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Abstract: The application of artificial neural networks
(ANNS) to the real-time load forecasting (RTLF) problem is
presented. The term RTLF is used for the prediction of the
power system load over an interval ranging from one hour to
several hours. This issue is becoming increasingly important
with the approach of the open access market with the schedul-
ing of buy/sell transactions as short as half an hour in advance.

Separate ANNs are utilized for load forecasting of one hour
to four hours ahead. The load forecast of these networks are
compared with the of one day ahead load forecast results.
Based on simulation results, by utilizing ANN, two objectives
are obtained: 1) a more accurate hourly load is predicted, and
2) any near-term buy/sell transactions are fitted in the optimal
MW dispatch scheduling. Our approach are demonstrated by

detailed study of New Brunswick Power data.

Keywords: Short-term load forecast, Real-time load fore-

cast, Artificial neural networks, Open access market.

1 INTRODUCTION

The term short-term load forecasting (STLF) is used
for the prediction of the power system load over an in-
terval ranging from one hour to one week. The term
real-time load forecast (RTLF) is a subset of STLF rang-
ing from one hour to several hours. The first applica-
tion of STLF/RTLF is to drive the scheduling functions
that determine the most economic commitment of genera-
tion sources. This scheduling applies to purely hydro sys-
tems, purely thermal systems, and mixed hydro/thermal
systems. The second application of STLF/RTLF is the
scheduling of buy/sell transactions. Depending on the
load forecast and the available generation, power utili-
ties should decide about their purchase/sell transactions
as soon as possible, to maximize profit.

In general terms, computer programs for STLF/RTLF
involve tuning, adapting or training a mathematical model
to fit historical data with minimal error, then using that
model with forecast weather data, etc., to predict the fu-
ture load level. STLF/RTLF models can be divided into
four main categories: a) conventional methods, including
time series or regression models, b) fuzzy logic models,
c) artificial neural network models, and d) expert system
load forecasters. Within each category there are different
approaches, architectures and algorithms that may sub-
stantially impact performance.

Artificial neural networks (ANNs) have shown superior
performance in recent studies [1]-[10]. Different types of
ANNSs including supervised and unsupervised networks are
proposed in the literature. Supervised networks including
recurrent [1], and feed-forward [2-10] networks have at-
tracted more attention than unsupervised networks [2,3].
In most cases, the STLF problem has been emphasized [1-
6], [8-10], and where RTLF is considered [4, 5], the lead-
time i1s limited to only one hour. In this paper, a novel
feed-forward neural network (FNN) for the RTLF applica-
tions is introduced. Based on the NB Power preferences,
the range of RTLF is limited to four hours. Four sepa-
rate networks are used to predict the load of the next four
hours. For each network, a comprehensive set of input
variables was tested, and the inputs with the best perfor-
mance index were selected. The range of the training data
was also adjusted to obtain the best results. A new per-
formance index based on the daily energy forecast error
for mixed hydro/thermal units is also introduced.

The organization of the paper is as follows: in Section
2, the motivation of RTLF is considered. In Section 3,
the basic concepts related to feed-forward neural networks
are described, and the architecture of input, hidden, and
output layers are discussed. In Section 4, the prediction
performance of the neural network is evaluated. In Sec-
tion 5, the simulation results of the FNN for RTLF are
presented, and concluding remarks are given in Section 6.

2 PROBLEM DESCRIPTION

Many utilities are going through major changes, due to
the approaching open access market. After deregulation,
customers will have the option of selecting their energy
supplier among the available companies. Therefore, en-
ergy companies will try to supply the electric energy to the
market as cheaply as possible. In an open access environ-
ment with an established spot market [6], RTLF becomes
more and more important. In this market, the effective
energy unit price can be set as short as half an hour in
advance [6]. In these situations, an accurate forecast of
the very near future situation can produce major benefits.
Based on current experience and proposals for deregulated
environments, it is obvious that the need for RTLF will
certainly increase [5].



