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Abstract

Data reconciliation (dr) is a well-known method in on-line process control engineering

aimed at estimating the true values of corrupted measurements under constraints [11].

It is crucial to detect and identify gross errors first or in some cases simultaneously

with dr. There have been some new gross error detection (ged) and statistical

model identification approaches developed recently and combined with the original

nonlinear dynamic dr (nddr) method in order to remove the negative effects of

gross errors. Among these methods there are very few approaches which address the

situation where a statistical model is not available. However, they cannot handle

either nonlinearity or dynamic behavior of the processes [1].

In the first step, one of the most applicable nddr methods introduced by Liebman et

al. [7], is studied in this thesis. This technique was designed and tested for inputs that

undergo step changes and are otherwise constant. Next, an adaptive nddr (anddr)

method is proposed that includes the application to processes with an unknown sta-

tistical model. A novel ged method is developed as well and combined with the

anddr algorithm. A new smart tracking system is also combined, to ameliorate the

problem of delay seen in both the original and later nddr methods. Finally, an ex-

tension is made to include applications with slowly and smoothly varying inputs. The

proposed package has been successfully applied to the simulated continuously stirred

tank reactor (cstr) model cited commonly in the literature. As a more complex

case study, this package is also tested and implemented on a simulated jacketed cstr

(jcstr) model. The proposed package with its smart tracking features is suggested

for use in distributed control systems (dcss) or chemical process control to improve

process monitoring.
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Chapter 1

Introduction

Measurement data are always subject to inaccuracy due to imprecision of the mea-

surement equipment, malfunction of instruments, poor sampling and noise. Flawed

information cannot be used effectively for state estimation and process control; there-

fore, it is crucial to have an algorithm capable of improving the accuracy of measured

data with respect to actual data together with estimating of unmeasured parameters.

This process is called “Data Reconciliation” (dr) [7].

Measurements might contain three possible types of error: (I) small random errors

which are typically zero-mean and normally distributed (Gaussian); (II) systematic

biases which occur when measurement devices provide consistently flawed data due

to inaccurate calibration or installation; or (III) gross errors which are usually non-

random errors causing measurements to have almost no relation with the true values.

Gross errors can be due to malfunctioning sensors (e.g., data drop-out) or can be

totally process-related such as process leaks [7]; here we only consider isolated outliers

such as one-time data drop-outs.

Normally, it is presumed that only type (I) errors exist when dr algorithms are

considered. If error types (II) or (III) are present, then a separate gross error detection

1



(ged) method must be developed.

1.1 Data reconciliation background

dr is a well-known method in process control aimed at estimating the true values

of the corrupted measurements taking into account constraints on dynamic behavior,

material and energy balance, etc.

The dr problem was first introduced by Kuehn and Davidson [5] for linear steady

state models. There has been a great deal of research conducted in the area of steady

state and linear processes, while nonlinear dynamic dr (nddr) has received less

attention [3]. On the other hand, as far as engineering processes are concerned they

often operate dynamically in highly nonlinear regions where traditional methods such

as the Kalman filter or extended Kalman filter (ekf) may be ineffective [7].

The necessity of developing nddr methods was proposed by Liebman and Edgar [6],

and the advantages of using nonlinear programming (nlp) over traditional steady

state dr methods were demonstrated. In the next step Liebman et al. [7] developed

their main nddr algorithm. Their approach was based on simultaneous optimization

and solution techniques where efficient state estimation was performed. In chapter 2

their approach and methodology are described.

1.2 Gross error detection background

As discussed earlier, usually it is presumed that the corrupted measurements are free

of gross errors or, more specifically, that they only contain zero-mean random noise.

Gross errors, however, exist normally in processes and it is crucial to detect and

2



identify them first or in some cases simultaneously with dr.

There was no ged and identification methodology included in the nddr approach

of Liebman et al. [7], but, since then, to complete their work, there have been some

approaches which are capable of detection of gross errors, or, more specifically, iden-

tification of gross errors as well. For instance, Soderstrom et al. [9] proposed an ap-

proach to simultaneously tackle the problem of ged and identification together with

dr. Abu-el-zeet et al. [4] proposed a combined method of bias and outlier identifica-

tion in dynamic dr where a history of all previous bias detection and identification

methods is briefly presented.

There have been studies to address ged and the estimation of the measurement error

covariance matrix but either applied only to linear processes or limited to stationary

processes [1]. Although several authors have stated the need for covariance estimation

for dr, none of them has proved the effectiveness of using this matrix in dr except

for Alici [1] who demonstrated its necessity and briefly discussed the effects that

covariance matrix estimation has on dr. She also addressed the combination of

dynamic model identification (dmi) with nddr.

1.3 Objectives and thesis outline

The method presented in this thesis is suitable for most engineering processes such

as found in the oil and gas industry. The two significant features of handling nonlin-

earities and dynamic systems in this algorithm help to be more applicable in reality.

The addition of methods for adaptation also make it more practical. This algorithm

will be incorporated, in future, as part of a system in the paws1 project where the

data collected from wireless sensors will be reconciled.

1Petroleum Applications of Wireless Systems (PAWS) project funded by ACOA under the At-
lantic Innovation Fund (AIF).

3



1.3.1 Objectives

The objectives of this thesis are as follows:

1. Studying and implementing the original nddr algorithm presented by Liebman

et al. [7].

2. Developing a smart tracking system to tackle the problem of delay seen in both

the original and later versions of nddr method.

3. Developing a novel ged algorithm to combine with the nddr algorithm.

4. Combining a novel statistical model identification method with nddr to make

it an adaptive nddr (anddr) algorithm that handles the applications where

the statistical model is not available.

5. Introducing a novel package including a combination of proposed anddr, ged

and smart tracking system algorithms.

6. Extending the proposed package to applications with slowly and smoothly vary-

ing inputs.

7. Demonstration of each proposed method on a simulated continuous stirred tank

reactor (cstr) model.

8. Demonstration of the whole package on a simulated model of a jacketed contin-

uous stirred tank reactor (jcstr) with more dynamics complexity.

