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Abstract—Wind energy utilities use wind speed modeling The wind energy (WE) utility thus faces the challenge of
and prediction to forecast their power production in order producing accurate power generation forecasts beforeiente

to participate in electricity markets. Time-series modelswhich into the electricity market, as power forecast errors couide
are indirectly based on a Weibull Distribution (WD) are used L . ' e
a significant impact on the WE utility’s revenue.

extensively to predict wind speed. The WD is converted intora 4 o ) : )
approximately Gaussian distribution, as there are no rigoously Wind power prediction requires wind speed forecasting
developed time-series models for random variables possésg a because the kinetic energy in the wind is converted intatec
WD. This conversion is performed using the parameters of the power by the wind power generator. Stationary time-series
WD, a procedure that may negatively impact the accuracy of 4|5 are used extensively for modeling and forecasting wi
the forecast — research has demonstrated that WDs under- or . .
over-fit the lower and upper ranges of wind speed histograms. speed [2_]’ [3]’ _[4]._The. wind speeds are_ rgcordt_ed ?t the site,
This paper reports on a study of the histories of wind speed then their distribution is plotted; the statistical distriion of
forecasts and actual wind speed data available from Enviroment the series does not change over time. It has been assumed
Canada and the resulting estimates of forecast error distbutions  that the wind speeds follow a Weibull Distribution (WD) [5].
and statistics. It is shown through statistical analysis tat the Since there is no rigorously developed time-series modgls f

hourly prediction error distributions are nearly Gaussian in . . .
natur)é P y random variables possessing a WD, the data is transformed

It also appears to show that the statistics of the wind-speed INt0 @n approximately Gaussian Distribution (GD) [2], [Bl].
prediction error do not increase significantly as time increases, Garda-Bustamanteet al. [5] and Jamil et al. [6] have

which is in contrast to other researchers’ arguments that te  shown that the WD assumption for recorded wind-speed data
error increases over time. This result may warrant further g ot appropriate — the WD under- or over-fits wind speed
investigation. histograms, especially in lower- and upper-range wind dpee
I. INTRODUCTION intervals. The transformation from a WD to an approximate
. . . _ GD is carried out by raising each hourly wind speed to the
The intermittent nature of wind power generation posegywer ofm; the value ofin is calculated using shape and scale
operational difficulties to electricity markets. An elecity parameters of a WD. Since a WD fit is not quite appropriate
market operated by an Independent System Operator (ISQ) recorded wind-speed data, the transformation from a WD

must always maintain a balance between supply and demgnd,, 5pproximate GD may not be a realistic characterization
of electricity at each instant of time. If there is any vdoatin ¢ he recorded wind-speed data.

load, there must be reserves at the ISO’s disposal. To ni&inta |, ttinen [7] has shown that prediction error increases

stable operation of the grid, the ISO accepts hourly bidg time increases: we have not observed this in our data

starting at 9:00 am and ending at 11:00 am Atlantic Standagg; however. In such cases, the WE utility revenue could
Time (AST), for the following day (Delivery Day, 00:00 t0;,rease by 7% if wind power is traded 2 hours before actual

23:59:59), from buyers and suppliers [1]. The system operajyejivery [7] rather than 16 hours, as is presently the case in
then runs an optimization algorithm to calculate the prite Ro\ Brunswick.

which maximum demand has been fulfilled at minimum cost.

The participants have to fulfill their obligation at the time Il. PREDICTION ERRORCALCULATION
of delivery. After the delivery day, deviations from the hiyu Environment Canada’s Fredericton station provides weathe
accepted bid quantities are calculated for each markeitpartforecasts every day at 08:00 for the next 48 hours in 3 hour
pant and financial penalties will be charged to the defaalteblocks in Gridded Binary (GRIB) format. The forecasts are



available at multiple resolutions for over 817 Canadiatista

= o o o
or sample points [8]. GRIB is a concise data format common g § § § §
used by the meteorological institutes of the world to storé a = 3 8 8 8
share historical and forecasted weather data. _w_‘

The prediction errors were calculated by comparing tt " Day 1 Day 2 Day 3
forecasted wind speeds in the GRIB files with the actu ‘
wind speeds for the same prediction time; 291 GRIB file Forecast2 _W_Day . Doy 3 Day 4
and the actual wind speeds for the year 2003 provided :
Environment Canada (EC) Fredericton were used. It has be _w_\