The New Brunswick (NB) Power Company, which has
been purchasing/selling power to/from the neighboring
companies during the last few decades, is also following the
changes related to deregulation. For better energy pricing
in open access market, NB Power is separating generation
and transmission into two independent companies. RTLF
is a crucial issue for these companies in a deregulated en-
vironment. At present, NB Power is doing a daily load
forecast at 8:30 am by using a STLF package. This fore-
cast utilizes the most recent available data. The historical
data are used up to the day before the forecast day. The
program also needs the weather variables for the forecast
day. These data are generally the forecast values obtained
at 4 am of the same day or one day before. The weather
variables, specifically temperature, can move far off from
the predicted value during the day. These weather forecast
errors can impact the load forecast significantly. For this
reason, load forecast should be executed very frequently,
say hourly, with the most recent data.

This paper presents the results of designing an artificial
neural network for RTLF applications. Based on company
policy, the range of RTLF is limited to four hours ahead.
The RTLF program has been designed to fulfill the follow-
ing objectives:

1. Improving the accuracy of control room operations.

2. Predicting the next-hour load forecast for use in an
economic dispatch program. The latter program is
used to determine costs for the one hour ahead sales
and optimal MW dispatch; external sales are com-
mitted both in terms of price and quantity before the
hour begins.

3. Accounting for the cost of ancillary services, such as
load following, regulation and reserves. These re-
quirements are dependent on load, and need an accu-
rate RTLF.

4. Revising the load forecast whenever the weather con-
ditions change unexpectedly.

The architecture of feedforward neural networks (FNN)
which are used for RTLF purposes are discussed in the
following sections. Separate FNNs for the load forecast of
one, two, three, and four hours ahead have been designed.

3 NEURAL NETWORK ARCHITECTURE

A multi-layer feed-forward neural network (FNN) can
be used for RTLF purposes. The FNN is trained to ap-
proximate the nonlinear function F(-) between the hourly
load and the input variables. The FNN comprises a layer
of input units, one or more hidden layer(s) and a layer of
output units. An FNN with one hidden layer is shown in
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Fig. 1: A feedforward neural network with one hidden layer

Fig. 1. The model of unit j (neuron j) in the hidden layer
is shown 1n Fig. 2.

The structure of the FNN output layer is similar to the
hidden layer with the exception that the inputs of the
output layer are the outputs of the hidden layer.

The number of inputs, hidden layers, neurons in the
hidden layers, and outputs usually defines the FNN archi-
tecture. The load forecast of one to four hours ahead are
performed by separate networks. The input variables of
these networks have some similarity, but are not exactly
the same.
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Fig. 2: The model of neuron j in hidden layer

For one hour ahead load forecasting, one network 1s used
for each hour of a day - one network for hour one, one
for hour two, and so on. The 24 FNNs are implemented
in MetrixND, a neural network package [7]. A similar
procedure has been performed for the two to four hours
ahead networks. Many of the inputs of these networks
are similar, and can be divided into three main categories:
a) calendar variables, b) load variables, and c) weather
variables. These inputs, and the architecture of hidden
and output layers are explained in the following sections.



3.1 Inputs related to calendar variables

The Calendar variables which have the most impact on
the load demand are described below.
a) The day of the week: The day of the week is shown
by seven different binary variables instead of one integer
variable varying from one to seven [1].
b) Holidays: One binary variable is used for specifying
the holidays. If a given day is a regular weekday or week-
end, this variable is zero; otherwise it gets assigned the
value of one, which represents a holiday.
¢) Days near holidays: One continuous variable be-
tween zero and one is selected for representing the days
near holidays such as the days around Christmas.
d) Season: Four continuous variables between zero and
one are dedicated for the four seasons of the year.
e) Daylight duration: The time difference between sun-
set and sunrise, which gives the daylight duration, is used
as one continuous input variable.
f) Daylight saving: One binary variable is used for day-
light saving. This value is 0 for days with standard time
and 1 for days with daylight saving time.
g) The day of the year: One continuous input variable
between 0 and 1 is dedicated to the day of the year.