1.3.2 Thesis outline

In chapter 2 the original nddr problem formulation and the solution strategy is

presented. In chapter 3 the smart tracking system is proposed which removes the delay

4



seen in the results of original and existing nddr methods. Next, in chapter 4 a novel

ged approach is proposed and combined with the original nddr. In chapter 5 the

basic theory of anddr, which is proposed as an enhancement, is presented. Then, this

anddr is combined with the proposed ged and identification algorithm. In chapter 6

the proposed package is extended to include the applications with slowly and smoothly

varying inputs. In chapter 7 the proposed package is tested and implemented on a

jcstr model. Finally, in chapter 8 conclusions and future work are discussed.
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Chapter 2

Nonlinear Dynamic Data

Reconciliation (NDDR)

2.1 Introduction

As mentioned in section 1.1, a general nddr problem was formulated by Liebman

et al. [7]. This problem formulation is presented in the first section of this chapter.

Next, the solution strategy adopted by Liebman et al. [7] is outlined.

2.2 General NDDR problem formulation

A general nddr formulation may be outlined as follows [7]:

min
ŷ

φ(ỹ, ŷ; σ) (2.1)
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subject to:

f(
dŷ(t)

dt
, ŷ(t)) = 0 (2.2)

h(ŷ(t)) = 0 (2.3)

g(ŷ(t)) ≥ 0 (2.4)

Here the corrupted measurements ỹ and reconciled estimates ŷ include both state

variables and input variables. The first constraint (equation (2.2)) represents the

process dynamics (often formulated as dŷ
dt

=f (ŷ)), the second constraint (equation

(2.3)) may describe energy and/or material balance, and the third (equation (2.4))

may impose process variable limits. For more details one can refer to the paper by

Liebman et al. [7].

For most applications the objective function is weighted squared error (wse):

φ(ỹ, ŷ(t); σ) =
c∑

j=0

1

2
(ŷ(tj)− ỹj)

T V −1(ŷ(tj)− ỹj), (2.5)

where tc is the current time, ỹj measured (corrupted) values, ŷj the reconciled esti-

mates at discrete time tj, and V is the variance-covariance matrix where each diagonal

element Vii is σ2
i .

“As in the classical steady-state dr, the optimal estimates are those as close as

possible (in the least-squares sense) to the measurements [true values] such that the

model equations are satisfied exactly ” [7].

7



2.3 Solution strategy

In this section the solution strategy to solve the nlp problem of equations (2.1) to

(2.4) is first demonstrated. Next, the discretization method used in this thesis is

discussed.

2.3.1 Moving horizon window

The solution adopted here is a moving horizon approach which enables the user to

utilize all the information at hand (process measurements) from start up to the current

time [7].

The moving horizon window (mhw) approach presented here has the advantage of

reduced optimization problem size together with giving the user the benefit of having

only one tuning parameter, the window horizon H. This second point is obvious,

in comparison with other nonlinear approaches such as the ekf where more tuning

parameters need to be adjusted. Another advantage is its capability of handling

constraints such as equalities and inequalities, whereas other approaches such as the

ekf cannot handle the constraints. Figure 2.1 shows the basic idea of the mhw

approach for nddr. In this method after collecting the process measurements up to

tc, φ is optimized over the horizon from tc - H to tc, the current time. Then one ŷ is

saved and the procedure is repeated at the next time step [7].

2.3.2 Discretization

In order to solve the nlp problem of equations (2.1) to (2.4), we need to discretize

the nonlinear model presented as the first constraint (equation (2.2)) . The method

adopted by Liebman et al. [7] is orthogonal collocation on finite elements (ocfe). In

8



tc − H tc

True values Measurements Estimates

Figure 2.1: History horizon for nddr

this thesis, however, the fourth order Runge-Kutta method has been chosen to sim-

ulate and discretize the model, as this approach has less complexity than the ocfe

method with possibly better accuracy. In other words, f(dy
dt

, y) is solved numerically

over the window horizon and yj obtained by sampling this solution. Once the dis-

cretization is implemented, equations (2.1) to (2.5) can be rewritten as the following

nlp problem:

min
ŷ

ni+ns∑
i=0

ηi

c∑
j=c−H

(
ŷij − ỹij

σi

)2, (2.6)

subject to:

f(
d

dt
ŷ, ŷ) = 0 (2.7)

h(ŷ) = 0 (2.8)

g(ŷ) ≥ 0 (2.9)

9



where f(ŷ), h(ŷ) and g(ŷ) now represent the constraints obtained through discretiza-

tion, η is a vector of weights and ni and ns are the numbers of inputs and states

(outputs), respectively.

Figure 2.2 is a flowchart that describes step by step the procedure of nddr application

[1].

Start

Read measurements until 
H-1 samples are available

Sample new 
measurements

Solve NLP
Generate new 

estimatest_end ?
Finish

Objective functionConstraints Process model
No Yes

Figure 2.2: nddr flowchart
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2.4 Case study

In this thesis a simulated cstr model studied commonly in the literature is chosen.

In order to produce the comparable results with those of Liebman et al. [7], the same

assumptions and parameters values for the model are used here. The normalized

model can be presented as follows:

dA

dt
=

q

v
(A0 − A)− αdkA (2.10)

dT

dt
=

q

v
(T0 − T ) + αd

∆HrAr

ρCpTp

kA− UA

ρCpV
(T − Tc) (2.11)

k = k0 exp(
−EA

TTr

) (2.12)

where the input stream feed concentration A0 and feed temperature T0 are input

variables and concentration A and temperature T are output variables. There are

two simple constraints on both input and output variables as follows:

0 ≤ A,A0 ≤ 20.0 (2.13)

0 ≤ T, T0 ≤ 10.0 (2.14)

The values of other constants in this model are presented in Appendix A, table 8.1.

One can refer to the paper by Liebman et al. [7] for more details on this cstr model.

In this case study the two inputs and two states (outputs) are being estimated,

assuming that no gross error exists. Measurements were simulated by creating the

measurement noise which is assumed to be Gaussian with σ equal to 0.05 and zero

mean. The time step is assumed to be 2 seconds and the simulation is run for 100

samples with window width of H = 10. Obviously, the first estimation is achieved at

time step 10 where the first window of measurements is available. The results of the
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nddr application are demonstrated in figures 2.3 to 2.6, for the case where a step

change in the feed concentration, A0, occurs at time step 30 from 6.5 to 7.5. The

simulation was initialized at a steady-state operating point of A0 = 6.5, T0 = 3.5, A

= 0.1531 and T = 4.6091.