Forecast N

demonstrated that wind speed forecasts are more accurat Day N Day N+1 Day N+2
the forecasting techniques incorporate local weatheritiond

L . Actual 1 —VV—‘
and knowledge of prediction errors [7], [9], [10], [11], dug

. .. . | Day 1 Day 2 Day 3
is very adventageous. The actual data is in hourly block#ewh \

forecast data is in three-hour blocks; therefore the missim U _w_‘

hour data points of each block in the GRIB files were fille: Day N Day N+1 Day N+2
using the persistence technique. The persistence tedhni

assumes that speed will be the same atk hours as at Fig. 1. Scheme for data collection

hours,k = 1,2 [7].
Serresponding actual wind speed. Also, |gt”) represent

As mentioned above, Holttinen [7] has shown that err <) )
T
in the wind power prediction increases as the forecast groff}$ Sample mean and™’ represent the sample variance of
the wind-speed forecast error of th&" distribution, where

older; therefore power prediction error can be reducedifsign ) o .
icantly if the time between bid close and delivery is shorf, = 1:2:---(Fx/W); Py is the prediction horizon. For
Since the ISO accepts bids for the following day (Deliver§*@mPle, giverw = 6 hours and a prediction horizon of 48,
Day, 00:00 to 23:59:59), the wind-speed forecasts proviged then there are 8 wind-speed forecast error distribution§ of
Environment Canada are 16 to 40 hour old over the Delivef{PU's: thus there are 8 §arnp!?‘)meansA (‘?;‘d sample variances,
Day (DD), as the forecast is available at 08:00 for the next 48= 1:2:--- 8. The statistics/i'” and 5™ are calculated
hours. using equation (1) and (2) respectively:

One can then intuitively think that the mean and the variance T A

: . . ) _ > ¥ 1

of wind-speed forecast error should increase as prediction /= > Z(Uf(ld) —va(i,§)) (1)
time increases. To validate this, the wind-speed foreasts J=8+(r—hwi=l

were calculated by comparing forecasted wind speed$ ( SLEW-1) N

with actual wind speedsvf) for a prediction horizon of &(r) _ 1 Z Z(“f(i’j) — a3, 9) — )2
48 hours, according to the scheme shown in Fig. 1, where Nw —1 J=S (P 1)W =1
w is the number of hours covered in a single prediction 2)

error distribution, e.g., SIX- hours as shown. The Forecaﬁrﬁe mean and variance for a prediction time blogk 1 are
1,..., N were compared with the actual data.. , N, where shown in Fig. 2

i]\f.: 291'f Forhexamp:]e, gl;\/erw =6 hoyr;; and 3fpred|ct|on It can be observed that the mean and variance of the
orizon of 48 hours, then there are 8 wind-speed forecast err5rediction error for this data do not increase significartsy

distributions of 6 hours; the first distribution covers thmay rediction time increases; in fact they follow 24 hour cgcle

speed forec.ast .error data from 08:00 to 13:59:59 AST, t erefore, although the data used for modeling distrilutio
second distribution covers 14:00 to 19.59:59 AST, and so Wil be 16 to 40 hours old at the time of its usage, it

It should be noted that there is é time overlap between tW%uld appear to have little affect on the prediction resaks
forecasted and the actual data (Fig. 1) but data CorreSpgnd&ompared to when it was 00:00 hours old. The main reason

to them belongs to different categories. The time 08:00 yt dﬂ)r this counterintuitive result could be the limitation thfe

2in For-ecast lis 2|4 hours old while 08:00 at day 2 in Forecagt) | giscussed in [7] for forecasting wind speeds, or the si
2 is 00:00 hours old. of our data set.

The probability distribution of wind-speed forecast erfiar
various prediction time blocks were then analyzed so that an

Let vs(i,j) represent the value of the wind speed imppropriate method could be chosen to model the probability
Forecasti at the j** hour, and letv,(i,j) represent the distributions. The probability distributions for 24h, 18, 3h,

A. Mean and Variance for Wind-Speed Forecast Error



otherwise,
Mean & Variance of error in the predicted wind speed
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Hy =1, the Hypothesis will be rejected 7

2k 1 wherex? corresponds to the known distribution with— 3
degree of freedom and am level of significance. The chi-

variance

TABLE |
SUMMARY OF TEST RESULTS
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0 24hblock

| 0 0 12h block

0 0 0 0 6 h block
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Fig. 2. Mean and variance of error in forecasted wind speed All probabilies are in percentage (%)

and 1h prediction time blocks in a 24 hour prediction horizon

(00:00 to 23:59:59) were then tested for normality using twefUare testresults, using the MATLAB command:hi 2gof

methods: a statistical Chi-Squarg?] test and by comparing for various time blocks are summarized in Table I. The table
the empirical cumulative distribution with that of a Gaassi shows the probability (in %) that a given distribution is mead
process having the same mean and variance. (the probabilities less thatD—* were rounded off to zero).