3.2 Inputs related to historical load data

These data consist of actual hourly loads before the fore-
cast hour. The load of the forecast hour are most highly
correlated to the load of previous hours of the same day
and the load of the same hour at one, two, seven, and
eight days before [8]. The selected hourly load data are
discussed below. It should be noted that not all of the
following variables are used in all the networks. The best
selection of the variables depends on the specific hour and
the lead-time for load forecast. The appropriate inputs
for each network are selected based on the minimum load
forecast error after extensive simulations, as follows:

a) The load data of one to two hours before: If the
actual load data of these hours are not available, the load
forecast of that hour may be used.

b) The load data of three to five hours before: The
actual load data of these hours are only used if they are
available. In most cases, the load data of more than five
hours before did not have any major effect.

¢) The load of one day before at the same hour:
The load of one day before at the same hour is used as an
input variable regardless of the type of the previous day
(weekday, weekend, or holiday).

d) The load of one day before at one hour before
the forecast hour

e) The load of two days before at the same hour
f) The load of seven days before at the same hour
g) One load data point in the morning of the same
day and/or one day before : One hourly historical
load data in the morning (some time between 7 to 10 am)

of the same day (if available) and one from one day before
are selected as other input variables.

h) One load data point in the afternoon of the same
day and/or one day before: One hourly historical load
data in the afternoon (some time between 16 to 24) of the
same day (if available) and one from one day before are
selected as other inputs.

3.3 Inputs related to weather variables

The available historical weather data for the NB Power
network, which are used as input variables, are described
below.

a) Dry bulb temperature: Several dry bulb tempera-
tures are used as input variables. These temperatures are
related to: 1) the forecast hour, 2) one to five hours be-
fore the forecast hour, 3) the forecast hour of one, two and
seven days before, 4) one hour before the forecast hour of
one day before, 5) one hour in the morning of the same
day (if available) and one from one day before, 6) one
hour in the afternoon of the same day (if available) and
one from one day before, 7) the minimum and maximum
temperature of the forecast day, and 8) the minimum and
maximum temperature of one and two days before the
forecast day. It should be noted that the variables related
to items 2 to 6 will be selected if the historical load data
at the same hour is chosen.

b) Humidity: Only one humidity value of the forecast
hour is selected as the input. The effect of the humidity
of other hours is negligible.

¢) Wind speed: One input is dedicated to the predicted
wind speed of the forecast hour.

d) Opacity or cloud coverage: One variable related
to the predicted opacity of the forecast hour is selected as
the input of the neural network.

3.4 Architecture of the hidden layer

Each FNN has only one hidden layer. The number of
neurons in this layer is equal to four. Other numbers of
neurons, e.g., 3, 5, and 6 did not significantly impact the
load forecast accuracy. Two types of activation functions,
sigmoid and semi-linear, were tested. The sigmoid activa-
tion function was selected due to its better performance.

3.5 Architecture of the output layer

Each FNN has only one output neuron. This output is
related to the load forecast of one, two, three, or four hours
ahead. Separate FNNs are also designed for each hour of
the day. This means that for each hour k; £k = 1,2, .-, 24;
four separate FNNs predict the next four hours loads. For
example, the four FNNs which are used at hour 6 are not



the same as those at hour seven. In another words, for
one hour ahead load forecast, the FNN which predicts the
load of hour 7 at 6 o’clock is different from the network
which predicts the load of hour 8 at 7 o’clock. In this way,
24 FNNs are designed for load forecast of one hour ahead,
24 networks for two hours ahead, and so on.

4 EVALUATION OF PREDICTION
PERFORMANCE

An important step in the design procedure of the neural
network is the evaluation of forecasting performance. In
general, the performance index is a measure of the load
prediction error on an independent data set. The load
forecast error should be in an acceptable range if the train-
ing data set is representative of the forecasting period.
The selection of appropriate training data sets and per-
formance indices are discussed in the following sections.