Using the nddr algorithm, both input and output variables are being estimated

through solving the nlp problem introduced in equations 2.6 to 2.9. All four variable

estimations (figures 2.3 to 2.6) show satisfactory results of the nddr application to

the simulated cstr model. As these figures show, the transient behavior of the

states due to the step change has been successfully observed, and there has been a

significant noise reduction in all four reconciled variables. Note that at time step 30,

when the step occurred, there is a significant delay in the estimation of the first input

and consequently, slight delays in estimating the two states. This may be the main

drawback of the original and existing nddr methods. In the next chapter the smart

tracking system is proposed to ameliorate the problem of delay seen in both input

and output estimations.
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Chapter 3

Smart Tracking System and NDDR

Studying the results of the original nddr application in section 2.4 on the simulated

cstr model clearly shows a significant delay for the input estimation when a step

occurs, which also causes some delay in the estimation of output variables. These

delays, especially for the input estimation, are caused by the original assumption that

the input is constant over each data window; this is the main drawback of the original

nddr algorithm and later enhanced approaches. In this chapter the concepts of the

proposed new methods are first discussed, then the enhanced algorithm is applied to

the same cstr model to show the significant improvements of the estimation results.

3.1 Proposed smart tracking method

In this chapter we assume that the statistical model (i.e., σ) is available and also

the measurements are gross error free. In chapters 4 and 5 we will show that these

assumptions are not necessary and the proposed algorithm can be easily extended to

the cases where a statistical model is not available and/or gross errors exist.
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As it was discussed in section 2.4, estimation delay exists when the step change occurs

in one of the input variables; as mentioned this delay is caused by the assumption

that the input is constant over the entire moving window. Therefore, a complete

window length is required to reach steady state at the new set-point. Obviously, the

delay exists only for the first input where the step change occurs. This delay can be

easily removed if we can devise a smart tracking system that enables tracking the

new level of the input, when the step occurs.

Thus we need to modify and extend the original nddr algorithm in two ways. Firstly,

to enable the algorithm to detect the set-point change instantly, and secondly, to

define a new input level for the time when this set-point change is sensed and let the

second level track the new set-point.

To serve the first purpose, the difference dc,i is derived for each element of ỹc (equation

(3.1)), using the previous value of the mean, (equation (3.3)), for each time step, and

it is compared with the previous σ, σc−1,i. If | dc,i | exceeds the threshold, as defined in

equation (3.2), then the algorithm detects the set-point change and divides its input

to two levels; the second level estimates the new set-point value. In this way the

whole delay is removed, producing estimates that are significantly more accurate.

dc,i = ỹc,i − m̂c−1,i (3.1)

If | dc,i | > 3σc−1,i then ỹc,i is a set-point change (3.2)

m̂c,i =
c∑

j=c−H

(
ỹi,j

H + 1
) (3.3)

In the next section the results for the input estimation show satisfactory implemen-

tation of this smart tracking system.
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3.2 Case study

The same cstr model used in the previous chapter is studied here and the new

smart tracking system proposed in section 3.1 is applied. The estimation results are

compared with those of the original nddr application demonstrated in section 2.4.

Figures 3.1 to 3.4 show the comparison studies conducted to show the successful

implementation of the proposed smart tracking system. As figure 3.1 shows, when the

step occurs at time step 30, the reconciled values follow the set-point change instantly.

The original nddr estimation, however, needs a full window length (H = 10) to reach

to the new set-point. Output estimations also show a slightly better estimation after

the time step 30, since the inputs are more accurately estimated. Studying figures

3.3 and 3.4 show this improvement in the estimation of output concentration and

temperature.

To demonstrate the smart tracking feature of the proposed algorithm, the case with

two set-point steps happening at time steps 30 and 70, is also studied. First at time

step 30 the feed concentration, A0, is stepped up from 6.5 to 7.5 and stepped down at

the time step 70 from 7.5 to 4.5. Figures 3.5 to 3.8 show the comparison study of the

application of the original nddr and the proposed algorithm for this case. In each

figure the complete time-history is shown, plus a zoomed section for better viewing.

Figure 3.5 clearly shows the successful implementation of the smart tracking system

at both set-point changes, 30 and 70. Also figures 3.6 and 3.7 demonstrate more

accurate tracking of the peak for the output estimation at time steps 30 and 70, while

the original nddr method fails to track. Figure 3.8 proves that adding this smart

tracking feature does not affect the accuracy of the estimation for the second input,

where we do not have any set-point changes. As this figure shows both the original

nddr and proposed algorithm have virtually the same satisfactory results. Therefore,
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Figure 3.1: Comparison of original nddr and proposed smart tracking system esti-
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Figure 3.2: Comparison of original nddr and proposed smart tracking system esti-
mation for the second input, T0
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Figure 3.3: Comparison of original nddr and proposed smart tracking system esti-
mation for the first output, A
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Figure 3.5: Comparison of original nddr and proposed smart tracking system esti-
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Figure 3.6: Comparison of original nddr and proposed smart tracking system esti-
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mation for the second output, T, when two steps occur
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Figure 3.8: Comparison of original nddr and proposed smart tracking system esti-
mation for the second input, T0, when two steps occur

the nddr method is successfully extended with the proposed smart tracking system

and in the following chapters the addition of a ged and anddr methods will be

discussed.

To present a better understanding of both the original and smart nddr successful

estimation, the noise reduction statistics are provided in tables 3.1 to 3.4. As these

tables show, the algorithm performance has been improved by the proposed smart

tracking system.
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Table 3.1: Original nddr noise reduction statistics when one step exists

Variable Measurements σ Estimates σ % σ reduction
A 0.0465 0.0098 78.98
T 0.0513 0.0117 77.24
A0 0.0513 0.1828 -
T0 0.0466 0.0162 65.28

Table 3.2: Smart nddr noise reduction statistics when one step exists

Variable Measurements σ Estimates σ % σ reduction
A 0.0465 0.0079 83.03
T 0.0513 0.0106 79.27
A0 0.0513 0.0160 68.79
T0 0.0466 0.0162 65.29

Table 3.3: Original nddr noise reduction statistics when two steps exist

Variable Measurements σ Estimates σ % σ reduction
A 0.0465 0.0138 70.25
T 0.0513 0.0257 49.83
A0 0.0513 0.5931 -
T0 0.0466 0.0161 65.40

Table 3.4: Smart nddr noise reduction statistics when two steps exist

Variable Measurements σ Estimates σ % σ reduction
A 0.0465 0.0105 77.55
T 0.0513 0.0110 78.49
A0 0.0513 0.0222 56.73
T0 0.0466 0.0163 64.95
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Chapter 4

Novel Gross Error Detection

4.1 Introduction

Gross errors are usually non-random errors causing measurements to have almost

no relation with the true values. The gross errors considered here may be due to

malfunctioning sensors (e.g., data drop-out). The main purpose of dr algorithms

is to adjust the data according to the constraints. In the presence of gross errors,

however, all of the adjustments may be adversely affected. Therefore, it is crucial to

detect and identify the gross errors first or in some cases simultaneously with dr, and

suppress or eliminate them.

