Albert Antonmiotti; and GE-CRD: Hunt
Sutherland and Magnus Rimvall, In addition, Prof. Dean
K. Frederick of Renssellaer Polytechnic Institute
provided invaluable consulting services over the course
of theis project. Finally, numerous personnel at the
USAF Flight Dynamics Laboratory have greatly
influenced the course of this effort: 1st Lis Mark Schiller
and Mike Dunbar, and Mssrs. David Bowser, Stan Lash,
Tom Gentry, and Tom Hummel.

REFERENCES

[1] Tayler, J. H,, Nieh, K-H, and Moz, P. A,, “A
Data-Base Management Scheme for Computer-
Aided Comtrol Engineering,” Proc. American
Control Conference, Atlanta, GA, June 1938,

2] Mroz, P. A., McKeehen, P., and Taylor, J. H,,
“An Interface for Computer-Aided Control
Engineering Based on an Engineering Data-Base
Managet,” Proc. American Control Conference,
Atlanta, GA, June 1988.

[31 Taylor, J, H, and Frederick, D. K., “An Expent
System Architecture for Computer-Aided Control
Engineering”, IEEE Proceedings, Vol. 72, 1795-
1805, December 1984,

[4] J. H. Taylor, “Expert-Aided Environments for
CAE of Control Systems”, Plenary Lecture, Proc.
4th IFAC Symp. on CAD in Control Systems ‘88,
Beijing, PR China, August 1988,

[3]1 Hardwick, M, User Manual for ROSE, Repott no.
86-24, Rensselaer Polytechnic Institute, Troy,
New York, 1986, See also Hardwick, M, and
Sinha, G, “A Data Management system for
Graphical ~ Objects," Proc. IEEE/Computer
Society International Conference on Data
Engineering, Feb, 1986,

[6] Taylor, I. H., “An Expert System for Integrated
Aircraft/Engine Controls Design”, Proceedings of
the National Aerospace and Electronics
Conference (NAECON), Dayton, OH, May 1985,

EXPEAT
" SYSTEM <
SHELL

4
Y

Numerlcal/Symbalic
Processor

ENGINEERING Figure 1.
b USER ¢ ! SUPERVISOR |4 p| DATABASE

INTERFACE ’ S
Parser/Interpreter MANAGER MCP Architecture

Package/Selector

AUTOSPEC

Projects

flirframe \

class = 1

RAirframe ’
2

class =

Muodel01
Class = 1

oa
Fdbksys Models

class =3

Figure 2,

MCP Data-Base Hierarchy

@ fit{ributes

@ Linear_\ Elements
¢ (Resuits, Components)

AIDE {fictive [command [Packase |$ DEL [Macro [Help FExit
atas Base Eigen Analysis

afine Hode} Expart Eigen

st Condition Eloen+Residues Freguancy Analysis
1:.;:““ s Response [mEode Analusis |
RCYYTIE goot Locus |[ONyquist Analysis 1
Lin Hdi Hforn Sros

mmﬂ,rlabilitu Phase Haraln
Linear Degian Observability Gain Hargin

Flying @ Chech

o
Expart F@ Chh HinfHox Onege By Figure 3.

[Execute | MCP AIDE Screen for
Frequency-Domain Analysis

Digplay ’Save quit

W minimun {rad/sec)|B8,t
W maximum (rad/sec) |106,0

No. Points |61
fuit,

[ATTE Thctive |Comnand NETTERIMMN s DCL [Macro [Halp [exit
MATRIXX># [a,b,c,d] = split(s,na);
MATRIXX ¥ tam = elgl{a)
MATRIXX » A -
MATRIXX 24 -5.2008 + B.568084
MATRIXX 34 -5,2000 - 8, 58081
MATRIXX>% fsave 'meadwork:result.dat’ a lam Figure 4.
MATRIXX# [u,s,u] = sud(a) MCP Screen for
eAlls ﬁ;z . 7558 -B 6547
k] . -4,
MATRIXX># -0,8547 ~@.7559 Package Mode
TRINX ¥ -
RIXX % 5.7e38 8, Bue
RIXK % 0. Berd 4,8838
TRIXK ¥ -
m_ﬁ KX ¥ -0, B547 8. 7559
RIKX % @, 7553 @.8547
Hﬂtrixx)] nesdsevefu, s, v,resydiest) H
IFHDE fﬁetiua [command]Pachnqc l$ neL IMacro iHeho IExiL J
]Browse results f
Hame |Tt,-me IDate Cnd_Spec Raf Hotes
Oa2ygxfe GS_MODEL [4~DEC-1988 1 H/A N
Figure 5.
B boderes BOBE_PLOT [4-DEC-1988 2 N7A H
MCP Screen for
. Oeigenres EIGEN_RESU | 4~DEC-1988 1 N/ & N
Result Browsing
Orootlresult ROOT_LOCUS [4-BEC-1988 3 N-A H
Disp Ref Disp Cspec [Diap/Add/Edit Nate |Delete No [Delete Result |Duit
m_ﬂcttue [command [Package |$ DCL [Macro {Help [Exit }
[Projects movule]
[Name ICIasses ;Tmne Created Updated Hotes
Oentrl 1 |ABCL 16-DEC~1988 16-DEC~-1988 N
Dfdbksys 1 |ABCD JO-HOV~-1988 Id-HOoV-1588 N
O yoodhos 1 JABCD Jo~NOV-1988 Je~-KOv-1988 o .
Figure 6.
Ohopedit L [ABCD 13-JAN-1989 19-JAK~19B9 N
MCP Screen for
Liopenloop 1 |ABCD Jo-HOV-1988 3@-NOV~-1988 N
Model Browsing
Dtest! 1 |ABED 16-DEC~1988 16-DEC—-1986 N
Wyflendl 2 |GENESIS J@-HOY-1988 J@-ROY-1988 N
Description [B/A/E note |Delets note Edib Medel JDelete clo [Dulebe mod [Ruil
Class = fz 0K