4.1 Selection of training data sets

In the training procedure, the parameters of the neural
network are optimized based on available data. The accu-
racy of a subsequent load forecast is strongly dependent
on the closeness of the training data and the selected time
period for the load forecast. For this reason, several ap-
proaches for the selection of training data set have been
proposed in the literature. In [9], three years of historical
data are selected for training the neural network, to ob-
tain good generalization. The load pattern in each year is
strongly dependent on the weather conditions during that
year. We had a total range of twenty and a half months
of historical data. In order to obtain good generalization,
the windows for training data and test data were adjusted
to 16 and 4% months, respectively. After the selection
of training data set, the neural network can be trained
weekly or even monthly.

4.2 Performance indices

Several measures of forecast accuracy have been pro-
posed as the performance index [10]. In this study, the
two most commonly adopted for load forecast evaluation
were used: 1) variance, o2 ; and 2) mean absolute percent-
age error (MAPE); which can be formulated as follows:

N
o= 3L 1)’ (1)
n=1
where Lp is the forecast load, L4 is the actual load, n is
the index of a data point in the data set, and NV is the total
number of data points. The mean absolute percentage
error, €, can be formulated as:

n
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Another index, which has practical importance in mixed
hydro/thermal systems, is the daily energy forecast er-
ror. In general, for hourly generation scheduling of hy-
dro/thermal units, the total generation cost is minimized.
This minimization is based on the load forecast of the next
hour and the available energy from hydro units. In many
cases, the available energy from a hydro unit is specified
for the whole day, and hourly energy generation is not
important as long as the daily energy generation meets
the scheduled value. As a result, hydro unit generation
can compensate for some part of the hourly load forecast
error. The uncompensated part is related to the energy
forecast error, which can be formulated as:

24
w= YT o
n=1
where €4 1s the daily energy forecast error. The daily en-

ergy forecast percentage error, €g,, can also be used as an
index for prediction performance, and formulated as:
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5 SIMULATION RESULTS

NB Power network is connected to its neighboring com-
panies via 15 tie lines. NB Power has a peak load of 2800
MW during the Winter. As mentioned before, the neu-
ral network was trained with sixteen months of historical
data. The training data set covers the period of September
1997 through December 1998. After training, the FNN is
used for a load forecast study of 136 days from January 1st
to May 16th 1999. Load forecast results of the 96 RTLF
FNNs are compared with the load forecast results of a one
day ahead STLF load forecasting routine. In both cases,
the actual weather variables are used instead of forecast
weather parameters, since the latter were not retained. It
should be noted that the performance of STLF will be de-
graded much more than RTLF if the forecast weather data
are used. That is because STLF uses the weather forecast
data of the next 24 hours while RTLF utilizes the weather
forecast data of the next one to four hours, and the latter
are much more accurate.

Load forecast results of the two approaches for the spec-
ified 136-day study period are shown in Table 1. In column
one, the hour number of the day is shown. The MAPE
of load forecast for one to four hours ahead are given in
columns two to five, respectively. The MAPE of the load
forecast for the entire 24-hour period is given in column
six. Based on these results, the MAPE of the load forecast



is the lowest for one hour ahead, and become larger and
larger when the lead-time of forecast increases. The one
hour ahead load forecast can reduce the mean absolute
percentage error of one day ahead load forecast by 68%.
This reduction for two to four hours ahead load forecast
comes to 50%, 38%, and 30%; respectively. The obtained
RTLF results are also comparable with those reported in
the literature. For one hour ahead, the MAPE of load
forecast, 0.88%, is lower than that from [4], 0.9%.