As stated earlier in section 1.2 there was no ged and identification included in the

nddr approach of Liebman et al. [7], but, since then, to complete their work, there

have been some approaches which are capable of detection of gross errors. Among

these methods there are very few approaches which address the situation where a sta-

tistical model is not available. However, they cannot handle processes with nonlinear

or dynamic behavior, which makes them unsuitable for many applications [1].
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In this chapter a novel ged method is presented, assuming that a statistical model is

available. Then, in the next chapter we will see how the extension to this novel ged

approach will be made to handle the cases where the statistical model is not known.

4.2 Proposed GED concepts

In chapter 3 the methodology to track the step change was presented. Using the

same idea, a novel ged approach is proposed. To perform ged, the difference dc,i is

derived for each element of ỹc (equation (4.1)), using the previous value of the mean

(equation (4.3)), for each time step, and it is compared with the previous σ, σc−1,i,

which is assumed to be known. If | dc,i | exceeds the threshold, as defined in equation

(4.2), then the algorithm detects the existence of a gross error and removes it by

replacing it with the previous estimate, ŷc−1.

dc,i = ỹc,i − m̂c−1,i (4.1)

If | dc,i | > 3σc−1,i then ỹc,i is an outlier (4.2)

m̂c,i =
c∑

j=c−H

(
ỹi,j

H + 1
) (4.3)

Attention must be focused on points in time near set-point changes. If the algorithm

is not smart, then such a change can simply be taken as a gross error. Here, a sample

point where an error threshold is exceeded is designated as a possible outlier and the

next point is processed to decide if a set-point change occurred or if the previous point

contained an outlier (in which case it is edited out, e.g., by interpolation). This is

effective under the assumption that outliers are isolated (do not happen in successive

samples); if this cannot be assumed then the algorithm would have to be modified to

wait several samples before the outlier/set-point-change decision can be made. This
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logic causes a one or several time-step delay in a real-time setting; thus there is a

trade-off between fast or robust detection. The former needs a ged algorithm based

on an assumption of isolated gross errors, and the latter, which enables us to handle

a number of successive gross errors, requires more detailed logic.

The proposed ged algorithm is combined with smart tracking nddr presented in the

previous chapter. Figure 4.1 is a flowchart that describes step by step the procedure

of application of the proposed ged method combined with the smart nddr [2].

4.3 Case study

The same cstr model used in the previous chapters is studied here and the new

ged algorithm is applied and combined with the smart nddr proposed in chapter

3, and the estimation results are compared with original nddr estimations. Here it

is assumed that isolated outliers exist for each variable. The number of gross errors

over the entire simulation is 5 for each variable. They have been added to the input

and output measurements randomly.

In figures 4.2 to 4.5 the estimation results considering a step change at time step 30

for the first input, A0, from 6.5 to 7.5, and another step change from 7.5 to 4.5 at

time step 70, are presented. In each figure the complete time-history is shown, plus

a zoomed section for better viewing. The solid lines in these figures show the true

values, circles show the corrupted measurements, stars present the proposed ged +

smart nddr estimation results and plus signs mark the original nddr data.
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Figure 4.1: ged + smart nddr flowchart

4.3.1 Observation

As the figures 4.2 to 4.5 show, the gross errors have been detected and successfully

removed, and the estimation has not been corrupted. Observe that the outliers cause

significant corruption of the nddr data. For example, figure 4.5 shows the corrupted

estimates of the original nddr data between time steps 24 and 34. This corruption
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Figure 4.2: Comparison of original nddr and proposed ged combined with smart
nddr estimation for the first output, A

is due to the existence of an outlier on T0 at time step 24 and lasts for one window

length (H samples). This is a direct effect that a gross error has caused on a variable

estimation, but there might be some interaction between a gross error in one variable
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and the estimates of the other variables as well (indirect). For instance, in figure 4.2

there is corruption of original nddr data at time steps 38 to 41 which is due to the

existence of an outlier on T0 at time step 38. Such interactions occur when large gross

errors exist on the input variables. Note that these effects, whether direct or indirect,

are totally application dependent. One can see different behavior if the amplitude

of gross errors and/or the place that they occur change. Using the proposed ged

algorithm, however, the negative effects of gross errors are completely removed.

Here a study of noise reduction statistics cannot fairly be conducted, due to the

existence of gross errors.
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Chapter 5

Adaptive NDDR + GED and

Smart Tracking System

5.1 Introduction

As mentioned earlier, most nddr techniques today are based on two major assump-

tions: 1) having known dynamic and statistical models, and 2) having gross-error-free

measurements. The novel anddr + ged approach presented in this chapter is suit-

able for cases where one does not have a statistical model for noise, or, in other

words, standard deviation σ or covariance matrix V is not known, and where isolated

outliers may occur.

“In dr studies almost without exception it is assumed that the statistical distribution

of the measurement errors (V matrix) is known”[1]. It was Alici [1] who addressed

the effect of covariance matrix estimation on the solution of nddr.

When measurements contain gross errors, the typical covariance matrix estimation

methods cannot be employed. The methodology here avoids such problems: when
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measurements are received at each time step the novel ged approach developed in

chapter 4 is first applied, and then a new standard deviation estimation approach

(which will be presented in the next section) is employed, using measurements from

which gross errors have been eliminated.

5.2 ANDDR + GED and covariance matrix esti-

mation

In this methodology the same moving window approach proposed by Liebman et al.