Lange [12] and Landberg [10] have claimed that the wind-
B. Chi-Square Test speed forecast error follows a normal distribution for 12d a
24h prediction. But the results in Table | show that windespe
forecast error will not be normally distributed for 12h armth2
prediction time blocks, so the claim by Lange and Landberg
is not valid for the given data; the reason could be that wind-
speed error distributions vary from region to region [10{it B

The x? method tests a null hypothesi$, that a sample
data set follows a specified distribution, i.e., that thexed
significant difference between their distributions. Itides the
samples intd: bins and then calculates a test statigtfogiven

as, 11 one hourly prediction distributions are normally distited
) k (0; — E;)? with probability ranging from 33 to 95%, 2 ranging from 10
X° = ZT (3) to 33% and 11 below 10%. At this point, in a case where
i=1 ! probabilities are low, it is usually desirable to repeat the
whereO; = observed frequency an; = expected frequency. test with a larger sample size, irrespective of whether the
The expected frequency is given as, initial statistical chi-square test gives low probabilihat the
B distribution is normal. Given the limitation on our data €91
E; = n/m f(x)dz = n(F(z;) — Flz,)) (4) poiqts for eac_:h hOl_Jr), and.the coarseness o§<ﬂ1test _(due to
z, sorting data into bins, which obscures the fine-grain defail

the data set) a different approach to investigate the ndgmal

where f(z) is the specified probability density functiofi(z) wind-speed forecast error distribution was considered.

is the corresponding cumulative distribution, andz; bound
the i** bin. Note that the cumulative distribution function isC. Gaussian Distribution Fitting

given as: To investigate the normality of wind-speed forecast error

F(z) = P(X < z) (5) cumulative distributions further, each one-hourly disition
was fitted by a GD using the MATLA® commandnor m

whereF'(z) is the corresponding cumulative probability funcf i t . Then, using the statistics obtained frovor nf i t , 1000
tion andx denotes an instance of the random variableThe synthetic normal forecasting error samples were genefated
test statistic follows, approximately, g distribution with a each hourly distribution. The resulting cumulative distition
degree of freedonk — 3, and the hypothesis is defined agor the synthetic normal sample was plotted along with the
follows: actual distribution for the same bin width for each hour, as
shown in Figs. 3 and 4, all 24 cases are also shown in the

if x> <x2 ,Hy =0, the Hypothesis will be accepted6) Appendix (section V).



The plots in section V show that the normal cumulative
distributions closely fit the actual cumulative distritouts for (4
each one-hour data window. It is particularly noteworthgtth
the fits are in good agreement on the “tails” of the distritioiti
(F'(z) < 0.1 and F(z) > 0.9), where such fitting processes

(2]

are most likely to be problematic. [3]
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Fig. 3. 01:00:00 to 1:59:59 Fig. 4. 09:00:00 9:59:59
Therefore, we believe it can be assumed that all of the houHﬁ]
distributions are GDs; given the nature of wind-speed fasec

ing, the very slight variation between the actual and cutivda [12]
distribution at a few points will not have a significant impac
on the quality of modeling and forecasting.

[I. CONCLUSION

This paper has shown through statistical analysis that the
hourly wind-speed prediction error distributions were rapp
imately Gaussian in nature. However, it is important to ev

a rigorous validation of the Gaussian assumption by havingos

larger forecast and actual data sets to process. The agean@
of our approach to modeling prediction error is that the
local weather conditions are already considered by EC.,Also "
since prediction error follows a normal distribution, itnche
modeled accurately by one of the many well developed time-
series models for random variables characterized by a GD.

It was also shown that the statistics of the wind-speed
prediction error in our data sets do not increase signifigant
as time increases. This is significant since the models devel
oped using EC’s prediction error distributions can be diyec
applicable to the existing electricity market rules.
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V. APPENDIX
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Fig. 19. 14:00h to 14:59:59h
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