Table 1: The study results of RTLF of neural network approach

Load forecast mean absolute percentage error

Hour one two three four 24
No. hour hours | hours | hours hours
ahead | ahead | ahead | ahead ahead

1 1.33 1.33 1.33 1.33 1.33
2 0.92 1.42 1.42 1.42 1.42
3 0.63 1.07 1.47 1.47 1.47
4 0.58 0.88 1.33 1.58 1.58
5 0.64 0.8 1.05 1.49 2.13
6 0.56 0.92 1.16 1.35 2.31
7 1.00 1.26 1.52 1.61 2.59
8 1.05 2.03 2.28 2.31 2.711

9 1.25 1.7 2.02 2.1 2.8
10 1.14 2.13 2.15 2.25 2.79

11 0.77 1.53 2.3 2.35 2.8
12 0.79 1.38 2.02 2.55 3.07
13 0.71 1.20 1.69 2.21 2.89
14 0.84 1.20 1.70 2.01 3.22
15 0.85 1.32 1.64 2.05 3.39
16 0.88 1.41 1.79 2.04 3.46
17 0.98 1.42 1.78 2.06 3.49
18 1.02 1.66 1.92 2.15 3.54
19 1.01 1.50 2.00 2.06 3.33
20 0.85 1.58 1.96 2.21 3.02
21 0.78 1.10 1.64 1.75 2.79
22 0.77 1.14 1.23 1.52 2.79
23 0.79 1.22 1.48 1.53 2.88
24 0.91 1.33 1.60 1.70 2.96

mean 0.88 1.36 1.69 1.88 2.7

The simulation results of the RTLF and STLF ap-
proaches are also presented in Fig. 3. The MAPEs related
to one to four hours and one day ahead load forecast are
shown in this figure. These MAPEs are based on all 136
days. A more detailed study of the MAPE of one hour
ahead load forecast for different days of the week 1s de-
picted in Fig. 4. In Fig. 4-a, the mean of actual load over
two weekdays (Mondays and Thursdays) and one week-
end day (Saturdays); and in Fig. 4-b, the MAPE of load

forecast for the same days are compared.

Energy forecast errors for the study period were also an-
alyzed. The MAPE of energy forecast is obtained as fol-
lows: 1) first by using (4), the percentage energy error for
each day is computed, and 2) the absolute values of these
errors are averaged over each day of the week. The daily
energy forecast results of one hour ahead load forecast for
two weekdays (Monday and Wednesday) and one weekend
day (Saturday) are presented in Fig. 5. By comparing the
MAPE of energy forecast of one hour ahead (0.24%) with
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Fig. 3: Comparison of RTLF and STLF results

the MAPE of energy forecast of one day ahead (1.93%),
it can be seen that the energy forecast error results have
been reduced by nearly 88%.

6 CONCLUSION

A set of 96 feed-forward neural networks is proposed
to reduce the hourly load forecast error of the upcoming
hours. In this method, independent networks are utilized
to predict the load of each hour during a day. The input
variables of the FNNs are selected from three important
categories: a) calendar variables, 2) load data variables,
and 3) weather variables. A new performance index based
on the daily energy forecast error for mixed hydro/thermal
units is introduced. The range of training data set is ad-
justed to obtain the best performance indices. The hourly
load of one to four hours and one day ahead by using the
actual weather data is predicted. Totally 136 days were
simulated. The load and energy forecast results of the
RTLF and STLF approaches are compared.

Based on simulation results, the RTLF approach has
reduced the MAPE of hourly load forecast substantially as
compared with a 24-hour ahead STLF run. The one hour
ahead RTLF results show a reduction of 68% in the MAPE
of 24-hour ahead STLF. Similar reduction for two, three,
and four hours ahead RTLF comes to 50%), 38%, and 30%;
respectively. The reduction of the MAPE of daily energy
forecast using one hour ahead RTLF is even much more
significant in comparison with the one day ahead forecast.
A reduction of up to 88% on the MAPE of one day ahead
energy forecast is obtained when the load is predicted one
hour ahead.
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