[7] is used and σ is estimated as each measurement variable is processed. The method

can briefly be described as follows:

The moving window provides us with H measurements at each time step. Assume

that H ≥ 10 in this discussion; if this is not true, then a longer window may be used

for estimating σ. Since the measurement error is Gaussian and white (uncorrelated

from sample-to-sample), and the true process variables change slowly over a data

window, the sample variance can be used to estimate σ for each variable. It is known

that the σ of the sample variance for a Gaussian process is [10]:

σV̂ =

√
2
V

H
(5.1)

For H ≥ 10 the estimate is adequate for a threshold test that is usually conservatively

chosen, e.g., T = 3σ̂ . This means, for example, that for H = 10, V̂ has a standard

deviation of 0.447
√

V which is crude for statistical purposes but reasonable for a

threshold test. This is the basis of the σ estimation method, which justifies using

σ̂ =
√

V̂ in solving the anddr problem.

The methodology here is the same as the ged approach presented in chapter 4.2,
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with a major extension being that the estimated standard deviation, σ̂, is up-dated

at each time step, so it will vary depending on the statistical behavior of recent

measurements. To perform ged, the difference dc,i is derived for each element of ỹc

(equation (5.2)), using the previous value of the mean (equation (5.4)), for each time

step, and it is compared with the previous σ̂, σ̂c−1,i, (equation (5.5)). If | dc,i | exceeds

the threshold, as defined in equation (5.3), then the algorithm detects the existence

of a gross error and removes it by replacing it with the previous estimate, ŷc−1.

dc,i = ỹc,i − m̂c−1,i (5.2)

If | dc,i | > 3σ̂c−1,i then ỹc,i is an outlier (5.3)

m̂c,i =
c∑

j=c−H

(
ỹi,j

H + 1
) (5.4)

σ̂c,i =

√√√√
c∑

j=c−H

(
(ỹi,j − m̂c,i)2

H
) (5.5)

Again, as in the previous discussion in section 4.2, attention must be focused on the

points in time near set-point changes. A sample point where an error threshold is

exceeded should be designated as a possible outlier and the next point is processed

to decide if a set-point change occurred or the previous point contained an outlier (in

which case it is edited out, e.g., by interpolation). Using the same argument as in

section 4.2, a one time-step delay occurs for isolated outliers and more delay is needed

if multiple outliers can occur successively. Again, there is a trade-off between fast

or robust detection. The former needs a ged algorithm based on an assumption of

isolated gross errors, and the latter, which enables us to handle a number of successive

gross errors, requires more detailed logic.

Figure 5.1 is a flowchart which describes step by step the procedure of application
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of proposed anddr and ged [2]. Note that the smart tracking feature (presented in

3.1) is also added to the combined anddr and ged approach.
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Figure 5.1: anddr + ged flowchart
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5.3 Case study

The same cstr model used in the previous chapters is studied here and the new

anddr combined with the ged algorithm is implemented with the smart tracking

system proposed in chapter 3. The implementation results are compared with the

original nddr estimates. Here it is assumed that isolated outliers exist for each

variable. The number of gross errors over the entire simulation is 5 for each variable.

In figures 5.2 to 5.5 the estimation results considering a step change at time step 30

for the first input, A0, from 6.5 to 7.5, and another step change from 7.5 to 4.5 at

time step 70, are presented. In each figure the complete time-history is shown, plus

a zoomed section for better viewing. The solid lines in these figures show the true

values, circles show the corrupted measurements, stars present the proposed anddr

+ ged + smart tracking system estimation results, and plus signs mark the original

nddr data.

5.3.1 Observation

As the figures 5.2 to 5.5 show, the gross errors have been detected and successfully

removed, and the estimation has not been corrupted. Observe that the outliers cause

significant corruption of the nddr data. Similar to the case study in the previous

chapter, both direct and indirect effects of gross errors are seen here. For instance,

at time step 42, the gross error on output A has caused the next 11 estimates of the

original nddr data to be adversely affected (figure 5.2). Also, as an indirect effect

example, figure 5.2 shows the corrupted estimation of nddr data for output A from

time step 69 to 79, which is caused by the gross error on T0 at time step 69. Using

the proposed ged algorithm, however, the negative effects of gross errors have been

completely removed.
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Figure 5.2: Comparison of original nddr estimation with proposed anddr and ged
combined with smart tracking system for the first output, A
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combined with smart tracking system for the first input, A0
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Figure 5.5: Comparison of original nddr estimation with proposed anddr and ged
combined with smart tracking system for the second input, T0
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Here, as in section 4.3, a study of noise reduction statistics cannot fairly be conducted,

due to the existence of gross errors. Also, comparing these reconciled values with those

of previous chapter show no degradation of the estimation for both input and output

variables, even though in this chapter the assumption is made that the statistical

noise model, σ, is not known. To demonstrate the successful σ estimation feature of

the anddr algorithm, the values of σ̂i for each variable are depicted in figures 5.6 to

5.9 knowing that the true σ is 0.05. Observe that the variation in σ̂ for each variable

is in the order of ± 40% in each case, which is much less than the threshold defined

in this methodology (3σtrue).
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Chapter 6

Adaptive NDDR + GED for

Slowly Varying Inputs

6.1 Introduction

Most nonlinear dynamic data reconciliation methods have studied cases where the

input variables are constant over relatively long periods of time separated by simple

step changes (e.g., set-point changes). While this scenario is not uncommon in process

control, it imposes strong limitations on a method’s applicability.

In this chapter a novel anddr algorithm is presented that extends the method pre-

sented in chapter 5 to the cases where the input variables are ramps or slow sinusoidal

functions or, for that matter, any slow, smooth variation. The proposed package has

been successfully applied to the same cstr model used in the previous chapters.

The combined anddr and ged method together with the enhanced dynamic tracking

feature presented before, plus the extended capability to track slowly-varying inputs

discussed in this chapter, produce a package that is suitable to most control process
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applications. This latest extension we refer to as anddr-r where -r denotes its

design for ramp inputs.

6.2 ANDDR + GED for slowly varying inputs

Here the method presented in chapter 5 is extended in order to include applications

with ramp and sinusoidal inputs. As before, the anddr-r + ged approach is appli-

cable to cases where the statistical model for noise is not given, or, in other words,

the standard deviation σ or covariance matrix V is unknown, and where outliers may

occur.

Since in this study the input to the model is assumed to be a ramp, sinusoid or other

smooth function, the difficulty of set-point change detection does not exist. One can

refer to chapters 4 and 5 where the problem of the set-point change is tackled while

ged is performed in order to appreciate this simplification.

The key modification that we made here for the anddr-r approach is the way that

input variables are estimated for each moving window. Traditionally, in the original

nddr algorithm, inputs over a moving window were assumed to be constant, which

caused a significant delay seen in the estimation of the step input [7]. This problem

was eliminated for step input functions in chapter 3 where the smart tracking system

with two input levels over the window instead of one, was introduced. In this chapter

the inputs are assumed to be ramps or slow sinusoids. Therefore, the extended

anddr-r solution is obtained by assuming that the input over each moving window

is a ramp. In this way, the algorithm can be significantly faster and smoother in

tracking the dynamic behavior of a system with slowly-varying continuous inputs.
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6.3 Case study - ramp input tracking

In this section the performance of the proposed algorithm is demonstrated. The case

studied in this chapter is the same simulated cstr model cited in the previous chap-

ters. First, the situation where the inputs to the model are ramps is considered.

Then, in the next study the response of the system to slow sinusoidal inputs is con-

sidered and the tracking capability for general slow and smoothly varying inputs is

illustrated.

6.3.1 Gross-error-free ramp input tracking

We consider the cstr model used in the previous chapters with the same assumptions

and parameters values, except the inputs may be ramp functions. In this case study

both the two inputs and two states (outputs) are estimated, assuming that no gross

errors exist. Measurements were simulated by creating the measurement noise which

is assumed to be Gaussian with σ equal to 0.05 and zero mean. The time step is

assumed to be 2 seconds and the simulation is run for 100 samples with window

width of H = 10. Obviously, the first estimates are obtained at time step 10 where

the first window of measurements is available. The first input, A0, is assumed to be

a ramp starting from 6.5 and increasing to 8.5, as shown in figure 6.1, and the second

input, T0, is assumed to be constant at 3.5.

Figures 6.1 to 6.4 demonstrate the successful application of the anddr-r approach for

the ramp function. The solid lines in these figures show the true values, circles show

the corrupted measurements, stars represent the proposed anddr-r estimates, and

plus signs mark the original nddr estimates. There is a significant noise reduction in

both input and output estimation for anddr-r application. A large delay, however,

is seen for the estimation of the first input, A0, when the original nddr algorithm is
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used. Obviously, the purpose of anddr-r development was to track slowly varying

inputs, which is successfully achieved in this study. However, as the figure 6.1 shows,

original nddr fails to track A0 due to its constant input assumption for each moving

window. Table 6.1 shows the noise reduction statistics for anddr-r estimates.

Table 6.1: anddr-r noise reduction statistics for ramp case

Variable Measurements σ Estimates σ % σ reduction
A 0.0437 0.0030 93.21
T 0.0437 0.0045 89.75
A0 0.0437 0.0197 54.90
T0 0.0437 0.0092 65.28

6.3.2 Gross errors and ramp input tracking

With the same assumptions made for the previous case, random gross errors are added

to the measurements of each input and output variable in the second study. There are

four random gross errors for each variable with different amplitudes. Figures 6.5 to 6.8

demonstrate the successful ged algorithm implementation. These figures show the

comparison of the situation where ged method was implemented along with anddr-

r, and where anddr-r is individually implemented. The solid lines in these figures

show the true values, circles show the corrupted measurements, stars present the

proposed anddr-r + ged estimation results, and plus signs mark the anddr-r data

without ged. As the figures show, the gross errors have been detected and successfully

removed, and the estimation has not been corrupted. Observe that the outliers cause

significant corruption of the estimates when the anddr-r is implemented solely; the

use of the ged algorithm eliminates this problem. Note that the method is applicable

where many gross errors may exist in the measurements, whether they are successive

or isolated, since the algorithm can detect and identify them without the need to
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distinguish outliers from step changes.

50



10 20 30 40 50 60 70 80 90 100
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time step

O
ut

pu
t c

on
ce

nt
ra

tio
n,

 A
True values
Corrupted measurements
ANDDR−R estimates
Original NDDR estimates

Figure 6.3: First output, A, estimation. (gross-error-free)
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Figure 6.4: Second output, T , estimation. (gross-error-free)
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Figure 6.6: Second input, T0, estimation. (with gross errors)

6.4 Case study - sinusoidal input tracking

In this section the performance of the algorithm for sinusoidal inputs is studied. The

previous cstr model with the same parameters and assumptions is used. The feed
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concentration, A0, is a slow sinusoidal function as follows:

A0 = sin(
π

100
t) + 6.5, (6.1)

and the feed temperature, T0, is constant with the same value of 3.5.

6.4.1 Gross-error-free sinusoidal input tracking

First we assume that the measurements are not corrupted by gross errors and only

contain the same zero-mean Gaussian noise defined in section 6.3.1. As figures 6.9

to 6.12 demonstrate, the anddr-r algorithm has successfully tracked the sinusoidal

behavior of the model, for both input and output estimates. The solid lines in these

figures show the true values, circles show the corrupted measurements, stars represent

the proposed anddr-r estimates, and plus signs mark the original nddr estimates.

There is a significant noise reduction in both input and output estimation for anddr-

r application. A large delay, however, is seen for the estimation of the first input,

A0, when the original nddr algorithm is used (figure 6.9). This delay is significantly

reduced using the anddr-r algorithm, but still a slight lag exists. One suggestion to

reduce this delay would be to assume two different slopes for the input estimation in

each moving window. This modification would significantly reduce the delay seen in

the estimates of feed concentration.

Table 6.2 shows the noise reduction statistics for both the inputs and outputs. Ob-

viously, due to the slight delay seen in the sinusoid input estimation, A0, no noise

reduction can be achieved for this variable. The reason is that systematic error due to

the delay mentioned above is greater than the very low level of random measurement

error.
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Figure 6.9: First input, A0, estimation. (gross-error-free)
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Figure 6.10: Second input, T0, estimation. (gross-error-free)

6.4.2 Gross errors and sinusoidal input tracking

To prove the performance of the proposed ged algorithm, we consider the existence of

gross errors. There are four random outliers added to each input and output variable
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Figure 6.12: Second output, T , estimation. (gross-error-free)
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Table 6.2: anddr-r noise reduction statistics for sinusoidal case

Variable Measurements σ Estimates σ % σ reduction
A 0.0437 0.0040 90.85
T 0.0437 0.0050 88.57
A0 0.0437 0.0480 -
T0 0.0437 0.0091 79.16

measurement, and the proposed anddr-r + ged method is implemented. Figures

6.13 to 6.16 show the successful detection of outliers and show the comparison studies

of the two cases of anddr-r and anddr-r + ged implementations. It is clear that

without ged the estimates become seriously corrupted.

6.5 Conclusion

Studying the results achieved in the case studies presented in sections 6.3 and 6.4, the

applicability of the proposed anddr-r + ged package for cases with slowly varying

inputs is demonstrated. As the estimates show, when there are no gross errors the

anddr-r algorithm performed well for both ramp and slow sinusoidal cases, except

for a slight delay seen in estimation of the sinusoidal input. However, it is believed

that this delay can be reduced by a further simple extension (using two input slopes

over the window, as mentioned in section 6.4.1) which is suggested for future work.

Also, in presence of the gross errors, the ged algorithm combined with anddr-r,

detected and removed outliers successfully for the both case studies.
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Figure 6.14: Second input, T0, estimation. (with gross errors)
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Chapter 7

Implementation on JCSTR Model

In this chapter a novel application of the proposed anddr + ged package is studied.

In order to study a situation where we have both set-point changes and slowly varying

inputs happening at the same time, the proposed anddr + ged algorithm is applied

to a more sophisticated model. A jacketed continuous stirred tank reactor (jcstr)

is chosen with the physical characteristics discussed in the following section.

7.1 JCSTR physical model

The jcstr model studied in this thesis is portrayed in figure 7.1. In this jcstr model

the tank inlet stream is received from another process unit and there is a heat transfer

fluid circulating through the jacket to heat the fluid in the tank. The objective is to

control the temperature and the volume inside the tank by varying the jacket inlet

valve flow rate and the tank outlet valve flow rate. In order to derive the dynamic

modeling equations of the tank and jacket temperatures, the following assumptions

were made:
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• Liquids have constant density and heat capacity.

• Mixing in both the tank and jacket are perfect.

• The rate of heat transfer from the jacket to the tank is governed by the equation

Q = U A(Tj − T ) , where U is the overall heat transfer coefficient and A is the

area for heat transfer.

T

V

TinFin

Tank inlet

Jacket outlet

Fjout Tjout Jacket 

Tank

Fjin Tjin

Fout Tout

LC

TC

Figure 7.1: Jacketed continuous stirred tank reactor

The following equations describe the model for the jcstr reactor [8]:

V̇ = Fin − Fout (7.1)

Ṫ =
Fin (Tin − T )

V
+

UA (Tj − T )

V ρ Cp

(7.2)

Ṫj =
Fjin (Tjin − Tj)

Vj

+
UA (Tj − T )

Vj ρCp

(7.3)

where subscripts in, out and j refer to inlet, outlet and jacket respectively. The

parameters values are given in table 8.2 in Appendix B.

This is a third order model with three input variables (Fin, Fout, Tin) and three states

or outputs (V, T, Tj). Output variables are tank volume, V, temperature inside the

tank, T, and temperature inside the jacket, Tj. The input variables are mixture

inflow, Fin, mixture outflow, Fout, and the temperature of the mixture feed, Tin. The
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operating point of the model considered for this study is:

Vo = 100 m3, To = 290oK, Tjo = 300oK (7.4)

The time step in this simulation is 10 sec, and the simulation is run for 1500 seconds.

The inputs are assumed to include only step changes. The mixture inflow, Fin, is

equal to 0.1 m3/s initially until the step is applied at time step 50 (500 sec) from 0.1

to 0.15. The other two input variables, mixture outflow, Fout, and the temperature

of the mixture feed, Tin, are constant with 0.1 m3/s and 283oK, respectively.

7.2 Application results

In this section the extended anddr + ged algorithm is applied to the jcstr model.

Two cases are considered: 1) gross-error-free measurements, to evaluate the perfor-

mance of the anddr + ged approach in estimating the statistical model; and 2)

existence of gross errors, to evaluate the whole package’s estimation results.

7.2.1 Gross-error-free case

The measurement noise is assumed to be Gaussian with σ equal to 5% of the nominal

values (σ = 5, 0.85, 1.35, 0.005, 0.005, 0.5) and zero mean. Measurements are created

by adding this noise to the actual values of the model achieved through simulation.

Window width of H = 10 is selected and obviously, the first estimation is achieved

at time step 10 where the first window of measurements is available. Figures 7.2 to

7.7 demonstrate the results of the anddr + ged implementation on the simulated

jcstr model. Solid lines represent the true values (from the simulation), circles

the corrupted measurements, and plus signs mark the anddr + ged estimates. As

these figures show, both input and output variables are estimated successfully with
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Table 7.1: anddr noise reduction statistics for jcstr model for gross-error-free case

Variable Measurements σ Estimates σ % σ reduction
V 4.4352 1.2630 71.52
T 0.7540 0.1949 74.15
Tj 1.1975 0.1179 90.15
Fin 0.0044 0.0019 56.48
Fout 0.0044 0.0012 72.20
Tin 0.4435 0.1229 72.30

a significant noise reduction in each case. Observe that in the estimation of the first

input, mixture inflow, there is no delay when the step occurs at time step 50 (figure

7.5). Another prominent feature is how fast the proposed algorithm has tracked the

output variables. All three output variables show fast transient responses, and the

estimation results demonstrate the successful anddr + ged tracking feature. There

is a significant noise reduction in both input and output estimation. Table 7.1 shows

the noise reduction statistics.
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Figure 7.5: First input, Fin, estimation. (gross-error-free)
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Figure 7.6: Second input, Fout, estimation. (gross-error-free)
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Figure 7.7: Third input, Tin, estimation. (gross-error-free)

7.2.2 Presence of gross errors

In this section the results of the application of the extended anddr + ged to the

jcstr model are presented in a case when gross errors exist. There are three gross

errors assumed for each input and output variable. Figures 7.8 to 7.13 show success-

ful estimates with plus signs, corrupted measurements with circles, and true values

with solid lines. In order to see the effect of gross errors, the results of the anddr

estimation without ged are also depicted with stars. Observe that outliers cause

significant corruption of the anddr data.
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Figure 7.8: First output, V , estimation. (with gross errors)
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Figure 7.9: Second output, T , estimation. (with gross errors)
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Figure 7.10: Third output, Tj, estimation. (with gross errors)
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Figure 7.11: First input, Fin, estimation. (with gross errors)

68



0 50 100 150
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time step

S
ec

on
d 

in
pu

t, 
m

ix
tu

re
 o

ut
flo

w
 (

m
3 /s

),
 F

ou
t

 

 
True values
Corrupted measurements
ANDDR estimates without GED
ANDDR+GED estimates

Figure 7.12: Second input, Fout, estimation. (with gross errors)
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Figure 7.13: Third input, Tin, estimation. (with gross errors)
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Chapter 8

Thesis Observations

8.1 Conclusions

1. The original nddr approach developed by Liebman et al. [7] has been studied

and extensions have been made to improve the tracking system and adaptability

of the algorithm.

2. A smart tracking system has been developed which ameliorates the problem of

delay seen in original and later versions of nddr.

3. A novel anddr method has been developed. As the results in chapters 5, 6 and

7 show, the anddr algorithm can accurately estimate both input and output

variables even if the statistical model is not known.

4. A novel ged algorithm is proposed. The proposed ged method successfully

detected and removed the gross errors occurring in the measurements.

5. The proposed anddr and ged methods have been combined in order to detect

and remove gross errors before the anddr estimation. This combination did

not degrade the performance of the anddr algorithm.
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6. The proposed package in this thesis has been successfully implemented and

applied to the cstr model of Liebman et al. [7]. Simulation results in chapter

5 demonstrated the performance improvements in applications where set-point

step changes occur and/or the covariance matrix is not known.

7. The anddr-r + ged algorithm was also successfully implemented and tested

on the simulated cstr model of Liebman et al. [7] when the inputs are ramps

or sinusoid functions. In both cases the estimates are satisfactory (chapter 6).

A very small delay exists in sinusoidal input tracking; however, it is believed

that this delay can be reduced further by another simple extension (using two

input slopes over the window, as mentioned).

8. To study another application of the proposed anddr + ged algorithm, the

whole package has been successfully tested on the simulated jcstr model with

more complex dynamic characteristics. The reconciled estimates depicted in

chapter 7 prove the applicability of the proposed method to cases where both

set-point changes and ramps exist.

9. This package with its smart tracking features is suggested for use in distributed

control systems (dcss) or chemical process control to improve process monitor-

ing and lessen operator work load.

8.2 Future work

The next step will be an evaluation on a more realistic model of a pilot plant facility

at the College of North Atlantic as part of the Petroleum Application of Wireless

Systems (paws) project, followed by studies with actual data acquired from the plant.

Adding a dynamic model identification (dmi) feature to the proposed approach may
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be a useful extension for this study. As stated in section 1.2, dmi has been addressed in

Alici et al. [1], but the selection of a suitable dmi approach requires serious attention,

since it can be application dependent. Therefore, the combination of a suitable dmi

method and the new anddr and ged package is suggested as future work.

72



Bibliography

[1] S. Alici, Dynamic data reconciliation using process simulation software and model

identification tools, Ph.D. thesis, University of Texas at Austin, 2001.

[2] S. Alici and T. F. Edgar, Nonlinear dynamic data reconciliation via process simu-

lation software and model identification tools, Industrial and Engineering Chem-

istry Research 41 (2002), no. 16, 3984–3992.

[3] C. M. Crowe, Data reconciliation progress and challenges, Process Control 6

(1996), no. 2-3, 89–98.

[4] Z. H. Abu el zeet, V. M. Becerra, and P. D. Roberts, Combined bias and outlier

identification in dynamic data reconciliation, Computers and Chemical Engineer-

ing 26 (2002), 921–935.

[5] D. R. Kuehn and H. Davidson, Computer control, Chemical Engineering Progress

57 (1961), 44–47.

[6] M. J. Liebman and T. F. Edgar, Data reconciliation for nonlinear process, Pro-

ceedings of the AIChE Annual Meeting, Washington, DC (1998).

[7] M. J. Liebman, T. F. Edgar, and L. S. Lasdon, Efficient data reconciliation

and estimation for dynamic processes using nonlinear programming techniques,

Computers and Chemical Engineering 16 (1992), no. 11, 963–986.

73



[8] Maira Omana, Robust fault detection and isolation using a parity equation imple-

mentation of directional residuals, Master’s thesis, University of New Brunswick,

2005.

[9] T. A. Soderstrom, D. M. Himmelblau, and T. F. Edgar, A mixed integer op-

timization approach for simultaneous data reconciliation and identification of

measurement bias, Control Engineering Practice 9 (2001), 869–876.

[10] J. H. Taylor, Statistical performance analysis of nonlinear stochastic systems

by the monte carlo method, Mathematics and Computers in Simulation XXIII

(1981).

[11] H. Tong and C.M. Crowe, Detecting persistent gross errors by sequential analysis

of principal components, AIChE 43 (1997), no. 5, 1242–1249.

74



Appendix A

Table 8.1: cstr model constants

Parameter Value Units
q 10.0 cm3s−1

V 1000.0 cm3

∆Hr -27,000.0 cal gmol−1

ρ 0.001 g cm3

Cp 1.0 cal(gK)−1

U 5.0× 10−4 cal(cm2sK)−1

AR 10.0 cm2

Tc 340.0 K
k0 7.86× 1012 s−1

EA 14,090.0 K
αd 1.0 -
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Appendix B

Table 8.2: jcstr model constants

Parameter Value Units
Dr 5.0 m
Cp 4.1868 × 1000 J/kg.K
ρ 997.95 kg/m3

U 851.74 W/m2.K
FJout 0.15 m3/S
Vj 9.0 m3

Tjin 419.0 K

76



Curriculum Vita

• Candidate’s full name: Mazyar B. Laylabadi

• University attended: Iran University of Science & Technology, Bachelor in Elec-

trical Engineering, 2002

• Publications:

1. ANDDR with Novel Gross Error Detection and Smart Tracking System

(Accepted to IFAC, INCOM Conf., May 2006, France)

2. A Novel Adaptive Nonlinear Dynamic Data Reconciliation and Gross Er-

ror Detection Method (Submitted to IEEE International Conference on

Control Applications, CCA 2006, Munich, Germany)


